Responsive image
博碩士論文 etd-0307115-032813 詳細資訊
Title page for etd-0307115-032813
論文名稱
Title
有機太陽能電池暨氧化石墨之研究
Research of Organic Solar Cells and Graphite Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
189
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-03-31
繳交日期
Date of Submission
2015-04-07
關鍵字
Keywords
聚芳香醚高分子、旋轉塗佈、有機發光二極體、氧化石墨
Graphite oxide, OLED, Poly(arylene ether)s, Spin-coated
統計
Statistics
本論文已被瀏覽 5669 次,被下載 0
The thesis/dissertation has been browsed 5669 times, has been downloaded 0 times.
中文摘要
本論文主題為有機太陽能電池暨氧化石墨之研究,其研究架構分為兩個部份。其一為結晶促進劑的質子解離能力對於P3HT的自組裝在有機太陽能電池之影響。在此研究中,分別使用P3HT [poly(3-hexylthiophene)]與PCBM ([6,6]-phenyl C61-butyric acid methyl ester) )1:1(w/w)作為活性層之施體與受體的材料,以及添加一系列具有不同質子解離常數的結晶促進劑於活性層中,分別為雙酚S(4,4'-Sulfonyldiphenol)、4,4’-二苯酚(4,4'-Dihydroxybiphenyl)以及聯苯-4,4’-二硫醇(Biphenyl-4,4’-dithiol)。實驗結果指出P3HT的分子間作用力、結晶性、有效共軛長度將因為添加劑解離的質子所影響。在這些添加劑中,當添加劑的質子解離常數為9.63與9.28時,其形態分別顯示出蚯蚓狀與纖維狀。並且這些獨特的形貌反應在光電特性之影響,可以得到結晶促進劑為BPDT時,光電特性與未摻雜結晶促進劑相比較起來,光電轉換效率獲得27%的提升和單色光光電子轉換效率 (Incident photo to current conversion efficiency)獲得12% (P3HT主鍊上的吸收)的改善。
其二,為氧化石墨成長方法之研究。石墨烯是一種由碳原子以sp2軌域所構成,其是一種具有六元環狀結構的二維材料。在本研究中,將提出以聚芳香醚高分子作為固態碳源,在無透過催化反應的製程條件下,成長氧化石墨。二次離子質譜儀 (Secondary ion mass spectrometer)結果指出,碳經由聚集的方式沉積於基板上。X光光電光譜儀 (X-ray photoelectron spectroscopy peak-fitting)指出氧化石墨的組成是由sp2與sp3兩種軌域的結構所形成。較低的固態碳源分子量指出,氧化石墨擁有較少的sp2軌域的碳。當固態碳源的分子量為243,000時,獲得較高的sp2含量為62.3%;電性獲得片電阻為98 Ω/square;導電率為5.538 x101 Ω-1cm-1;粗糙度為1.160 nm;功函數大約為4.8 eV。並且,在無透過轉移的製程下,直接地將其作為電極以製作上發光有機發光二極體。
Abstract
We proposed a research of organic solar cells and graphite oxide. First, the proton dissociation constant of additive effect on self-assembly of poly(3-hexylthiophene) (P3HT) for organic solar cells. In this study, the use of P3HT and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) as the donor and acceptor materials, and were subsequently respectively doped with different proton dissociation constant of 4,4’-sulfonyldiphenol, 4,4'-dihydroxybiphenyl, and biphenyl-4,4'-dithiol. As a result, the additive dissociated to the proton which effect on that the molecular interaction, the crystallinity, and the effective conjugation length of P3HT. When the proton dissociation constant is 9.63 and 9.28, the morphology reveals earthworms-like and fiber-like respectively. For the reason that compared with non-doped device, when the additive is biphenyl-4,4’-dithiol, it can increase the power conversion efficiency of about 27% and the incident photon-to-current conversion efficiency of about 12% (at 520nm).
Secondly, a solution-processing method for obtaining graphite oxide (GO), which is used for the organic light-emitting diodes (OLEDs). Graphene has two-dimensional (2D) sp2-hybridized bonded structure. We report the growth of GO, which is using a poly(arylene ether)s as the solid carbon source and without a catalytic reaction. The results of secondary ion mass spectrometer indicated that carbon was aggregated on the substrate. Using X-ray photoelectron spectroscopy peak-fitting analysis to calculate the content of graphite oxide, the content have sp2- and sp3 C. As a results, lower molecular weight of solid carbon source indicated that GO have lower value of sp2 C. When molecular weight of solid carbon source is 243,000, it had a sp2 C content of 62.3%, a sheet resistance of 98 Ω/square, a conductivity of 5.538x101 Ω-1cm-1, a roughness of 1.160 nm, a work function of 4.8 eV. Moreover, we successfully showed that a graphite anode can be employed in an upper-light-emitting OLED.
目次 Table of Contents
摘要 v
Abstract vii
目錄 ix
圖目錄 xiii
表目錄 xxi
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池種類的介紹 4
1-3 碳家族的介紹 5
1-3-1 無定形碳 (Amorphous carbon) 6
1-3-2 奈米碳管 (Carbon nanotube; CNT) 6
1-3-3 富勒烯 (Fullerene) 7
1-3-4 類鑽石 (Diamond-like) 8
1-3-5 石墨(Graphite)與石墨烯(Graphene) 9
1-4 發展歷程與相關文獻回顧 10
1-4-1 有機太陽能電池 10
1-4-2 石墨烯簡介 14
1-4-3 氧化石墨烯簡介 17
1-5 石墨烯製備方法 18
1-5-1 膠帶剝離法 (Mechanical exfoliation) 18
1-5-2 熱解晶成長於碳化矽 (Epitaxial graphene on SiC surfaces after Graphitization) 20
1-5-3 氧化石墨烯還原法 (Oxidation) 21
1-5-4 化學氣相沉積法 (Chemical Vapor Deposition; CVD) 24
1-5-5 固態碳源成長法 (Solid carbon sources) 24
1-6 石墨烯的應用 34
1-7 研究動機 36
第二章 實驗儀器及原理 42
2-1 實驗材料分析量測儀器 42
2-1-1 凝膠滲透層析儀 (Gel Permeation Chromatography; GPC) 42
2-1-2 熱重量分析儀 (Thermogravimetric Analyzer; TGA) 43
2-2 實驗製程儀器 44
2-2-1 超音波震盪機 (Ultrasonic Cleaner) 44
2-2-2 磁式旋轉加熱盤 (Hot Plate) 44
2-2-3 雷射蝕刻機 (Laser Etching) 45
2-2-4 旋轉塗佈機 (Spin coater) 45
2-2-5 手套箱 (Glove box) 46
2-2-6 電漿清洗機 (Plasma cleaner) 47
2-2-7 高溫爐 (Furnace) 48
2-2-8 蒸鍍機 (Evaporator) 49
2-3 薄膜電性量測儀 50
2-3-1 四點探針電性量測 (Four-Point Prob) 50
2-3-2 霍爾效應 (Hall effect) 51
2-4 薄膜表面分析儀 51
2-4-1 拉曼光譜儀 (Raman spectrum) 51
2-4-2 X光能譜散佈分析儀 (Energy dispersive spectrometers; EDS) 52
2-4-3 原子力量子顯微鏡 (Atomic Force Microscopy; AFM) 53
2-5 薄膜深層分析儀 56
2-5-1 二次離子質譜儀 (Secondary ion mass spectrometer; SIMS) 56
2-6 薄膜特性量測儀 57
2-6-1 光電光譜儀 (Photo-Electron Spectroscopy in air; PESA AC-2) 57
2-6-2 接觸角量測 (Contact angle analysis system) 59
2-7 OLED光電特性量測系統 (PR650) 60
第三章 實驗材料及製程 62
3-1 光電元件實驗材料 62
3-1-1 透明電極(ITO) 62
3-1-2 電洞傳輸材料 62
3-1-3 P3HT & PCBM 63
3-1-4 發光層材料 64
3-1-5 陰極 (cathode) 64
3-2 太陽能電池實驗流程 64
3-3 固態碳源實驗材料 68
3-4 氧化石墨實驗流程 69
3-5 OLED元件製程 71
第四章 結果與討論 75
4-1 有機太陽能電池 75
4-1-1 質子解離常數定義 75
4-1-2 結晶促進劑之熱穩定性分析 76
4-1-3 X光繞射光譜分析 77
4-1-4 拉曼光譜分析 (Raman spectroscopy) 83
4-1-5 光電子光譜儀分析 (Photo-electron spectrometer) 85
4-1-6 紫外光-可見光吸收光譜分析 (UV-Vis spectroscopy) 86
4-1-7 光學顯微鏡巨觀分析 (Optical microscopy; OM) 90
4-1-8 AFM微觀分析 (Atomic Fouce Microscopy; AFM) 94
4-1-9 TEM 微觀分析 (Transmission Electron Microscopy) 101
4-1-10 元件光電轉換變化 (J-V curve) 104
4-1-11單色光光電子轉換效率(Incident photo-to-current conversion efficiency; IPCE) 110
4-1-12 結論 111
4-2 固態碳源沉積氧化石墨 113
4-2-1 氧化石墨轉換過程 113
4-2-2 氧化石墨薄膜特性與電性研究 116
4-2-2-1影響薄膜特性因素的探討 116
4-2-2-2 分子量對黏度之影響 122
4-2-2-3 分子量對導電特性之影響 125
4-2-3 組成鑑定 129
4-2-3-1 元素分析儀分析 (EDS) 129
4-2-4 表面形態分析 131
4-2-4-1 二維元素分析 (EDS-Mapping) 131
4-2-4-2 原力子顯微鏡(Atomic fouce microscopy; AFM) 133
4-2-5結構鑑定 137
4-2-5-1 拉曼光譜分析 (Raman spectrum) 137
4-2-5-2 Fourier-transform infrared-attenuated total reflectance (FTIR-ATR) 140
4-2-5-3 X-ray photoelectron spectroscopy (XPS) 141
4-2-5-4 二次離子質譜儀分析 (SIMS) 144
4-2-6 氧化石墨表面特性量測 147
4-2-6-1 接觸角量測 147
4-2-6-2 功函數量測 149
4-2-7 氧化石墨電極應用於上發光OLED元件 151
4-2-8 結論 159
參考文獻 161
作者簡歷 164
參考文獻 References
[1]. 陳宏仁、王立義、邱文英;「有機太陽電池之發展現況」;工業材料雜誌 192期 太陽電池技術專題, 2000
[2]. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).
[3]. 黃信雄;「氣候變化綱要公約」;太陽能學刊 第2卷第一期, 1997
[4]. S.Iijima, Nature 354, 56 (1991).
[5]. 郭禮青;「國內太陽光電發展可期」工業材料雜誌 203期, 2003
[6]. P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. Deibel, J. D Haen, P. Heremans, J. Poortmans, and J.V. Manca, Solar Energy Materials & Solar Cells 90, 2150 (2006).
[7]. S. Rait, S. Kashyap, P. K. Bhatnagar, P. C. Mathur, S. K. Sengupta, and J. Kumar, Solar Energy Materials & Solar Cells 91, 757 (2007).
[8]. H. Kim, W. W. So, and S. J. Moon, Solar Energy Materials & Solar Cells 91, 581 (2006).
[9]. Y. Hayashi, K. Hamada, K. Takagi, A. Takasu, S. Takagi, and T. Soga, IEEE 1, 271 (2006).
[10]. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
[11]. G. Yu, J. Guo, J. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
[12]. S. E. Shaheen, C. J. Brabec, N. S. sariciftci, F. Padinger, T. fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).
[13]. F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003).
[14]. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys. 98, 043704 (2005).
[15]. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, nature materials 4, 864 (2005).
[16]. W. Ma, C. Yang, X. Goung, K. Lee, and A. J. Hegger, Adv. Funct. Mater 15, 1617 (2005).
[17]. L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, Appl. Phys. Lett. 88, 093511 (2006).
[18]. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater 18, 789 (2006).
[19]. S. H. Jin, B. V. K. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee, and Y. S. Gal, Solar Energy Materials & Solar Cells 91, 1187 (2007).
[20]. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nature Materials 6 (2007).
[21]. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
[22]. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
[23]. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
[24]. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321, p.385 (2008).
[25]. K. I. Bolotin, K. J. Sikes, and Z. Jiang, Solid State Communications. 146, 351 (2008).
[26]. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, Phys. Rev. Lett. 100, 016602 (2008).
[27]. 工研院電子報,新碳材時代-從奈米碳管到石墨烯,第10004期出報日:2011/04/25.
[28]. 世界上最薄的材料-98康熹化學報報(康熹文化事業股份有限公司). 2009-11, 11月號-洪偉修教授
[29]. W. S. Hummers, R. E. Offeman, Chem. Soc. 80, 1339 (1958).
[30]. J. Hass, W. A. de Heer, and E. H. Conrad, J. Phys.: Condens. Matter 20, 323202 (2008).
[31]. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud,D. Mayou, T.Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).
[32]. D.R. Dreyer, S.Park, C.W. Bielawski, and R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010).
[33]. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nature Nanotechnology 3, 538 (2008).
[34]. C. Y. Su,Xu Y, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, and L. J. Li, ACS Nano 4, 5285 (2010).
[35]. Z. Sun, Z. Yan, J. Yao, E. Beitler, Yu Zhu, and J. M. Tour, Nature 468, 549 (2010).
[36]. G. Ruan, Z. Sun, Z. Peng, and J. M. Tour, ACS Nano 5, 7601 (2011).
[37]. Z. Yan, Z. Peng, Z. Sun, J. Yao, Yu Zhu, Z. Liu, P. M. Ajayan, and J. M. Tour, ACS Nano 5, 8187 (2011).
[38]. Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, ACS Nano 5, 8241 (2011).
[39]. Dingshan Yu, Yan Yang, Michael Durstock, Jong-Beom Baek, and Liming Dai, American Chemical Society, 5633 (2010).
[40]. Shuping Pang, Yenny Hernandez, Xinliang Feng, and Klaus Müllen, Adv. Mater. 23, 2779 (2011).
[41]. Lewis Gomez De Arco, Yi Zhang, Cody W. Schlenker, Koungmin Ryu, Mark E. Thompson, and Chongwu Zhou, ACS Nano 4(5), 2865 (2010).
[42]. J. Hwang, H. K. Chio, J. Moon, T. Y. Kim, and J. Shin, Materials Research Bulletin 47, 2796 (2012).
[43]. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater 15, 1617 (2005).
[44]. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).
[45]. T. Salim, L. H. Wong, B. Brauer, R. Kukreja, Y. L. Foo, Z. Bao, and Y. M. Lam, J. Mater. Chem. 21, 242 (2011).
[46]. B. R. Liaw, W. Y. Huang, P. T. Huang, M. Y. Chang, and Y. K. Han, Polymer, 48, 7087 (2007)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.85.72
論文開放下載的時間是 校外不公開

Your IP address is 18.116.85.72
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code