Responsive image
博碩士論文 etd-0308118-231000 詳細資訊
Title page for etd-0308118-231000
論文名稱
Title
銀金鈀鋁500℃平衡相圖富銀端研究
The study of Ag-Au-Pd-Al 500℃ Phase Diagrams in silver rich region
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-02-08
繳交日期
Date of Submission
2018-04-08
關鍵字
Keywords
EPMA、擴散偶、相圖、Ag-Au-Pd-Al、銀打線合金
EPMA, diffusion couple, phase diagram, Ag-Au-Pd-Al, silver wire alloy
統計
Statistics
本論文已被瀏覽 5643 次,被下載 0
The thesis/dissertation has been browsed 5643 times, has been downloaded 0 times.
中文摘要
本實驗目標是完成銀金鈀鋁500℃富銀端等溫相圖,藉由相圖所給予的資訊來改善銀打線製程中容易產生的性質不佳之介金屬相。有別於傳統大量製作單點合金試片方式繪製相圖,本實驗主要利用熱壓式擴散偶進行界面相平衡的研究,並以特定成分合金單點試片的相平衡結果來輔助,加以統整後可得到整體相平衡的關係來完成此四元系統富銀端等溫相圖。實驗中所配置的合金試片都是由迷你真空電弧爐(Arc Melter)所熔煉製成。擴散偶試片利用熱壓式模具接合純鋁及特定比例的合金,封入真空石英管並進行均質化熱處理,單點試片則由迷你真空電弧爐熔煉完後直接封入真空石英管中。擴散偶試片的熱處理時間為500℃ / 72hrs以及500℃ / 168hrs,分為兩個時效時間是因為拉長時效時間可以幫助分析。經金相處理後,利用電子微探儀(EPMA)進行擴散界面影像的擷取及各相成分分析。
根據實驗結果發現了Ag2Al+PdAl4+Pd8Al21+AuAl2的四相平衡,並且推測此實驗配置的四條擴散偶之擴散路經皆為(Al) | Ag2Al | Ag2Al+PdAl4+AuAl2 | Ag2Al+Pd8Al21+AuAl2 | Ag2Al+AuAl2 | (Ag) | (合金),依此結果來去配置單點試片進行500℃ 為期30天的均質化熱處理來確認以及修正擴散偶的結果。
Abstract
The goal of this experiment was to complete Ag-Au-Pd-Al 500℃ isothermal phase diagram in silver rich region. Use the information given by the phase diagram to improve the poorly-characterized IMCs that were prone to occur during silver bonding. Different from the traditional mass production of the specific alloys to complete the phase diagram, this experiment mainly using the hot-pressed diffusion couple method interface phase equilibrium study, and use the phase balance results of specific alloys to assist. To be collated to get the overall phase equilibrium relationship to complete the quaternary system in silver rich region isothermal phase diagram. All the samples in the experiment were prepared by Arc Melting and sealed in the vacuum quartz tube for 500℃ homogenization annealing. The diffusion couples were set for 500oC heat treatment for 72 hours and 168 hours. Divided into two aging time was because the aging time can help the analysis. After the metallographic treatment, the BEI and the composition of each phase were extracted to analyze by the Electron Probe Micro Analyzer (EPMA).
According to the experimental results found four-phase equilibrium below: Ag2Al+PdAl4+Pd8Al21+AuAl2. And speculated that the experimental configuration diffusion path of the diffusion couples were all (Al) | Ag2Al | Ag2Al+PdAl4+AuAl2 | Ag2Al+Pd8Al21+AuAl2 | Ag2Al+AuAl2 | (Ag) | alloy. Based on these results, the specific alloys were placed and subjected to a 30-day homogenization heat treatment at 500°C to confirm and correct the results of the diffusion couples.
目次 Table of Contents
論文審定書 ................................................................................................... i
致謝 .............................................................................................................. ii
摘要 ............................................................................................................. iii
Abstract ....................................................................................................... iv
目錄 .............................................................................................................. v
表目錄 ........................................................................................................ vii
圖目錄 ....................................................................................................... viii
壹、前言 ...................................................................................................... 1
貳、文獻回顧.............................................................................................. 3
2-1二元系統相平衡圖.......................................................................... 3 2-1-1 Ag-Al二元系統相平衡圖 ...................................................... 3
2-1-2 Au-Al二元系統相平衡圖 ...................................................... 4
2-1-3 Pd-Al二元系統相平衡圖 ...................................................... 6
2-1-4 Ag-Pd 二元系統相平衡圖 ..................................................... 8
2-1-5 Ag-Au二元系統相平衡圖 ..................................................... 8
2-1-6 Au-Pd二元系統相平衡圖...................................................... 9
2-2 三元系統相平衡圖 ......................................................................... 9
2-2-1 Ag-Au-Al 三元系統 ............................................................... 9
2-2-2 Au-Pd-Al三元系統 ................................................................ 9
2-2-3 Ag-Pd-Al三元系統 .............................................................. 10
2-2-4 Ag-Au-Pd 三元系統 ............................................................. 10
2-3 界面反應與擴散 ........................................................................... 11
vi
2-4 打線合金 ....................................................................................... 11
參、實驗步驟............................................................................................ 13
3-1實驗目的 ........................................................................................ 13
3-2試片製備 ........................................................................................ 13
3-2-1合金配製 ............................................................................... 13
3-2-2合金熔煉 ............................................................................... 13
3-2-3擴散偶試片製作 .................................................................... 14
3-2-4 特定成分單點合金製作 ....................................................... 15
3-2-5金相處理 ............................................................................... 15
3-3 EPMA分析 ................................................................................... 16
肆、實驗結果 ............................................................................................ 17
4-1 Ag-Au-Pd-Al 500℃擴散偶相平衡研究 ...................................... 17
4-1-1 Al-Ag91.8Au4.6Pd3.6之擴散偶500℃/72hrs的擴散偶研究 .. 17
4-1-2 Al-Ag93.2Au4.2Pd2.6之擴散偶 500℃/168hrs的擴散偶研究 17
4-1-3 Al-Ag84.2Au4.3Pd11.5之擴散偶 500℃/72hrs的擴散偶研究 . 18
4-1-4 Al-Ag86.6Au9.4Pd4之擴散偶 500℃/168hrs的擴散衡研究 .. 18
4-1-5 Al-Ag77.4Au10Pd12.6之擴散偶 500℃/72hrs的擴散偶研究 18
4-1-6 Al-Ag77.1Au9.4Pd13.5擴散偶500℃/168hrs的擴散偶研究 .. 19
4-2 Ag2Al+PdAl4+Pd8Al21+AuAl2四相區 .......................................... 19
伍、討論 .................................................................................................... 20
陸、結論 .................................................................................................... 22 柒、參考文獻............................................................................................ 23
vii
表目錄
表4-1 Al-Ag90Au5Pd5 500℃/72hrs的擴散偶各相組成 ....................... 27
表4-2 Al-Ag90Au5Pd5 500℃/168hrs的擴散偶各相組成 ...................... 28
表4-3 Al-Ag85Au10Pd5 500℃/72hrs的擴散偶各相組成 ...................... 28
表4-4 Al-Ag80Au10Pd10 500℃/168hrs的擴散偶各相組成 .................. 29
表4-5 Al-Ag75Au10Pd15 500℃/72hrs的擴散偶各相組成 .................... 29
表4-6 Al-Ag75Au10Pd15 500℃/168hrs的擴散偶各相組成 .................. 30
表4-7合金試片A1各相之相組成 ........................................................... 30
表4-8合金試片A2各相之相組成 ........................................................... 31
表4-9合金試片A3各相之相組成 ........................................................... 31
表4-10合金試片A4各相之相組成 ......................................................... 31
表4-11本研究擴散偶與過往文獻微接點比較 ........................................ 32
viii
圖目錄
圖2-1 Ag-Al二元平衡相圖 ....................................................................... 33
圖2-2 Au-Al二元平衡相圖 ....................................................................... 34
圖2-3 Au-Al 二元平衡相圖於 65~67 at.% Au 區域 ............................... 34
圖2-4 Au-Al二元平衡相圖於 77~81 at.% Au區域 ................................ 35
圖2-5 Pd-Al二元平衡相圖於 0~40 at.% Pd區域 ................................... 35
圖2-6 Pd-Al二元平衡相圖 ....................................................................... 36
圖2-7 Pd -Al二元平衡相圖於 0~65 at.% Pd區域 .................................. 36
圖2-8 Ag-Pd二元平衡相圖 ...................................................................... 37
圖2-9 Ag-Au二元平衡相圖 ...................................................................... 37
圖2-10 Au-Pd二元平衡相圖 .................................................................... 38
圖2-11 500℃ Ag-Au-Al三元相圖 ........................................................... 38
圖2-12修正之Ag-Au-Al 500℃三元相圖之相邊界疊圖[14] ................... 39
圖2-13 Au-Al-Pd 500℃三元相圖[11] ........................................................ 39
圖2-14 Ag-Pd-Al 500℃三元相圖[13] ........................................................ 40
圖3-1 本實驗流程圖 .................................................................................. 40
圖3-2熱壓式擴散偶模具示意圖 .............................................................. 41
圖4-1 #1的擴散偶200倍BEI圖 ............................................................. 41
圖4-2 #2的擴散偶150倍BEI圖 ............................................................. 42
圖4-3 #3的擴散偶1500倍BEI圖 ........................................................... 42
圖4-4 #3的擴散偶3500倍BEI圖 ........................................................... 43
圖4-5 #3的擴散偶2000倍BEI圖 ........................................................... 43
圖4-6 #4的擴散偶100倍BEI圖 ............................................................. 44
圖4-7 #5的擴散偶150倍BEI圖……………………………………….44
圖4-8 #6的擴散偶100倍BEI圖……………………………………….45
ix
圖4-9 #6的擴散偶2000倍BEI圖之一………………………………...45
圖4-10 #6的擴散偶2000倍BEI圖之二……………………………….46
圖4-11 #6的擴散偶2000倍BEI圖之三…………………………….…46
圖4-12 #6的擴散偶2000倍BEI圖之四 ................................................. 47
圖4-13 #6的擴散偶2000倍BEI圖之五 ................................................. 47
圖4-14 合金試片A1之3000倍BEI圖………………………………….48
圖4-15 合金試片A2之2000倍BEI圖………………………………....48
圖4-16 合金試片A3之2500倍BEI圖………………………………....49
圖4-17 合金試片A4之2000倍BEI圖………………………………....49
圖4-18 #1擴散偶之擴散路徑示意圖…………………………………...50
圖4-19 #2擴散偶之擴散路徑示意圖…………………………………...50
圖4-20 #4擴散偶之擴散路徑示意圖……………..…………………….51
圖4-21 #5擴散偶之擴散路徑示意圖…………………………………...51
圖4-22 #6擴散偶之擴散路徑示意圖…………………………………...52
圖5-1 Ag2Al+PdAl4+Pd8Al21+(Au,Pd)Al2四相區示意圖…………..…....52
參考文獻 References
1. C. H. Cheng, H. L. Hsiao, S. I. Chu, Y. Y. Shieh, C. Y. Sun, and C. Peng, "Low cost silver alloy wire bonding with excellent reliability performance," in 2013 IEEE 63rd Electronic Components and Technology Conference, pp. 1569-1573, 2013.
2. C. Lu, "Review on silver wire bonding," in 2013 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT, pp. 226-229), 2013.
3. K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, and J. T. Moon, "Reliability study of low cost alternative Ag bonding wire with various bond pad materials," in 2009 11th Electronics Packaging Technology Conference, pp. 851-857, 2009.
4. K. A. Yoo, et al. “Reliability study of low cost alternative Ag bonding wire with various bond pad materials.” Electronics Packaging Technology Conference, EPTC'09. 11th, IEEE, 2009.
5. S. Kumar, et al. “Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire.” Electronics Packaging Technology Conference (EPTC 2013), 2013 IEEE 15th, 2013.
6. H. Liu, et al, “Reliability of Au-Ag Alloy Wire Bonding”, 60th ECTC, p234-239, 2010.
7. H. S. Chang, K. C. Hsieh, et al. “The Effect of Pd and Cu in the Intermetallic Growth of Alloy Au Wire”, J. Electronic Materials. Vol. 32, No.11, p. 1182-1187, 2003.
8. H. S. Chang, K. C. Hsieh, et al. “Wire-Bond Void Formation During High Temperature Aging”, IEEE Transactions on Components and Packaging Technologies, Vol. 27, No. 1, pp. 155-160, 2004.
24
9. M. H. Lue, C. T. Huang, S. T. Huang, and K. C. Hsieh, “Bromine-and Chlorine-Induced Degradation of Gold-Aluminum Bonds”, J. Electronic Materials, Vol. 33, No.10, pp. 1111-1117, 2004.
10. C. F. Yu, C. M. Chan, L. C. Chan, K.C. Hsieh, “Cu wire bond microstructure analysis and failure mechanism”, Microelectronics Reliability, Vol.51, pp.119-124, 2011.
11. J. L. Li, P. J. Lo, M. C. Ho, R. Yu, and K. C. Hsieh, “Phase Diagram of Au-Al-Pd at 500℃”, Gold Bull, Vol.47, pp.237-243, 2014.
12. 陳俊毅,“Ag-Al-Pd 500℃相圖量測”,國立中山大學材料科學研究所碩士論文, 2013.
13. 康燿仁,“銀鋁錫及銀鋁鈀三元系統500℃合金平衡相圖研究”,國立中山大學材料科學研究所碩士論文, 2016.
14. 何明機,“電子封裝銅銲線介金屬相成長機制與銀銲線合金相平衡研究”,國立中山大學材料科學研究所博士論文, 2016.
15. G. I. Petrenko, Z. Anorg. Chem., Vol. 46, pp. 49-59, German, 1905.
16. A.J. McAlister, Binary Alloy Phase Diagrams, Vol. 1, pp. 8, 1979.
17. H. Okamoto, Al–Au (Aluminum–Gold), J. Phase Equilib., Vol. 12, pp. 114-115, 1991.
18. J. L. Murray, H. Okamoto, T. B. Massalski, The Al–Au (Aluminum–Gold) system, Bull. Alloy Phase Diagr., Vol. 8, pp. 20-29, 1987.
19. H. Okamoto, Al–Au (Aluminum–Gold), J. Phase Equilib. Diffus., Vol.26, pp. 391-393, 2005.
20. M. Li, C. Li, F. Wang, D. Luo, W. Zhang, Thermodynamic assessment of the Al–Au system, J. Alloys Compd., Vol. 385, pp. 199-206, 2004.
21. H. S. Liu, J. Wang, Y. Du, Z. P. Jin, Thermodynamic description of the Au–Al system, Z. Metallkd., Vol. 95, pp. 45-49, 2004.
22. A. J. McAlister, Bull. Alloy Phase Diagrams, Vol. 7, No. 4, pp.368-374, 1986.
25
23. M. Yurechko, A. Fattah, T. Velikanova, B. Grushko, J. Alloys Compds., Vol. 329, pp. 173-181, 2001.
24. H. Okamoto, J. Phase Equilib., Vol. 24, No.2, p 196, 2003.
25. M. Li, C. Li, F. Wang, W. Zhang, Thermodynamic assessment of the Al–Pd system, Intermetallics, Vol. 14, pp. 39-46, 2006.
26. H. Okamoto, Al–Pd (Aluminum–Palladium), J. Phase Equilib. Diff., Vol. 29, pp. 199, 2008.
27. B. Grushko, Again regarding the Al–Pd phase diagram, J. Alloys Compd., Vol. 557, pp. 102-111, 2013.
28. I. Karakaya, W. T. Thompson, “The Ag−Pd (Silver-Palladium) system”, Bulletin of Alloy Phase Diagrams, Vol. 9, No. 3, PP. 237-243, 1988.
29. C. Wagner, Acta Metall., Vol.2(2), pp. 242-249, 1954
30. J. L. White, R. L. Orr, and R. Hultgren, Acta Metall., Vol.5(12), pp. 747-760, 1957.
31. H. Okamoto, and T. B. Massalski, Binary Alloy Phase Diagrams, Vol. 1, pp. 12, 1979.
32. H. Okamoto, T. B. Massalski, The Au–Pd (Gold–Palladium) system, Bull. Alloy Phase Diagr., Vol. 6, pp. 229-235, 1985.
33. A. Prince, G.V. Raynor, D.S. Evans, “Ag-Al-Au Phase Diagrams Ternary Gold Alloys”, Inst. Met., London, 1990.
34. A. Prince, “Ag-Au-Pd Ternary Phase Diagram Evaluation”, MSI, Materials Science International Services GmbH, Stuttgart, 1988
35. V. Koeninger, H. H. Uchida, and E. Fromm, "Degradation of
Gold-Aluminum Ball Bonds by Aging and Contamination," IEEE
Transactions on Components, Packaging, and Manufacturing
Technology, Part A, Vol. 18, No. 4, pp. 835-841, 1995.
26
36. T. Uno, K. Tataumi, and Y. Ohno, "Voids Formation and Reliability
in Gold-Aluminum Bonding," Proceedings of the Joint ASME/JSME Advances in Electronic Packaging, Vol. 1-2, pp.771-777, 1992.
37. J. S. Cho, et al. “Thermal reliability & IMC behavior of low cost alternative Au-Ag-Pd wire bonds to Al metallization.” Electronic Components and Technology Conference, ECTC 2009. 59th. IEEE, 2009.
38. L. J. Kai, et al. “Silver alloy wire bonding.” Electronic Components and Technology Conference (ECTC), 2012 IEEE 62nd. IEEE, 2012.
39. C. Lu, “Review on silver wire bonding.” Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2013 8th International. IEEE, 2013.
40. H. W. Hsueh, et al. “Intermetallic phase on the interface of Ag-Au-Pd/Al structure.” Advances in Materials Science and Engineering, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code