Responsive image
博碩士論文 etd-0305112-182518 詳細資訊
Title page for etd-0305112-182518
論文名稱
Title
奈米級ZnO, Ag及CeO2於不同水體環境中之轉化及宿命研究
Transformation and Fate of Nanoscale ZnO, Ag, and CeO2 in Different Aquatic Environments
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
155
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-02-15
繳交日期
Date of Submission
2012-03-05
關鍵字
Keywords
轉化、宿命、鄰苯二甲酸二(2-乙基己基)酯、紅黴素、水環境、臨界聚集濃度、奈米微粒、二氧化鈰、銀、氧化鋅
Fate, Aquatic environment, ZnO, Ag, CeO2, Nanoparticle, Transformation, Di(2-ethylhexyl)phthalate, Erythromycin, Critical aggregation concentration
統計
Statistics
本論文已被瀏覽 5643 次,被下載 658
The thesis/dissertation has been browsed 5643 times, has been downloaded 658 times.
中文摘要
近數十年來,奈米材料被廣泛應用於各種科學領域上及日常生活用品中,其極有可能因直接/間接方式流佈於水體環境中,危害生態環境及人體健康,為了瞭解奈米微粒於水體環境中之行為及反應,本研究乃利用自行製備之奈米微粒(Nano-ZnO、Nano-Ag及Nano-CeO2)添加於不同水體介質之中,針對不同之環境因子、水質參數及水中常見物質探討奈米微粒於不同水體環境中可能之轉化及宿命。
本研究發現,奈米微粒於水中之溶解度會受pH影響,當pH=3時,奈米微粒有最大溶解度,Nano-ZnO之溶解度可達100%,而Nano-Ag及Nano-CeO2之溶解度則低於2%;至於一般環境之溫度,則對其溶解度之影響較小。pH值及離子強度會影響奈米微粒在水環境中之穩定性,奈米微粒於水環境中之負界達電位隨pH值上升而增大,顯示其懸浮分散性越佳;水中之離子強度大,則會壓縮奈米微粒之電雙層結構,使奈米微粒團聚,當離子強度越大時,其團聚現象越為明顯,故添加電荷價數越高之電解質,則奈米微粒團聚效應越為明顯,當離子強度高於臨界聚集濃度時,奈米微粒之聚集效率(α)則趨於穩定,此現象於自然水體組別中也可觀察到。研究結果顯示,Nano-ZnO於pH=10之水體環境中,其Zn2+可與OH-結合形成Zn(OH)2,此可由X-光繞射之特性坡峰加以確認;同樣地,Nano-CeO2於水中會釋出Ce4+,並與水環境中之SO42-結合形成Ce(SO4)2之新結晶相,上述結果顯示奈米微粒可能會與水環境介質中之溶解性陰陽離子反應並生成不同物質。此外,水環境中常見之腐植酸則有助於奈米微粒之懸浮穩定性,使其於較長時間內仍維持一定尺寸。然而當鄰苯二甲酸二(2-乙基己基)酯、紅黴素與奈米微粒同時存在於水環境中,奈米微粒對上述新興污染物之影響並不明顯。於模擬現實環境之組別中,水中之Nano-ZnO因陽光照射使其具有光催化之作用,導致具有殺菌功能;至於Nano-Ag,於自然水體中即有極強之抗菌能力,能在一小時內使水體中之總菌生存率降低至2%以下。
綜合而言,本研究發現奈米微粒於水環境介質中其穩定性易受環境因子、水質參數及水中物質之影響,其可能與水環境中之溶解性陰陽離子結合形成新結晶相,或因聚集而沉降,或因其特性而具殺菌功能。
Abstract
The fate and transformation of laboratory-prepared nano-ZnO, nano-Ag and nano-CeO2 in three aqueous solutions under different environmental conditions were investigated in this work. Over the past decades nanomaterials have been widely used in different technical fields and consumer goods. As a result, nanomaterials might enter the environmental media via different routes and then posed potential hazards to the environment and human health. Researches in this regard have received much attention worldwide. In this work it was found that the solubility of each nanomaterial was highly influenced by the solution pH, but not by the solution temperature. The maximal solubility for the tested nanomaterials was obtained at pH 3, namely about 100% for nano-ZnO and lower than 2% for both nano-Ag and nano-CeO2. The solution pH and ionic strength were found to affect the stability of nanoparticles in different aquatic environments. For the solution pH of higher than the isoelectric point of the concerned nanomaterial, the higher the solution pH is, the greater the degree of stabilization of nanoparticles would be. On the contrary, nanoparticles aggregated as the ionic strength of the solution exceeded its critical aggregation concentration (CAC). CAC for each concerned nanomaterial could also be graphically determined as the attachment efficiency (α) of nanoparticles increased with increasing ionic strength of the solution and then leveled off after reaching CAC. Experimental results also showed that Zn(OH)2(s) would form when nano-ZnO was in the solution of pH 10. The crystalline structure of the said precipitates was confirmed by X-ray diffraction. Likewise, Ce4+ dissolved from nano-CeO2 reacted with SO42- in aqueous solution yielding Ce(SO4)2(s). Clearly, transformation of nanomaterials might take place when they are in contact with various species in different aquatic environments. Humic acid in aqueous solution was found to be beneficial to the stability of nanomaterial of concern. Efforts have also been made to study the reaction behaviors among di(2-ethylhexyl)phthalate, erythromycin, and selected nanomaterials when they co-existed in the same solution. Their interactions, however, seemed to be unobvious. In this work it was found that under sunlight irradiation nano-ZnO did show its antibiotic effect due to photocatalysis. Nano-Ag was proven to have a strong antibacterial ability even in natural aquatic environments. It yielded the total bacteria survival ratio of less than 2% within one hour of reaction. In summary, the findings of this study showed that the behaviors of nano-ZnO, nano-Ag, and nano-CeO2 in aqueous solutions could be greatly influenced by different factors in different reaction systems.
目次 Table of Contents
聲明切結書 i
謝誌 ii
摘要 iii
Abstract v
目錄 vii
圖目錄 xii
表目錄 xvii
照片目錄 xviii
第一章 前言 1
1-1研究緣起 1
1-2研究目的 2
1-3研究內容與架構 2
第二章 文獻回顧 5
2-1奈米材料之簡介 5
2-1-1無機奈米材料 6
2-1-1-1奈米級氧化鋅之特性與應用 6
2-1-1-2奈米銀之特性與應用 8
2-1-1-3奈米級二氧化鈰之特性與應用 9
2-2奈米微粒間之作用力 10
2-2-1 DLVO理論 10
2-2-2奈米級氧化鋅於水介質中之穩定性 12
2-2-3奈米銀於水介質中之穩定性 15
2-2-4奈米級二氧化鈰於水介質中之穩定性 18
2-3環境荷爾蒙及藥物 19
2-3-1鄰苯二甲酸二(2-乙基己基)酯 21
2-3-2紅黴素 23
第三章 實驗材料、設備與方法 24
3-1實驗材料與試劑 24
3-1-1水樣來源 24
3-1-2 材料與試劑 24
3-2實驗設備 27
3-3實驗方法 30
3-3-1奈米微粒製備 30
3-3-1-1奈米級ZnO製備 30
3-3-1-2奈米級Ag製備 30
3-3-1-3奈米級CeO2製備 31
3-3-2奈米微粒之基本特性分析 31
3-3-2-1晶型鑑定 31
3-3-2-2微粒型態及其元素分析 31
3-3-2-3等電點分析 32
3-3-3水樣分析方法 33
3-3-3-1基本水質分析 33
3-3-1-2含DEHP及紅黴素之水樣前處理程序 34
3-3-4奈米微粒於水環境介質中溶解反應探討 35
3-3-5奈米微粒於水環境介質中之團聚與分散性探討 35
3-3-5-1不同pH與溫度對奈米微粒於水環境介質中之團聚與分散性探討 35
3-3-5-2離子強度對奈米微粒於水環境介質中之團聚與分散性影響探討 36
3-3-6奈米微粒與水環境介質中溶解性物種之反應探討 37
3-3-7奈米微粒與水環境介質中膠體粒子之反應探討 38
3-3-8奈米微粒與水環境介質中微生物之反應探討 38
3-3-9奈米微粒與水環境介質中新興污染物之反應探討 39
第四章 結果與討論 40
4-1奈米微粒基本性質分析 40
4-1-1 X-光繞射儀(X-Ray Diffraction, XRD)之分析 40
4-1-2環境掃描式電子顯微鏡-能量分散光譜儀(ESEM-EDS) 43
4-1-3穿透式電子顯微鏡(TEM)之分析 45
4-1-4等電點分析 47
4-2水樣基本性質分析 49
4-3奈米微粒於水環境介質中溶解反應探討 51
4-3-1溫度及pH值對Nano-ZnO於水介質中溶解性探討 51
4-3-2溫度及pH值對Nano-Ag於水介質中溶解性探討 53
4-3-3溫度及pH值對Nano-CeO2於水介質中溶解性探討 56
4-4奈米微粒於水環境介質中之穩定性探討 58
4-4-1溫度及pH值對Nano-ZnO於水介質之穩定性影響 58
4-4-2溫度及pH值對Nano-Ag於水介質之穩定性影響 60
4-4-3溫度及pH值對Nano-CeO2於水介質之穩定性影響 62
4-4-4離子強度對Nano-ZnO於水介質之穩定性影響 64
4-4-5離子強度對Nano-Ag於水介質之穩定性影響 67
4-4-6離子強度對Nano-CeO2於水介質之穩定性影響 69
4-5奈米微粒與水環境介質中溶解性物種之反應探討 72
4-5-1陰陽離子對Nano-ZnO於水介質之物化特性影響 72
4-5-2陰陽離子對Nano-Ag於水介質之物化特性影響 76
4-5-3陰陽離子對Nano-CeO2於水介質之物化特性影響 79
4-6奈米微粒與水環境介質中膠體粒子之反應探討 81
4-6-1 Nano-ZnO與水環境介質中腐植酸之反應探討 81
4-6-2 Nano-Ag與水環境介質中腐植酸之反應探討 86
4-6-3 Nano-CeO2與水環境介質中腐植酸之反應探討 90
4-6-4 Nano-ZnO與水環境介質中二氧化錳之反應探討 94
4-6-5 Nano-Ag與水環境介質中二氧化錳之反應探討 98
4-6-6 Nano-CeO2與水環境介質中二氧化錳之反應探討 102
4-7奈米微粒與水環境介質中微生物之反應探討 106
4-7-1周遭無菌環境下之水體中其總菌落數變化 106
4-7-2室外現實環境下之水體中其總菌落數變化 109
4-8奈米微粒與水環境介質中污染物質之反應探討 112
4-8-1奈米微粒與水環境介質中DEHP之反應探討 112
4-8-2奈米微粒與水環境介質中紅黴素之反應探討 115
第五章 結論與建議 117
5-1結論 117
5-2建議 119
參考文獻 120
碩士在學期間發表之學術論文 135
參考文獻 References
Aitken, R. J., M. Q. Chaudhry, A. B. A. Boxall, and M. Hull, "Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends," Occupational Medicine, Vol. 56, pp. 300-306 (2006).
Badawy, A. M. E., T. P. Luxton, R. G. Silva, K. G. Scheckel, M. T. Suidan, and T. M. Tolaymat, "Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions," Environmental Science & Technology, Vol. 44, pp. 1260-1266 (2010).
Benn, T. M. and P. Westerhoff, "Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics," Environmental Science & Technology, Vol. 42, pp. 4133-4139 (2008).
Bian, S. W., I. A. Mudunkotuwa, T. Rupasinghe, and V. H. Grassian, "Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid," Langmuir, Vol. 27, pp. 6059-6068 (2011).
Bosch, X., "Household Antibiotic Storage," Science, Vol. 281, pp. 783 (1998).
Boyanov, M. I., E. J. O’Loughlin, E. E. Roden, J. B. Fein, and K. M. Kemner, "Adsorption of Fe(II) and U(VI) to Carboxyl-Functionalized Microspheres: The Influence of Speciation on Uranyl Reduction Studied by Titration and XAFS," Geochimica et Cosmochimica Acta, Vol. 71, pp. 1898-1912 (2007).
Braydich-Stolle L., S. Hussain, J. J. Schlager, and M. C. Hofmann, "In Vitro Cytotoxicity of Nanoparticles in Mammalian Germline Stem Cells," Toxicological Sciences, Vol. 88, pp. 412-419 (2005).
Buettner, K. M., C. I. Rinciog, and S. E. Mylon, "Aggregation Kinetics of Cerium Oxide Nanoparticles in Monovalent and Divalent Electrolytes," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 366, pp. 74-79 (2010).
Chen, H. I. and H. Y. Chang, "Homogeneous Precipitation of Cerium Dioxide Nanoparticles in Alcohol/Water Mixed Solvents," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 242, pp. 61-69 (2004).
Chen, K. L. and M. Elimelech, "Aggregation and Deposition Kinetics of Fullerene (C60) Nanoparticles," Langmuir, Vol. 22, pp. 10994-11001 (2006).
Dange, C., T. N. T. Phan, V. Andre, J. Rieger, J. Persello, and A. Foissy, "Adsorption Mechanism and Dispersion Efficiency of Three Anionic Additives [Poly(Acrylic Acid), Poly(Styrene Sulfonate) and HEDP] on Zinc Oxide," Journal of Colloid and Interface Science, Vol. 315, pp. 107-115 (2007).
Daughton, C. G. and T. A. Ternes, "Pharmaceuticals and Personal Care Products in the Environment: Agents of Subtle Change?," Environmental Health Perspectives Supplements, Vol. 107, pp. 907 (1999).
Degen, A. and M. Kosec, "Effect of pH and Impurities on the Surface Charge of Zinc Oxide in Aqueous Solution," Journal of the European Ceramic Society, Vol. 20, pp. 667-673 (2000).
Diallo, M. S. and N. Savage, "Nanoparticles and Water Quality," Journal of Nanoparticle Research, Vol. 7, pp. 325-330 (2005).
Dubas, S. T. and V. Pimpan, "Humic Acid Assisted Synthesis of Silver Nanoparticles and Its Application to Herbicide Detection," Materials Letters, Vol. 62, pp. 2661-2663 (2008).
Elzey, S. and V. H. Grassian, "Agglomeration, Isolation and Dissolution of Commercially Manufactured Silver Nanoparticles in Aqueous Environments," Journal of Nanoparticle Research, Vol. 12, pp. 1945-1958 (2010).
Fabrega, J., S. N. Luoma, C. R. Tyler, T. S. Galloway, and J. R. Lead, "Silver Nanoparticles: Behaviour and Effects in the Aquatic Environment," Environment International, Vol. 37, pp. 517-531 (2011).
Fan, Y., Y. Wang, P. Y. Qian, and J. D. Gu, "Optimization of Phthalic Acid Batch Biodegradation and the Use of Modified Richards Model for Modelling Degradation," International Biodeterioration & Biodegradation, Vol. 53, pp. 57-63 (2004).
Fardad, S. and R. Massudi, "Environment Effect on Structure, Size Control and Stability of Zn and ZnO Nanoparticles," Proceedings of the 7th IEEE International Conference on Nanotechnology, pp. 647-650 (2007).
Field, J. A., C. A. Johnson, and J. B. Rose, "What Is “Emerging”?," Environmental Science & Technology, Vol. 40, pp. 7105-7105 (2006).
Freitas Jr., R. A., "What Is Nanomedicine?," Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 1, pp. 2-9 (2005).
Frimmel, F. H., "Characterization of Natural Organic Matter as Major Constituents in Aquatic Systems," Journal of Contaminant Hydrology, Vol. 35, pp. 201-216 (1998).
Fukushi, K. and T. Sato, "Using a Surface Complexation Model to Predict the Nature and Stability of Nanoparticles," Environmental Science & Technology, Vol. 39, pp. 1250-1256 (2005).
Giasuddin, A. B. M., S. R. Kanel, and H. Choi, "Adsorption of Humic Acid onto Nanoscale Zerovalent Iron and Its Effect on Arsenic Removal," Environmental Science & Technology, Vol. 41, pp. 2022-2027 (2007).
Gonzalez, R. D. and H. Miura, "Preparation of SiO2- and Al2O3-Supported Clusters of Pt Group Metals," Catalysis Reviews, Vol. 36, pp. 145-177 (1994).
Grolimund, D., M. Elimelech, and M. Borkovec, "Aggregation and Deposition Kinetics of Mobile Colloidal Particles in Natural Porous Media," Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 191, pp. 179-188 (2001).
Hall, S. B., J. R. Duffield, and D. R. Williams, "A Reassessment of the Applicability of the DLVO Theory as an Explanation for the Schulze-Hardy Rule for Colloid Aggregation," Journal of Colloid and Interface Science, Vol. 143, pp. 411-415 (1991).
Handy, R., F. von der Kammer, J. Lead, M. Hassellov, R. Owen, and M. Crane, "The Ecotoxicology and Chemistry of Manufactured Nanoparticles," Ecotoxicology, Vol. 17, pp. 287-314 (2008).
Hoecke, K. V., J. T. K. Quik, J. Mankiewicz-Boczek, K. A. C. D. Schamphelaere, A. Elsaesser, P. V. D. Meeren, C. Barnes, G. McKerr, C. V. Howard, D. V. D. Meent, K. Rydzyński, K. A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. D. Samber, L. Vincze, and C. R. Janssen, "Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests," Environmental Science & Technology, Vol. 43, pp. 4537-4546 (2009).
Holm, J. V., K. Ruegge, P. L. Bjerg, and T. H. Christensen, "Occurrence and Distribution of Pharmaceutical Organic Compounds in the Groundwater Downgradient of a Landfill (Grindsted, Denmark)," Environmental Science & Technology, Vol. 29, pp. 1415-1420 (1995).
Hong, R. Y., J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng, and J. Ding, "Synthesis, Surface Modification and Photocatalytic Property of ZnO Nanoparticles," Powder Technology, Vol. 189, pp. 426-432 (2009).
Huang, Z., J. Li, Q. Chen, and H. Wang, "A Facile Carboxylation of CNT/Fe3O4 Composite Nanofibers for Biomedical Applications," Materials Chemistry and Physics, Vol. 114, pp. 33-36 (2009).
Hussain, S. M., A. K. Javorina, A. M. Schrand, H. M. Duhart, S. F. Ali, and J. J. Schlager, "The Interaction of Manganese Nanoparticles with PC-12 Cells Induces Dopamine Depletion," Toxicological Sciences, Vol. 92, pp. 456-463 (2006).
Hussain, S. M., K. L. Hess, J. M. Gearhart, K. T. Geiss, and J. J. Schlager, "In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells," Toxicology in Vitro, Vol. 19, pp. 975-983 (2005).
Izu, N., W. Shin, and N. Murayama, "Fast Response of Resistive-Type Oxygen Gas Sensors Based on Nano-Sized Ceria Powder," Sensors and Actuators B: Chemical, Vol. 93, pp. 449-453 (2003).
Kamat, P. V. and D. Meisel, "Nanoscience Opportunities in Environmental Remediation," Comptes Rendus Chimie, Vol. 6, pp. 999-1007 (2003).
Karnik, B. S., S. H. Davies, M. J. Baumann, and S. J. Masten, "Fabrication of Catalytic Membranes for the Treatment of Drinking Water Using Combined Ozonation and Ultrafiltration," Environmental Science & Technology, Vol. 39, pp. 7656-7661 (2005).
Kashyout, A. B., H. M. A. Soliman, H. S. Hassan, and A. M. Abousehly, "Fabrication of ZnO and ZnO:Sb Nanoparticles for Gas Sensor Applications," Journal of Nanomaterials, Vol. 2010, pp. 1-8 (2010).
Kubo, R., "Electronic Properties of Metallic Fine Particle. I.," Journal of the Physical Society of Japan, Vol. 17, pp. 975-986 (1962).
Liu, H. L. and T. C. K. Yang, "Photocatalytic Inactivation of Escherichia Coli and Lactobacillus Helveticus by ZnO and TiO2 Activated with Ultraviolet Light," Process Biochemistry, Vol. 39, pp. 475-481 (2003).
Liu, J. and R. H. Hurt, "Ion Release Kinetics and Particle Persistence in Aqueous Nano-Silver Colloids," Environmental Science & Technology, Vol. 44, pp. 2169-2175 (2010).
Lowry, G. V. and E. A. Casman, "Nanomaterial Transport, Transformation, and Fate in the Environment," In I. Linkov and J. Steevens (Eds), Nanomaterials: Risks and Benefits, pp.125-137 (2009).
Milošević, O., B. Jordović, and D. Uskoković, "Preparation of Fine Spherical ZnO Powders by an Ultrasonic Spray Pyrolysis Method," Materials Letters, Vol. 19, pp. 165-170 (1994).
Morimoto, T., H. Tomonaga, and A. Mitanikemi, "Ultraviolet Ray Absorbing Coatings on Glass for Automobiles," Thin Solid Films, Vol. 351, pp. 61-65 (1999).
Navarro, E., A. Baun, R. Behra, N. B. Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi, and L. Sigg, "Environmental Behavior and Ecotoxicity of Engineered Nanoparticles to Algae, Plants, and Fungi," Ecotoxicology, Vol. 17, pp. 372-386 (2008).
Navarro, E., F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, and R. Behra, "Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii," Environmental Science & Technology, Vol. 42, pp. 8959-8964 (2008).
Nel, A., T. Xia, L. Madler, and N. Li, "Toxic Potential of Materials at the Nanolevel," Science, Vol. 311, pp. 622-627 (2006).
Nowack, B. and T. D. Bucheli, "Occurrence, Behavior and Effects of Nanoparticles in the Environment," Environmental Pollution, Vol. 150, pp. 5-22 (2007).
Nowack, B., H. F. Krug, and M. Height, "120 Years of Nanosilver History: Implications for Policy Makers," Environmental Science & Technology, Vol. 45, pp. 1177-1183 (2011).
Oberdorster, G., E. Oberdorster, and J. Oberdorster, "Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles," Environmental Health Perspectives, Vol. 113, pp. 823-839 (2005).
Quik, J. T. K., I. Lynch, K. V. Hoecke, C. J. H. Miermans, K. A. C. D. Schamphelaere, C. R. Janssen, K. A. Dawson, M. A. C. Stuart, and D. V. D. Meent, "Effect of Natural Organic Matter on Cerium Dioxide Nanoparticles Settling in Model Fresh Water," Chemosphere, Vol. 81, pp. 711-715 (2010).
Reichle, R. A., K. G. McCurdy, and L. G. Hepler, "Zinc Hydroxide: Solubility Product and Hydroxy-Complex Stability Constants from 12.5-75℃," Canadian Journal of Chemistry, Vol. 53, pp. 3841-3845 (1975).
Roco, M. C., "Nanotechnology: Convergence with Modern Biology and Medicine," Current Opinion in Biotechnology, Vol. 14, pp. 337-346 (2003).
Sahoo, S. and A. K. Bhowmick, "Influence of ZnO Nanoparticles on the Cure Characteristics and Mechanical Properties of Carboxylated Nitrile Rubber," Journal of Applied Polymer Science, Vol. 106, pp. 3077-3083 (2007).
Sal’nikov, D. S., A. S. Pogorelova, S. V. Makarov, and I. Y. Vashurina, "Silver Ion Reduction with Peat Fulvic Acid," Russian Journal of Applied Chemistry, Vol. 82, pp. 545-548 (2009).
Schudel, M., S. H. Behrens, H. Holthoff, R. Kretzschmar, and M. Borkovec, "Absolute Aggregation Rate Constants of Hematite Particles in Aqueous Suspensions: A Comparison of Two Different Surface Morphologies," Journal of Colloid and Interface Science, Vol. 196, pp. 241-253 (1997).
Shin, H. S., H. J. Yang, S. B. Kim, and M. S. Lee, "Mechanism of Growth of Colloidal Silver Nanoparticles Stabilized by Polyvinyl Pyrrolidone in γ-Irradiated Silver Nitrate Solution," Journal of Colloid and Interface Science, Vol. 274, pp. 89-94 (2004).
Solomon, S. D., M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, "Synthesis and Study of Silver Nanoparticles," Journal of Chemical Education, Vol. 84, pp. 322-325 (2007).
Sotiriou, G. A. and S. E. Pratsinis, "Antibacterial Activity of Nanosilver Ions and Particles," Environmental Science & Technology, Vol. 44, pp. 5649-5654 (2010).
Sun, Y., Z. Wang, J. Tian, and X. Cao, "Coloration of Mica Glass-Ceramic for Use in Dental CAD/CAM System," Materials Letters, Vol. 57, pp. 425-428 (2002).
USEPA, "Nanotechnology White Paper," (2007).
Wakuda, D., M. Hatamura, and K. Suganuma, "Novel Method for Room Temperature Sintering of Ag Nanoparticle Paste in Air," Chemical Physics Letters, Vol. 441, pp. 305-308 (2007).
Wang, D., C. Song, Z. Hu, and X. Zhou, "Synthesis of Silver Nanoparticles with Flake-Like Shapes," Materials Letters, Vol. 59, pp. 1760-1763 (2005).
Wigginton, N. S., K. L. Haus, and M. F. Hochella, "Aquatic Environmental Nanoparticles," Journal of Environmental Monitoring, Vol. 9, pp. 1306-1316 (2007).
Xia, T., M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. I. Yeh, J. I. Zink, and A. E. Nel, "Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties," ACS Nano, Vol. 2, pp. 2121-2134 (2008).
Yang, G. C. C. and S. W. Chan, "Photocatalytic Reduction of Chromium(VI) in Aqueous Solution Using Dye-Sensitized Nanoscale ZnO Under Visible Light Irradiation," Journal of Nanoparticle Research, Vol. 11, pp. 221-230 (2008).
Yang, K., D. Lin, and B. Xing, "Interactions of Humic Acid with Nanosized Inorganic Oxides," Langmuir, Vol. 25, pp. 3571-3576 (2009).
Yotsumoto, H. and R. H. Yoon, "Application of Extended DLVO Theory: II. Stability of Silica Suspensions," Journal of Colloid and Interface Science, Vol. 157, pp. 434-441 (1993).
Yuan, F., P. Hu, C. Yin, S. Huang, and J. Li, "Preparation and Properties of Zinc Oxide Nanoparticles Coated with Zinc Aluminate," Journal of Materials Chemistry, Vol. 13, pp. 634-637 (2003).
Yuan, S. Y., I. C. Huang, and B. V. Chang, "Biodegradation of Dibutyl Phthalate and Di-(2-Ethylhexyl) Phthalate and Microbial Community Changes in Mangrove Sediment," Journal of Hazardous Materials, Vol. 184, pp. 826-831 (2010).
Zhang, L., Y. Jiang, Y. Ding, M. Povey, and D. York, "Investigation into the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (ZnO Nanofluids)," Journal of Nanoparticle Research, Vol. 9, pp. 479-489 (2007).
Zhou, D. and A. A. Keller, "Role of Morphology in the Aggregation Kinetics of ZnO Nanoparticles," Water Research, Vol. 44, pp. 2948-2956 (2010).

中國時報,環境荷爾蒙入侵全台河川都遭殃 (報導日期:2011/11/01)
行政院環保署環境檢驗所,水中化學需氧量檢測方法─密閉式重鉻酸鉀迴流法,NIEA W517.52B (2009)
行政院環保署環境檢驗所,水中金屬及微量元素檢測方法-感應耦合電漿原子發射光譜法,NIEA W311.52C (2012)
行政院環保署環境檢驗所,水中氨氮檢測方法-靛酚比色法,NIEA W448.51B (2005)
行政院環保署環境檢驗所,水中陰離子檢測方法-離子層析法,NIEA W415.52B (2005)
行政院環保署環境檢驗所,水中導電度測定方法-導電度計法,NIEA W203.51B (2000)
行政院環保署環境檢驗所,水中濁度檢測方法-濁度計法,NIEA W219.52C (2005)
行政院環保署環境檢驗所,水中總有機碳檢測方法-燃燒/紅外線測定法,NIEA W530.51C (2000)
行政院環保署環境檢驗所,水中總菌落數檢測方法-混合稀釋法,NIEA E204.54B (2007)
行政院環保署環境檢驗所,水中總溶解固體及懸浮固體檢測方法-103℃-105℃乾燥,NIEA W210.57A (2006)
行政院環保署環境檢驗所,水之氫離子濃度指數(pH值)測定方法-電極法,NIEA W424.52A (2008)
行政院環境保護署,瑞典世界水資源週聚焦新興污染物,國際環保新聞週報,http://ivy3.epa.gov.tw/international_news/news20100902.htm
(擷取日期:2012/01/28)
行政院環境保護署,鄰苯二甲酸二(2-乙基己基)酯[di(2-ethylhexyl)phthalate]DEHP,毒性化學物質管理宣導手冊-認識生活環境中毒性物質,http://www.epa.gov.tw/ch/aioshow.aspx?busin
=324&path=1890&guid=31160a23-6142-4162-87ac-5b77c0f60f2e&lang=zh-tw (擷取日期:2012/01/28)
呂宗昕、吳偉宏,奈米科技與二氧化鈦光觸媒,科學發展,第376期,第72-77頁 (2004)
吳明諺,奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)
李銘輝,以真空潛弧系統製備銀奈米微粒與奈米流體之性質分析,碩士學位論文,國立台北科技大學機電整合研究所,台北市 (2004)
周更生,、李賢學、高振裕、盧育杰,功能性粉末奈米銀,科學發展,第408期,第 32-39頁 (2006)
林正芳、林郁真、余宗賢,新興污染物(抗生素與止痛藥)於特定污染源環境之流佈,持久性有機污染物(含戴奧辛)研討會,台北市 (2008)
施養信、左致平、曾勇銘、莊承銘、蘇博信、吳先琪、陳麗華、董瑞安,水相中奈米顆粒之型態變化與沉降特性,環境奈米科技論壇,第92-112頁,台北市 (2008)
施養信、吳先琪、董瑞安,水環境介質中奈米微粒轉換及宿命研究,行政院環境保護署委辦計畫成果報告,計畫編號: EPA-97-U1U1-02-104 (2008).
施養信、董瑞安、廖姿雅、蔡宜君,水環境介質中奈米微粒量測、轉換及宿命研究,行政院環境保護署委辦計畫成果報告,計畫編號: EPA-100-U1U1-02-102 (2011)
范國烜,幾丁聚醣奈米粒之製備及其應用於紅黴素控制釋放之探討, 碩士學位論文,國立台灣海洋大學食品科學系,基隆市 (2003)
馬遠榮,低維奈米材料,科學發展,第382期,第72-75頁 (2004)
高濂、孫靜、劉陽橋,奈米粉體的分散與表面改性,五南圖書出版股份有限公司,台北市 (2005)
張立德、牟季美,奈米材料和奈米結構,滄海書局,台中市 (2002)
陳仲仁,食品奈米技術之發展趨勢與應用現況,食品工業,第42卷,第11期,第1-4頁 (2010)
陳宏軍,氧化鋅奈米粉末之製備與研究,碩士學位論文,大同大學材料工程研究所,台北市 (2004)
陳韋勳,基質輔助雷射脫附游離飛行時間質譜法搭配膠體銀基質分析聚環內酯類抗生素的研究,碩士學位論文,朝揚科技大學應用化學系,台中市 (2007)
劉育伶,金/二氧化鈰奈米粒子之製備及其催化特性之研究,碩士學位論文,國立成功大學化學工程研究所,台南市 (2009)
謝偉智,不同光輻射對溫泉水中大腸桿菌(EHEC O4)的殺菌作用,碩士學位論文,嘉南藥理科技大學溫泉產業研究所,台南市 (2010)
鄭天喆、姚福燕,深入淺出談奈米科技,達觀出版事業有限公司,台北縣 (2004)
鄭世裕,無機奈米材料產業應用,工業材料雜誌,第190期,第85-95頁 (2002)
盧永坤,奈米科技概論,滄海書局,台中市 (2006)
蕭旭助,奈米級氧化鈰粉體的製備與研磨性質,碩士學位論文,南台科技大學化學工程研究所,台南市 (2005)
蕭旭助,奈米級氧化鈰粉體的製備與研磨性質,碩士學位論文,南台科技大學化學工程研究所,台南市 (2005)
羅聖全、江正誠、林智仁、陳淑貞、林麗娟、洪健龍,電子顯微鏡試片製備技術總論,工業材料雜誌,第206期,第150-156頁 (2004)
嚴鴻仁、徐善慧,奈米金與銀的妙用,科學發展,第431期,第28-32頁 (2008)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code