Responsive image
博碩士論文 etd-0305111-170921 詳細資訊
Title page for etd-0305111-170921
論文名稱
Title
單細胞固氮生物在黑潮上游與北南海之季節分布
Seasonal dynamics of unicellular diazotrophs in the upstream Kuroshio and the northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-02-25
繳交日期
Date of Submission
2011-03-05
關鍵字
Keywords
全細胞免疫化學染色法、黑潮、南海、單細胞固氮生物、固氮酵素
nitrogenase, Kuroshio, whole-cell immunocytochemical method, northern South China Sea, unicellular diazotrophs
統計
Statistics
本論文已被瀏覽 5694 次,被下載 0
The thesis/dissertation has been browsed 5694 times, has been downloaded 0 times.
中文摘要
本研究針對黑潮上游與北南海海域單細胞固氮生物生物量之時空分布,及影響其分布之生態因子進行探討。在南海有文獻報告指出Trichodesmium及Richelia生物量遠比黑潮低,但南海水中N*值頗高,意謂應有頗活躍之固氮作用,究竟是否南海的固氮貢獻來自單細胞固氮生物的存在,過去在本研究海域無相關之報告可解明。本研究首次針對此海域單細胞固氮生物生物量進行有系統地探討。研究期間自2008年8月至2009年8月,共有四個航次,包括夏(CR1310及CR910)、冬(CR886)、晚春(CR899)三季,採樣測站在北緯21至22度,東經116至122度間,涵蓋黑潮及南海陸棚與海盆區。單細胞固氮生物之生物量為利用全細胞免疫化學染色法,以固氮酵素為抗體,進行抗原-抗體反應,偵測具有固氮酵素之單細胞生物,而後以顯微鏡計數其個數。單細胞固氮生物依體型分成四類型,即直徑為1-3 μm之圓形細胞(1-3 μm C),直徑為1-3 μm之橢圓形細胞(1-3 μm R),直徑為>3-10 μm之圓形細胞(>3 μm C),直徑為>3-10 μm之橢圓形細胞(>3 μm R)。結果發現黑潮與南海表水單細胞固氮生物之生物量皆以冬季最高,夏季次之,晚春最低。比較不同類型單細胞固氮生物量的多寡,均以1-3 μm C最多,> 1-3 μm R次之,>3 μm R再次之,而>3 μm C最少。小體型的兩類細胞(1-3 μm C與1-3 μm R)生物量間有顯著正相關,大體型的兩類細胞(>3 μm C與>3 μm R)生物量間亦有顯著正相關,但小型細胞(1-3 μm C+R)與大型細胞(>3 μm C+R)生物量間無顯著相關。比較黑潮與南海表水間單細胞固氮生物之生物量,發現在夏季及晚春皆是南海比黑潮多,夏季在南海的生物量為黑潮的2倍,晚春時南海的生物量則為黑潮的1.3倍;冬季則是黑潮比南海稍多,黑潮的生物量為南海的1.2倍。1-3 μm C、>3 μm C、>3 μm R及大型細胞(>3 μm C+R)生物量皆與表水溫度呈顯著負相關。但表水溫度又與表水葉綠素a、[NO2+NO3]濃度、SRP濃度及N:P成顯著負相關。因此各類細胞與溫度間之關係可能伴隨其他生態因子之影響效應。1-3 μm C生物量分布可能主要受溫度的影響,溫度越低,生物量越高;但>3 μm C、>3 μm R及大型細胞(>3 μm C+R)的分布可能主要與磷的高低有關,磷酸鹽濃度越高,生物量越高。表水單細胞個體(包括固氮及非固氮生物)中,固氮生物佔60-90 %。單細胞固氮生物生物量之垂直分布,在夏季及晚春以深水層較表水多,冬季則是表水生物量高於深水。
Abstract
Seasonal dynamics of unicellular diazotrophs were investigated in the upstream Kuroshio and the northern South China Sea (SCS). Unicellular diazotrophs had been postulated as an important N2-fixing contributor for the phenomenon of N* in the SCS where abundances of filamentous Trichodesmium and Richelia were scarced. Samples were collected during four cruises between August 2008 and August 2009 in summer (CR1310 and CR910), winter (CR886), and late spring (CR899), respectively. Sampling stations located between 21°N-22°N and 116°E-122°E in the upstream Kuroshio off southeast Taiwan and covering the shelf and basin waters of the northern SCS. The abundance of the unicellular diazotrophs was determined using whole-cell immunocytochemical method in which antibody of nitrogenase was used as the probe. Cells containing nitrogenase can be visualized and counted after the antigen-antibody reaction under microscope. Unicellular diazotrophs were classified to four types according to their sizes and shapes. For diameters of those with 1-3 μm and in coccoid shape are called 1-3 μm C, diameters of 1-3 μm and in rod shape are called 1-3 μm R, diameters of >3-10 μm and in coccoid shape are called >3 μm C, and diameters of >3-10 μm and in rod shape are called >3 μm R.
Surface abundance of the unicellular diazotrophs was highest in winter in both the Kuroshio and the SCS, followed by summer, and was least in late spring. Among four cell types, 1-3 μm C usually was the most abundant group, followed by 1-3 μm R and >3 μm R, and was least for the group of >3 μm C. The abundances between groups of 1-3 μm C and 1-3 μm R were positively correlated. Likewise, the abundances between >3 μm C and >3 μm R were positively correlated. However, the total abundance of small cells (1-3 μm C+R) was not significantly related to the large cells (>3 μm C+R). During summer and late spring, the abundance of unicellular diazotrophs in the SCS was 1.3-2 times of that in the Kuroshio. However, in winter the abundance in the Kuroshio was 1.2 times of that in the SCS. Surface water temperature was found negatively correlated to the abundance of 1-3 μm C, >3 μm C, >3 μm R, and large cells (>3 μm C+R), respectively. Significant correlations among surface water temperature and surface chlorophyll a, [NO2+NO3], SRP and N:P ratio implicated that the dynamics of cell abundances could be attributed to the correlated ecological variables of surface water temperature. The dynamics for the abundances of >3 μm C, >3 μm R, and large cells (>3 μm C+R) were suggested to relate with the fluctuation of SRP concentration. Unicellular diazotrophs accounted for 60-90 % of total unicellular cells in terms of cell number. Vertical distributions of unicellular diazotrophs in the Kuroshio and the SCS were in similar trends, with maximum abundance in deep water during summer and late spring, and on surface water during winter.
目次 Table of Contents
中文摘要…………………………………………………………………………… i
英文摘要…………………………………………………………………………… iii
第一章 前言……………………………………………………………………….. 1
第二章 文獻回顧………………………………………………………………….. 4
2.1 黑潮海域之地理環境與水文資料………………………………………. 4
2.2 單細胞固氮生物的細胞生物學……………………………………….… 6
2.3 單細胞固氮生物之重要性……………………………………….……… 8
2.4 單細胞固氮生物與環境因子之關係……………………………………. 11
第三章 材料與方法……………………………………………………………….. 16
3.1 水文資料測定與水樣採集………………………………………………. 16
3.2 <10 μm單細胞固氮生物之生物量分析………………………………… 17
3.3 營養鹽測定………………………………………………………………. 20
3.4 數據分析…………………………………………………………………. 21
第四章 預備實驗………………………………………………………………….. 22
第五章 結果……………………………………………………………………….. 23
5.1 夏季………………………………………………………………………. 23
5.2 冬季………………………………………………………………………. 28
5.3 晚春………………………………………………………………………. 31
5.4 不同季節之比較…………………………………………………………. 34
5.5 黑潮與南海區域比較……………………………………………………. 37
5.6 各類型固氮生物其生物量間的變動趨勢………………………………. 39
5.7 綜合全部數據看表水各類型單細胞固氮生物細胞密度與生態因子之關
係………………………………………………………………………….. 39
第六章 討論……………………………………………………………………….. 40
6.1 表水的分布………………………………………………………………. 40
6.2 垂直分布…………………………………………………………………. 43
6.3 單細胞固氮生物與生態因子之關係……………………………………. 44
參考文獻…………………………………………………………………………… 48
參考文獻 References
韓佳安,2005。南海海域單細胞藍綠藻之分布及固氮酵素鐵蛋白nifH基因分析, 碩士論文,國立中山大學海洋生物科技暨資源學系研究所。

Bergman, B., J. R. Gallon, A. N. Rai, and L. J. Stal. 1997. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Lett. 19: 139-185.

Biegala, I. C., and P. Raimbault. 2008. High abundance of diazotrophic picocyanobacteria (<3 μm)in a Southwest Pacific coral lagoon. Aquat. Microb. Ecol. 51: 45-53.

Bird, C., J. M. Martinez, A. G. O’Donnell, and M. Wyman. 2005. Spatial distribution and transcriptional activity of an uncultured clade of planktonic diazotrophic proteobacteria in the Arabian Sea. Appl. Environ. Microbiol. 71: 2079–2085.

Bonnet, S., I. C. Biegala, P. Dutrieux, L. O. Slemons, and D. G. Capone. 2009. Nitrogen fixation in the western equatorial Pacific: Rates, diazotrophic cyanobacterial size class distribution, and biogeochemical significance. Glob. Biogeochem. Cycles 23: GB3012, doi: 10.1029/2008GB003439.

Brand, L. E. 1991. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol. Oceanogr. 36: 1756–1771.

Capone, D. G., J. A. Burns, J. P. Montoya, A. Subramaniam, C. Mahaffey, T. Gunderson, A. F. Michaels, and E. J. Carpenter. 2005. Nitrogen fixation by Trichodesmium spp. : An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob. Biogeochem. Cycles 19: GB2024, doi: 10.1029/2004GB002331.

–––––, J. P. Zehr, H. W. Paerl, B. Bergman, and E. J. Carpenter. 1997. Trichodesmium: A globally significant marine cyanobacterium. Science 276: 1221-1229.

Chen, Y. L. L. 1995. Phytoplankton composition and productivity in response to the upwelling off northeastern Taiwan. Proc. Nat. Sci. Council B, 19: 66-72.

–––––. 2005. Spatial and seasonal variations of nitrate-based new production and primary production in the South China Sea. Deep-Sea Res. I 52: 319-340.

–––––, H. Y. Chen, S. H. Tuo, and K. Ohki. 2008. Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnol. Oceanogr. 53: 1705–1721.

–––––, –––––, S. Jan, and S. H. Tuo. 2009 Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Mar. Ecol. Prog. Ser. 385: 111–126.

–––––, –––––, and Y. H. Lin. 2003. Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kurochio Current. Mar. Ecol. Prog. Ser. 259: 47-57.

Cheng, J., C. R. Hipkin, and J. R. Gallon. 1999. Effects of inorganic nitrogen compounds on the activity and synthesis of nitrogenase in Gloeothece (Nageli) sp. ATCC27152. New Phytol. 141:61-70.

Chou, W. C., Y. L. L. Chen, D. D. Sheu, Y. Y. Shih, C. A. Han, C. L. Cho, C. M. Tseng, and Y. J. Yang. 2006. Estimated net community production during the summertime at the SEATS time-series study site, northern South China Sea: Implications for nitrogen fixation. Geophys. Res. Lett. 33: L22610, doi: 10.1029/2005GL025365.

Church, M. J., B. D. Jenkins, D. M. Karl, and J. P. Zehr. 2005. Vertical distributions of nitrogen-fixing phylotypes at Stn ALOHA in the oligotrophic North Pacific Ocean. Aquat. Microb. Ecol. 38: 3-14.

–––––, C. Mahaffey, R. M. Letelier, R. Lukas, J. P. Zehr, and D. M. Karl. 2009. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Glob. Biogeochem. Cycles 23: GB2020, doi: 10.1029/2008GB003418.

–––––, C. M. Short, B. D. Jenkins, D. M. Karl, and J. P. Zehr. 2005. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol. 71: 5362-5370.

–––––, K. M. Bjorkman, D. M. Karl, M. A. Saito, and J. P. Zehr. 2008. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol. Oceanogr. 53: 63-77.

Dore, J. E., J. R. Brum, L. M. Tupas, and D. M. Karl. 2002. Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnol. Oceanogr. 47: 1595-1607.

Dyhrman, S.T., and S. T. Haley. 2006. Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl. Environ. Microbiol. 72: 1452-1458.

Falcon, L. I., E. J.Carpenter, F. Cipriano, B. Bergman, and D. G. Capone. 2004. N2 fixation by unicellular bacterioplankton from the Atlantic and Pacific Oceans: phylogeny and in situ rates. Appl. Environ. Microbiol. 70: 765-770.

–––––, P. Sybille, and J. C. Edward. 2005. Growth kinetics of marine unicellular N2-fixing cyanobacterial isolates in continuous culture in relation to phosphorus and temperature. Mar. Ecol. Prog. Ser. 285: 3-9.

Foster, R. A., A. Subramaniam, C. Mahaffey, E. J. Carpenter, D. G. Capone, and J. P. Zehr. 2007. Influence of the Amazon River plume on distributions of free-living and symbiotic cyanobacteria in the western tropical Atlantic Ocean. Limnol. Oceanogr. 52: 517-532.

–––––, –––––, and J. P. Zehr. 2009. Distribution and activity of diazotrophs in the eastern equatorial Atlantic. Environ. Microbiol. 11: 741-750.

Gallon, J. R. 2006. Reconciling the incompatible: N2 fixation and O2. New Phytol. 122: 571-609.

Garside, C. 1982. A chemiluminescent technique for the determination of nanomolar concentrations nitrate in sea water. Mar. Chem. 11: 159-167.

Goebel, N. L., C. A. Edwards, B. J. Carter, K. M. Achilles, and J. P. Zehr. 2008. Growth and carbon content of three different-sized diazotrophic cyanobacteria observed in the subtropical North Pacific. J. Phycol. 44: 1212-1220.

–––––, –––––, M. J. Church, and J. P. Zehr. 2007. Modeled contributions of three types of diazotrophs to nitrogen fixation at station ALOHA. ISME J. 1: 606-619.

Gong, G., K. K. Liu, C. Liu, and S. Pai. 1992. The chemical hydrography of the South China Sea west of Luzon and a comparison with the west Philippine Sea. Terr. Atmos. Oceanic Sci. 3: 587-602.

Grabowski, M. N. W., M. J. Church, and D. M. Karl. 2008. Nitrogen fixation rates and controls at Stn ALOHA. Aquat. Microb. Ecol. 52: 175-183.

Hu, J. Y., H. Kawamura, H. S. Hong, and Y. Q. Qi. 2000. A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J. Oceanogr. 56: 607-624.

Janson, S., J. Wouters, B. Bergman, and E. J. Carpenter. 1999. Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. Appl. Environ. Microbiol. 1: 431-438.

Karl, D. M. 1997. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature 388: 533-538.

–––––, and G. Tien. 1992. MAGIC: A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnol. Oceanogr. 37: 105-116.

Kitajima, S., K. Furuya, F. Hashihama, and S. Takeda. 2009. Latitudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Limnol. Oceanogr. 54: 537-547.

Kuo, N. J., Q. Zheng, and C. R. Ho. 2000. Satellite observation of upwelling along the western coast of the South China Sea. Remote Sens. Environ. 74: 463-470.

Langlois, R. J., D. Hummer, and J. LaRoche. 2008. Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. Appl. Environ. Microbiol. 74: 1922-1931.

–––––, J. LaRoche, and P. A. Raab. 2005. Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl. Environ. Microbiol. 71: 7910-7919.

Liang, W. D., Y. J. Yang, T. Y. Tang, and W. S. Chuang. 2008. Kuroshio in the Luzon Strait. J. Geophys. Res. 113: C08048, doi: 10.1029/2007JC004609.

Lien, R. C., T. Y. Tang, M. H. Chang, and E. A. D'Asaro. 2005. Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett. 32: L05615, doi: 10.1029/2004GL022012.

Liu, A. K., and M. K. Hsu. 2004. Internal wave study in the South China Sea using Synthetic Aperture Radar (SAR). J. Remote Sens. 25: 1261–1264.

Liu, K. K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen, and T. Y. Tang. 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: Observations and a numerical study. Deep-Sea Res. I 49: 1387-1412.

Meeks, J. C., J. Elhai, T. Thiel, M. Potts, F. Larimer, J. Lamerdin, P. Predki, and R. Atlas. 2001. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis Res. 70: 85-106.

Mishustin, E. N., and V. K. Shilnikova. 1972. The biological fixation of atmospheric nitrogen by free-living bacteria. Pennsylvania State Univ. Press.

Moal, M. L., and I. C. Biegala. 2009. Diazotrophic unicellular cyanobacteria in the northwestern Mediterranean Sea: A seasonal cycle. Limnol. Oceanogr. 54: 845-855.

Moisander, P. H., R. A. Beinart, I. Hewson, A. E. White, K. S. Johnson, C. A. Carlson, J. P. Montoya, and J. P. Zehr. 2010. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327: 1512-1514.

–––––, –––––, M. Voss, and J. P. Zehr. 2008. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2: 954-967.

Montoya, J. P., C. M. Holl, J. P. Zehr, A. Hansen, T. A. Villareal, and D. G. Capone. 2004. High rates N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430: 1027-1031.

Mori, T., and C. H. Johnson. 2001. Circadian programming in cyanobacteria. Cell Dev. Biol. 12: 271-278.

Needoba, J. A., R. A. Foster, C. Sakamoto, J. P. Zehr, and K. S. Johnson. 2007. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol. Oceanogr. 52: 1317-1327.

Nitani, T. 1972. Beginning of the kuroshio, p. 129-156. In H. Stommel, and K. Yoshida [eds.], Kuroshio, Physical Aspect of the Japan Current, Univ. of Washington Press.

Periyasamy, A., and A. Narayanaswamy. 2010. Studies on growth and phycobilin pigments of the cyanobacterium Westiellopsis iyengarii. Biotechnol. Appl. Biochem. 6: 315-323.

Postgate, J., 1998. Nitrogen fixation, 3rd edn. Cambridge Univ. Press.

Reade, J. P. H., L. I. Dougherty, L. J. Rogers, and J. R. Gallon. 1999. Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium GIoeothece strain ATCC 271 52. Microbiol. 145: 1749-1758.

Reddy, K. J., J. B. Haskell, D. M. Sherman, and L. A. Sherman.1993. Unicellular aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece. J. Bacteriol. 175: 1284-1292.

Saito, M. A., E. M. Bertranda, S. Dutkiewicz, V. V. Bulygin, D. M. Moran, F. M. Monteiro, M. J. Follows, F. W. Valois, and J. B. Waterbury. 2011. Iron conservation by reduction of metallo enzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc. Natl. Acad. Sci. USA 108: 2184-2189.

Sharples, J., J. F. Tweddle, J. A. M. Green, M. R. Palmer, Y. N. Kim, A. E. Hickman, P. M. Holligan, C. M. Moore, T. P. Rippeth, J. H. Simpson, and V. Krivtsov. 2007. Spring–neap modulation of internal tide mixing and vertical nitrate fluxes at a shelf edge in summer. Limnol. Oceanogr. 52: 1735–1747.

Sherman, L. A., M. S. Colon-Lopez, and D. M. Sherman. 1997. Transcriptional and translational regulation of nitrogenase in light-dark and continuous-light-grown culture of the unicellular cyanobacterium Cyanothece sp. Strain ATCC 51142. J. Bacteriol. 179: 4319-4327.

–––––, P. Meunier, and M. S. Colon-Lopez. 1998. Diurnal rhythms in metabolism: A day in the life of a unicellular, diazotrophic cyanobacterium. Photosynthesis Res. 58: 25-42.

Shiah, F. K., S. W. Chung, S. J. Kao, G. C. Gong, and K. K. Liu. 2000. Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait. Cont. Shelf Res. 20: 2029-2044.

Short, S. M., and J. P. Zehr. 2007. Nitrogenase gene expression in the Chesapeake Bay Estuary. Environ. Microbiol. 9: 1591–1596.

Sieburth, J. M., and P. G. Davis. 1982. The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Caribbean Seas. Ann. Inst. Oceanogr. 58: 285-296.

Stickland J. D., and T. R. Parsons. 1972. Inorganic micronutrients in sea water, p. 49-77. In J. C. Stevenson, L. W. Billingsley, and R. H. Wigmore [eds.], A Pratical Handbook of Seawater Analysis. Fisheries Res. Board of Canada, Ottawa.

Su, J. L., and Y. Q. Pan. 1990. On the areas of shelf-intrusion of the Kuroshio north of Taiwan. In essays (2) on the investigation of Kuroshio. Oceanic Press: 187-197.

Takemura, T., H. Okamoto, Y. Maruyama, A. Numaguti, A. Higurashi, and T. Nakajima. 2000. Global three-dimensional simulation of aerosol optical thickness distribution of various origins. J. Geophys. Res. 105: 17853-17873.

Taniuchi, Y., A. Murakami, and K. Ohki. 2008. Whole cell immunocytochemical detection of nitrogenase in cyanobacteria: Improved protocol for highly fluorescent cells. Aquat. Microb. Ecol. 51: 237-247.

–––––, and K. Ohki. 2007. Relation between nitrogenase synthesis and activity in a marine unicellular diazotrophic strain, Gloeothece sp. 68DGA (Cyanophyte), grown under different light/dark regimens. J. Phycol. 55: 249-256.

–––––, S. Yoshikawa, S. Maeda, T. Omata, and K. Ohki. 2008. Diazotrophy under continuous light in a marine unicellular diazotrophic cyanobacterium, Gloeothece sp. 68DGA. Microbiol. 154: 1859-1865.

Thomas, J. H., P. M. Mullineaux, A. D. Cronshaw, A. E. Chaplin, and J. R. Gallon. 1982. The effects of structural analogues of amino acids on assimilation and acetylene reduction (nitrogen fixation) in Gloecapsa (Gloeothece) sp. CCAP 1430/3. J. Gen. Microbiol. 128: 885-893.

Thomas, W. H. 1996. Surface nitrogenous nutrients and phytoplankton in the northeastern tropical Pacific Ocean. Limnol. Oceanogr. 11: 393-400.

Tripp, H. J., S. R. Bench, K. A. Turk, R. A. Foster, B. A. Desany, F. Niazi, J. P. Affourtit, and J. P. Zehr. 2010. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464: 90-94.

Wang, Y. H., C. F. Dai, and Y. Y. Chen. 2007. Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophys. Res. Lett. 34: L18609, doi: 10.1029/2007GL030658.

Wong, G. T. F., S. W. Chung, F. K. Shiah, C. C. Chen, L. S. Wen, and K. K. Liu. 2002. Nitrate anomaly in the upper nutricline in the northern South China Sea-Evidence for nitrogen fixation. Geophys. Res. Lett. 29: 2097, doi: 10.1029/2002GL015796.

Wu, C. R., and T. L. Chiang. 2007. Mesoscale eddies in the northern South China Sea. Deep-Sea Res. II 54: 1575–1588.

Wu, J. F., S. W. Chung, L. S. Wen, K. K. Liu, Y. L. L. Chen, H. Y. Chen, and D. M. Karl. 2003. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Glob. Biogeochem. Cycles 17: 1008, doi: 10.1029/2002GB001924.

–––––, W. Sunda, E. A. Boyle, and D. M. Karl. 2000. Phosphate depletion in the Western North Atlantic Ocean. Science 289: 759-762.

Zehr, J. P., and B. B. Ward. 2002. Nitrogen cycling in the ocean: new perspective on processes and paradigms. Appl. Environ. Microbiol. 68: 1015-1024.

–––––, J. B. Waterbury, D. J. Turner, J. P. Montoya, E. Omoregle, G. F. Steward, A. Hansen, and D. M. Karl. 2001. Unicellular cyanbacteria N2 fix in the subtropical North Pacific Ocean. Nature 412: 635-638.

–––––, J. P. Montoya, B. D. Jenkins, I. Hewson, E. Mondragon, C. M. Short, M. J. Church, A. Hansen, and D. M. Karl. 2007. Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnol. Oceanogr. 52: 169-183.

–––––, S. R. Bench, and B. J. Carter. 2008. Globally distributed uncultured oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322: 1110-1112.

Zerkle, A. L., C. H. House, R. P. Cox, and D. E. Canfield. 2006. Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle. Geobiology 4:285-297.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.121.242
論文開放下載的時間是 校外不公開

Your IP address is 52.14.121.242
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code