Responsive image
博碩士論文 etd-0306115-234101 詳細資訊
Title page for etd-0306115-234101
論文名稱
Title
鉍在修飾後的矽 (111) 表面上之結構與電子特性研究
Study of the Structural and Electronic Properties for the Bi on decorated Si(111) surface
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-03-16
繳交日期
Date of Submission
2015-04-07
關鍵字
Keywords
鉍、拓樸絕緣體、掃描式穿隧電子顯微鏡、矽 (111)、蜂巢狀結構
Scanning tunneling microscope, Si(111), Honeycomb, Bi, Topological insulator
統計
Statistics
本論文已被瀏覽 5656 次,被下載 21
The thesis/dissertation has been browsed 5656 times, has been downloaded 21 times.
中文摘要
高原子序元素的蜂巢狀結構被預期有機會展現拓樸邊緣態 (Topological edge state) 的性質。因此, 為了尋找新穎的二維拓樸絕緣體 (Topological insulator; TI) 材料,在超高真空的環境裡,我們利用電子束蒸鍍槍 (Electron beam evaporator) 在室溫下將鉍 (Bismuth; Bi) 成長至 Si(111)-√3×√3-R30°-Au 的表面上後。接著做高溫退火的動作使 Bi 重新排列成一個有序的結構。利用低能量電子繞射儀 (Low energy electron diffraction;LEED ) ,可觀察到Bi 形成 √3×√3 的週期。由掃描式穿
隧電子顯微鏡 (scanning tunneling microscope; STM) ,我們觀察到 Buckled 的 Bi 蜂巢狀結構,而 Au 的三聚物 (Trimer) 在此扮演著穩定 Bi 蜂巢的角色。為了進一步確認拓樸態是否真的存在,我們利用掃描式穿隧能譜 (Scanning tunneling spectroscopy; STS) 量測表面上不同區域間的電性。在 Bi 蜂巢的邊緣上,存在著與其他區域不同的特徵,這也提供了邊緣態可能存在的證據。
Abstract
The Honeycomb structure of meatal with high atomic number was predicted as a candidate which can show the topological edge state. To find the new material having topological state, Bi atoms were deposited on Si(111)-√3×√3-R30°-Au surface by electron beam evaporate under the ultra high vacuum. After post-annealing procedures, an ordered structure of Bi was observed, showing the √3×√3 superstructure in low energy electron diffraction. From measurement of scanning tunneling microscope, Bi honeycomb was found under different sample bias. Therefore, it was confirmed that Bi formed the honeycomb structure on Si(111)-√3×√3-R30°-Au surface, and Au trimmer was the role which stablized the Bi honeycomb. To identify wether proposed topological edge state exist on Bi honeycomb, the electronic structure of different regions on surface was measureed by scanning tunneling spectroscope. At edge of Bi honeycomb, different dI/dV feature was found. It was a possible evidence to prove the topological state existing on edge of Bi honeycomb.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
誌謝 iv
1 簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 原理及性質
2.1 拓樸絕緣體(Topological insulator) 的介紹. . . . . . . . . . . . . . . 4
2.2 驗證拓樸絕體的實驗方法. . . . . . . . . . . . . . . . . . . . . . . . . 10
3 實驗儀器與原理
3.1 實驗環境-超高真空系統(Ultra high vacuum, UHV) . . . . . . . . . . 12
3.1.1 氣體脫附. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 烘烤(baking) 與去氣(degas) . . . . . . . . . . . . . . . . . . 13
3.1.3 超高真空抽氣裝置. . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 真空樣品表面處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.1 離子濺射(Sputter) . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 高溫退火(Anneal) . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 低能量電子繞射儀(Low energy electron diffraction;LEED) . . . . 20
3.3.1 電子繞射原理. . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 實驗裝置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 表面重構(Superstructure) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 掃描式穿隧電子顯微鏡(scanning tunneling microscope; STM) . . . 26
3.4.1 量子穿隧現象(Tunneling effect) . . . . . . . . . . . . . . . . . . . . . . .26
3.4.2 成像模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.5 掃描穿隧能譜(Scanning tunneling spectroscopy; STS) . . . . . . . . 31
4 實驗結果與討論
4.1 乾淨的Si(111) 的樣品處理. . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 樣品溫度校正. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Au 和Bi 鍍率校正. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Au 的鍍率校正. . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Bi 的鍍率校正. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Si(111)-√3×√3-R30°-Au. . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Bi 薄膜在 Au/Si(111) 上的成長行為與結構分析. . . . . . . . . . . . 48
4.6 Bi 薄膜在 Au/Si(111) 上的電子結構分析. . . . . . . . . . . . . . . . 58
5 總結. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
參考文獻 References
[1] J. M. Roesler, T. Miller, and T. C. Chiang. Photoelectron holography studies
of bi on Si(111). Surface Science 417, L1143 (1998).
[2] D. A. Olyanich D. N. Chubenko I. A. Kuyanov A. A. Saranin A. V. Zotov
D. V. Gruznev, I. N. Filippov and V. G. Lifshits. Si(111) -√3×√3-Au phase
modified by in adsorption: Stabilization of a homogeneous surface by stress
relief. Physical Review B (2006).
[3] Yoichi Ando. Topological insulator materials. J. Phys. Soc. Jpn. 82, 102001
(2013).
[4] Xiao-Liang Qi and Shou-Cheng Zhang. The quantum spin hall effect and
topological insulators. Physics Today 63, 33-38, (2010).
[5] Seongshik Oh. The complete quantum hall trio. Science 340, 153 (2013).
[6] Hari C. Manoharan. Topological insulators: A romance with many dimensions.
Nat Nano 5, 477 (2010).
[7] H. Luth. Solid surfaces interfaces and thin films. 2001.
[8] F. Jona, J. A. Strozier Jr, and W. S. Yang. Low-energy electron diffraction for
surface structure analysis. Rep. Prog. Phys. 45, 527 (1982).
[9] Roland Bennewitz Ernst Meyer, Hans Josef Hug. Scanning Probe Microscopy.
[10] PK Hansma and J Tersoff. Scanning tunneling microscopy. JOURNAL OF
APPLIED PHYSICS 61, R1-R23, (1987).
[11] T. Nagao, S. Hasegawa, K. Tsuchie, S. Ino, C. Voges, G. Klos, H. Pfnr, and
M. Henzler. Structural phase transitions of Si(111) (√3×√3)r30-Au : Phase
transitions in domain-wall configurations. Phys. Rev. B 57, 10100 (1998).
[12] J Falta, A Hille, D Novikov, G Materlik, L Seehofer, G Falkenberg, and R. L
Johnson. Domain wall structure of Si(111) (√3×√3)r30-au. Surface Science
330, 673 (1995).
[13] P. R. Wallace. The band theory of graphite. Phys. Rev. 71, 622 (1947).
[14] Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner. Honeycomb carbon:
A review of graphene. Chem. Rev. 110, 132 (2009).
[15] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater 6, 183
(2007).
[16] C. L. Kane and E. J. Mele. Quantum spin hall effect in graphene. Phys. Rev.
Lett. 95, 226801 (2005).
[17] C. L. Kane and E. J. Mele. Z2 topological order and the quantum spin hall
effect. Phys. Rev. Lett. 95, 146802 (2005).
[18] Kane. C. L Hasan. M. Z. Colloquium : Topological insulators. Reviews of
Modern Physics (2010).
[19] Feng-Chuan Chuang, Liang-Zi Yao, Zhi-Quan Huang, Yu-Tzu Liu, Chia-
Hsiu Hsu, Tanmoy Das, Hsin Lin, and Arun Bansil. Prediction of large-gap
two-dimensional topological insulators consisting of bilayers of group III
elements with bi. Nano Lett. 14, 2505 (2014).
[20] Zheng Liu Zhengfei Wang Ping Lia Miao Zhou, Wenmei Ming and Feng
Liua. Epitaxial growth of large-gap quantum spin hall insulator on semiconductor
surface. Proceedings of the National Academy of Sciences (2014).
[21] R. Z. Bakhtizin, Ch Park, T. Hashizume, and T. Sakurai. Atomic structure of
bi on the Si(111) surface. Journal of Vacuum Science & Technology B 12, 2052
(1994).
[22] R. Shioda, A. Kawazu, A. A. Baski, C. F. Quate, and J. Nogami. Bi on
Si(111): Two phases of the surface reconstruction. Phys. Rev. B 48,
4895 (1993).
[23] R. H. Miwa, T. M. Schmidt, and G. P. Srivastava. Bi covered si(111) surface
revisited. J. Phys.: Condens. Matter 15, 2441 (2003).
[24] Anna Str ´o˙ zecka Josef Mysliveˇcek, Filip Dvoˇr´ak and Bert Voigtl¨ander. Scanning
tunneling microscopy contrast in lateral Ge-Si nanostructures on
Si(111)-√3×√3-Bi. Phys. Rev. B 81, 245427 (2010).
[25] Shuichi Murakami. Quantum spin hall systems and topological insulators.
New J. Phys. 13, 105007 (2011).
[26] Joel E. Moore. The birth of topological insulators. Nature 464, 194 (2010).
[27] Tong Zhang, Peng Cheng, Xi Chen, Jin-Feng Jia, Xucun Ma, Ke He, Lili
Wang, Haijun Zhang, Xi Dai, Zhong Fang, Xincheng Xie, and Qi-Kun Xue.
Experimental demonstration of topological surface states protected by timereversal
symmetry. Phys. Rev. Lett. 103, 266803 (2009).
[28] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang,
D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X.
Shen. Experimental realization of a three-dimensional topological insulator,
Bi2Te3. Science 325, 178 (2009).
[29] Zhanybek Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, Y. L. Chen, Z. X.
Shen, A. Fang, and A. Kapitulnik. STM imaging of electronic waves on
the surface of Bi2Te3 topologically protected surface states and hexagonal
warping effects. Phys. Rev. Lett. 104, 016401 (2010).
[30] Pedram Roushan, Jungpil Seo, Colin V. Parker, Y. S. Hor, D. Hsieh, Dong
Qian, Anthony Richardella, M. Z. Hasan, R. J. Cava, and Ali Yazdani. Topological
surface states protected from backscattering by chiral spin texture.
Nature 460, 1106 (2009).
[31] Jungpil Seo Lindsay Gorman Ilya Drozdov Yew San Hor R. J. Cava Haim Beidenkopf,
Pedram Roushan and Ali Yazdani. Spatial fluctuations of helical
dirac fermions on the surface of topological insulators. Nature Physics (2011).
[32] Kun Zhao, Yan-Feng Lv, Shuai-Hua Ji, Xucun Ma, Xi Chen, and Qi-Kun
Xue. Scanning tunneling microscopy studies of topological insulators. J.
Phys.: Condens. Matter 26, 394003 (2014).
[33] Sung Hwan Kim, Kyung-Hwan Jin, Joonbum Park, Jun Sung Kim, Seung-
Hoon Jhi, Tae-Hwan Kim, and HanWoong Yeom. Edge and interfacial states
in a two-dimensional topological insulator: Bi(111) bilayer on Bi2Te3Se. Phys.
Rev. B 89, 155436 (2014).
[34] Ilya K. Drozdov, A. Alexandradinata, Sangjun Jeon, Stevan Nadj-Perge, Huiwen
Ji, R. J. Cava, B. Andrei Bernevig, and Ali Yazdani. One-dimensional
topological edge states of bismuth bilayers. Nat Phys 10, 664 (2014).
[35] W.H. Weinberg. Low-Energy Electronic diffraction. Springer (1986).
[36] Roland Wiesendanger. Scanning Probe Microscopy and Spectroscopy. (1994).
[37] Dawn A. Bonnell, editor. scanning probe microscopy and spectroscopy: theory
techniques and applications. (2001).
[38] Dawn A. Bonnell, editor. Scanning Tunneling Microscopy and Spectroscopy:
Theory, Techniques and Applications. (1993).
[39] Ye-Liang Wang, Hai-Ming Guo, Zhi-Hui Qin, Hai-Feng Ma, and Hong-Jun
Gao. Toward a detailed understanding of Si(111) -7×7 surface and adsorbed
ge nanostructures: Fabrications, structures, and calculations. Journal
of Nanomaterials 874213 (2008).
[40] A. Crepaldi, C. Tournier-Colletta, M. Pivetta, G. Auts, F. Patthey, H. Brune,
O. V. Yazyev, and M. Grioni. Structural and electronic properties of the
Bi/Au(110)-1  4 surface. Phys. Rev. B 88, 195433 (2013).
[41] Takuya Kuzumaki, Tetsuroh Shirasawa, Seigi Mizuno, Nobuo Ueno, Hiroshi
Tochihara, and Kazuyuki Sakamoto. Re-investigation of the bi-induced
Si(111)-(√3×√3) surfaces by low-energy electron diffraction. Surface Science
604, 1044 (2010).
[42] Jeroen W. G. Wilder, Liesbeth C. Venema, Andrew G. Rinzler, Richard E.
Smalley, and Cees Dekker. Electronic structure of atomically resolved carbon
nanotubes. Nature 391, 59 (1998).
[43] N. D. Lang. Spectroscopy of single atoms in the scanning tunneling microscope.
Phys. Rev. B 34, 5947 (1986).
[44] M. Passoni, F. Donati, A. Li Bassi, C. S. Casari, and C. E. Bottani. Recovery
of local density of states using scanning tunneling spectroscopy. Phys. Rev.
B 79, 045404 (2009).
[45] Vladimir A. Ukraintsev. Data evaluation technique for electron-tunneling
spectroscopy. Phys. Rev. B 53, 11176 (1996).
[46] Fang Yang, Lin Miao, Z. F. Wang, Meng-Yu Yao, Fengfeng Zhu, Y. R. Song,
Mei-Xiao Wang, Jin-Peng Xu, Alexei V. Fedorov, Z. Sun, G. B. Zhang, Canhua
Liu, Feng Liu, Dong Qian, C. L. Gao, and Jin-Feng Jia. Spatial and Energy Distribution of Topological Edge States in Single Bi(111) Bilayer Phys.
Rev. Lett. 109, 016801 (2012).
[47] S. S. Parihar and P. F. Lyman. Surface phase diagram and alloy formation
for antimony on Au(110). J. Vac. Sci. Technol. A 26, 485 (2008).
[48] Yu-Yi Wang Microscopic study of low temperature adsorbed propanal
on gold(110) surface Department of Physics, National Sun Yat-Sen Universty
(2012).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code