Responsive image
博碩士論文 etd-0308121-115501 詳細資訊
Title page for etd-0308121-115501
論文名稱
Title
第六代同步資訊及功率傳輸網路中以反向散射輔助之中繼策略
Backscatter-Aided Relaying Scheme for 6G Networks with SWIPT
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2021-03-29
繳交日期
Date of Submission
2021-04-08
關鍵字
Keywords
環境背向散射通信系統、瑞利平坦衰落、信噪比、環境後向散射裝置、能量收集
Ambient Backscatter Device (A-BD), Ambient Backscatter Communications System (ABCS), Rayleigh flat fading, Signal-to-Noise Ratio (SNR), Energy Harvesting (EH)
統計
Statistics
本論文已被瀏覽 89 次,被下載 13
The thesis/dissertation has been browsed 89 times, has been downloaded 13 times.
中文摘要
在本研究中,我們將仔細研究反向散射輔助通信系統(BCS)與傳統中繼系統的比較。反向散射系統包含一個源,多個反向散射設備(BD)與一個接收器。BD的目的是幫助提高系統的端到端吞吐量和可靠性,BD完全是在中繼模式下運行,這意味著它們不會在接收到的訊號,也就是來自訊號源的射頻訊號中添加自己的資訊。此系統的靈感來自於同步無線訊號與電源轉移(SWIPT),BD接收環境中的RF訊號包含了來自訊號源的能量以及資訊。對於放大再傳輸(AF)模式,它會放大訊號,然後在單個時隙中將其反射到接收器;對於解碼再傳輸(DF)模式,BD在第一階段(時隙)解碼訊號。第二階段,它收集能量,然後將其用於反射在第二階段中接收器接收到的訊號。接著,本論文對AF和DF提出了優化吞吐量的問題,同時也提出了求和率的問題,並對其進行了優化。然後針對系統中不同的參數進行模擬,接著將各個模擬結果繪製成圖表,並且比較不同的指標,以了解它們之間的相互影響。最後比較傳統的中繼系統與BD輔助系統,驗證後者相較於前者是否有任何優勢。
Abstract
In this study, we take a closer look at how a backscatter assisted communication system
(BCS) compares to a conventional relay system. The backscatter system consists of a
single source, multiple backscatter devices (BDs), and a single receiver. The purpose of
the BDs is to assist with the system’s end-to-end throughput and reliability. The BDs
operate in a pure relay mode, which means they do not add their own information to the
received RF signal from the source. The system is simultaneous wireless information
power transfer (SWIPT) inspired. The BD receives an ambient RF signal containing both
energy and information from the source. For amplify-and-forward (AF) mode, it amplifies
the signal and then reflects it to the receiver in a single time slot. For the decode-and-forward
(DF) mode, the BD decides to decode the signal in the first phase (time slot). In
the second phase, it harvests energy which it then uses to reflect the signal received in the
second phase to the receiver . We then formulate an optimization throughput problem for
both AF and DF. A sum-rate problem is also formulated and then optimized. Simulations
are then run for different parameters of the system. Graphs from the various simulations
are plotted and we compare different metrics to see what effect they have on each other.
Conventional relay systems are then compared to BD assisted systems to see if the latter
has any advantages over the former.
目次 Table of Contents
Thesis Validation Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction......... 1
1.1 Backscatter Communications System . . . . . . . . . . . . . . . . . . . . 3
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 System Model ........7
2.1 System Model Under AF Mode . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 System Model Under DF Mode . . . . . . . . . . . . . . . . . . . . . . . 9
3 Problem Formulation ..........12
3.1 Problem Formulation and Proposed Solution . . . . . . . . . . . . . . . . 12
3.1.1 AF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 DF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Analysis and Discussion.......... 18
4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Capacity versus Number of BDs . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Capacity versus Source Power . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Pin versus Pout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Capacity versus Source to BD distance . . . . . . . . . . . . . . . . . . . 22
4.5.1 Portion of active BDs versus Diagonal length . . . . . . . . . . . 23
4.6 Energy Efficiency versus Source Power . . . . . . . . . . . . . . . . . . 23
4.7 Benchmark: Comparison between a Conventional relay system and a
Backscatter assisted system . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7.1 AF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7.2 DF mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.7.3 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Conclusion....... 31
A Appendix .........32
參考文獻 References
[1] Q.-U.-A. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, and M.-S. Alouini, “Intelligent
reflecting surface assisted wireless communication: Modeling and channel
estimation,” ArXiv, vol. abs/1906.02360, 2019.
[2] A. Chandra, “Energy conservation in wireless communication systems with relays,”
in 2012 International Conference on Advances in Mobile Network, Communication
and Its Applications, 2012, pp. 1–4.
[3] P. Gandotra, R. K. Jha, and S. Jain, “Green communication in next generation cellular
networks: A survey,” IEEE Access, vol. 5, pp. 11 727–11 758, 2017.
[4] N. A. Malik and M. Ur-Rehman, “Green communications: Techniques and challenges,”
EAI Endorsed Transactions on Energy Web, vol. 4, no. 14, 2017.
[5] M. Amjad, A. Ahmed, M. Naeem, M. Awais,W. Ejaz, and A. Anpalagan, “Resource
management in energy harvesting cooperative IoT network under QoS constraints,”
Sensors, vol. 18, no. 10, p. 3560, oct 2018.
[6] Y. Hong, W. Huang, and C. Kuo, Cooperative Communications and Networking:
Technologies and System Design. Springer US, 2010.
[7] K. Singh, M. Ku, J. Lin, and T. Ratnarajah, “Toward optimal power control and
transfer for energy harvesting amplify-and-forward relay networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 8, pp. 4971–4986, 2018.
[8] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5g network capacity: Key
elements and technologies,” IEEE Vehicular Technology Magazine, vol. 9, no. 1, pp.
71–78, 2014.
[9] A. Fehske, G. Fettweis, J. Malmodin, and G. Biczok, “The global footprint of mobile
communications: The ecological and economic perspective,” IEEE Communications
Magazine, vol. 49, no. 8, pp. 55–62, 2011.
[10] R. Q. Hu and Y. Qian, “An energy efficient and spectrum efficient wireless heterogeneous
network framework for 5g systems,” IEEE Communications Magazine, vol.
52, no. 5, pp. 94–101, 2014.
[11] A. Gupta, S. Biswas, K. Singh, T. Ratnarajah, and M. Sellathurai, “An energyefficient
approach towards power allocation in non-orthogonal multiple access fullduplex
af relay systems,” in 2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2018, pp. 1–5.
[12] F. Meshkati, H. V. Poor, and S. C. Schwartz, “Energy-efficient resource allocation
in wireless networks,” IEEE Signal Processing Magazine, vol. 24, no. 3, pp. 58–68,
2007.
[13] L. Venturino, A. Zappone, C. Risi, and S. Buzzi, “Energy-efficient scheduling and
power allocation in downlink ofdma networks with base station coordination,” IEEE
Transactions on Wireless Communications, vol. 14, no. 1, pp. 1–14, 2015.
[14] D. W. K. Ng, E. S. Lo, and R. Schober, “Energy-efficient resource allocation in
ofdma systems with hybrid energy harvesting base station,” IEEE Transactions on
Wireless Communications, vol. 12, no. 7, pp. 3412–3427, 2013.
[15] M. M. Butt, A. Nasir, A. Mohamed, and M. Guizani, “Trading wireless information
and power transfer: Relay selection to minimize the outage probability,” in 2014
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014,
pp. 253–257.
[16] K. Tutuncuoglu, B. Varan, and A. Yener, “Energy harvesting two-way half-duplex
relay channel with decode-and-forward relaying: Optimum power policies,” in 2013
18th International Conference on Digital Signal Processing (DSP), 2013, pp. 1–6.
[17] Yan Xia, Hongbin Chen, Lisheng Fan, and Fenliang Dai, “Optimal power control
for source and relay in energy harvesting relay networks,” in 2013 8th International
Conference on Communications and Networking in China (CHINACOM), 2013, pp.
942–947.
[18] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, “A survey of energyefficient
wireless communications,” IEEE Communications Surveys Tutorials, vol.
15, no. 1, pp. 167–178, 2013.
[19] M. Tubaishat and S. Madria, “Sensor networks: an overview,” IEEE Potentials, vol.
22, no. 2, pp. 20–23, 2003.
[20] A. Gupta, K. Singh, and M. Sellathurai, “Time-switching eh-based joint relay selection
and resource allocation algorithms for multi-user multi-carrier af relay networks,”
IEEE Transactions on Green Communications and Networking, vol. 3, no.
2, pp. 505–522, 2019.
[21] N. Van Huynh, D. T. Hoang, X. Lu, D. Niyato, P. Wang, and D. I. Kim, “Ambient
backscatter communications: A contemporary survey,” IEEE Communications
Surveys Tutorials, vol. 20, no. 4, pp. 2889–2922, 2018.
[22] G. Vannucci, A. Bletsas, and D. Leigh, “A software-defined radio system for
backscatter sensor networks,” IEEE Transactions on Wireless Communications, vol.
7, no. 6, pp. 2170–2179, 2008.
[23] A. Bletsas, S. Siachalou, and J. N. Sahalos, “Anti-collision tags for backscatter sensor
networks,” in 2008 38th European Microwave Conference, 2008, pp. 179–182.
[24] J. Kimionis, A. Bletsas, and J. N. Sahalos, “Bistatic backscatter radio for powerlimited
sensor networks,” in 2013 IEEE Global Communications Conference
(GLOBECOM), 2013, pp. 353–358.
[25] A. Bletsas, S. Siachalou, and J. N. Sahalos, “Anti-collision backscatter sensor networks,”
IEEE Transactions on Wireless Communications, vol. 8, no. 10, pp. 5018–
5029, 2009.
[26] J. D. Griffin and G. D. Durgin, “Complete link budgets for backscatter-radio and
rfid systems,” IEEE Antennas and Propagation Magazine, vol. 51, no. 2, pp. 11–25,
2009.
[27] A. Juels, “Rfid security and privacy: a research survey,” IEEE Journal on Selected
Areas in Communications, vol. 24, no. 2, pp. 381–394, 2006.
[28] D. K. Klair, K. Chin, and R. Raad, “A survey and tutorial of rfid anti-collision protocols,”
IEEE Communications Surveys Tutorials, vol. 12, no. 3, pp. 400–421, 2010.
[29] P. Zhang, J. Gummeson, and D. Ganesan, “Blink: a high throughput link layer for
backscatter communication,” in MobiSys ’12, 2012.
[30] H. Ishizaki, H. Ikeda, Y. Yoshida, T. Maeda, T. Kuroda, and M. Mizuno, “A batteryless
wifi-ber modulated data transmitter with ambient radio-wave energy harvesting,”
in 2011 Symposium on VLSI Circuits - Digest of Technical Papers, 2011, pp.
162–163.
[31] G. Yang, Q. Zhang, and Y. Liang, “Cooperative ambient backscatter communications
for green internet-of-things,” IEEE Internet of Things Journal, vol. 5, no. 2,
pp. 1116–1130, 2018.
[32] V. Iyer, V. Talla, B. Kellogg, S. Gollakota, and J. Smith, “Inter-technology backscatter,”
in Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference -
SIGCOMM '16. ACM Press, 2016.
[33] A.Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota, “FM backscatter: Enabling
connected cities and smart fabrics,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). Boston, MA: USENIX Association,
Mar. 2017, pp. 243–258.
[34] R. Long, Y. Liang, H. Guo, G. Yang, and R. Zhang, “Symbiotic radio: A new communication
paradigm for passive internet of things,” IEEE Internet of Things Journal,
vol. 7, no. 2, pp. 1350–1363, 2020.
[35] D. Darsena, G. Gelli, and F. Verde, “Modeling and performance analysis of wireless
networks with ambient backscatter devices,” IEEE Transactions on Communications,
vol. 65, no. 4, pp. 1797–1814, 2017.
[36] S. Gong, X. Huang, J. Xu, W. Liu, P. Wang, and D. Niyato, “Backscatter relay
communications powered by wireless energy beamforming,” IEEE Transactions on
Communications, vol. 66, no. 7, pp. 3187–3200, 2018.
[37] S. Gong, Y. Zou, D. T. Hoang, J. Xu, W. Cheng, and D. Niyato, “Capitalizing
backscatter-aided hybrid relay communications with wireless energy harvesting,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8709–8721, 2020.
[38] Y. Lu, K. Xiong, P. Fan, Z. Ding, Z. Zhong, and K. B. Letaief, “Global energy
efficiency in secure miso swipt systems with non-linear power-splitting eh model,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 1, pp. 216–232,
2019.
[39] P. N. Alevizos, G. Vougioukas, and A. Bletsas, “Nonlinear energy harvesting models
in wireless information and power transfer,” in 2018 IEEE 19th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), 2018,
pp. 1–5.
[40] X. Jia and X. Zhou, “Performance characterization of relaying using backscatter
devices,” IEEE Open Journal of the Communications Society, vol. 1, pp. 819–834,
2020.
[41] S. Gong, X. Huang, J. Xu, W. Liu, P. Wang, and D. Niyato, “Backscatter relay
communications powered by wireless energy beamforming,” IEEE Transactions on
Communications, vol. 66, no. 7, pp. 3187–3200, 2018.
[42] P. N. Alevizos, G. Vougioukas, and A. Bletsas, “Nonlinear energy harvesting models
in wireless information and power transfer,” in 2018 IEEE 19th International Workshop
on Signal Processing Advances in Wireless Communications (SPAWC), 2018,
pp. 1–5.
[43] S.Wang, M. Xia, K. Huang, and Y.Wu, “Wirelessly powered two-way communication
with nonlinear energy harvesting model: Rate regions under fixed and mobile
relay,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 8190–
8204, 2017.
[44] A. Bletsas, H. Shin, and M. Z. Win, “Outage-optimal cooperative communications
with regenerative relays,” in 2006 40th Annual Conference on Information Sciences
and Systems, 2006, pp. 632–637.
[45] A. Bletsas, Hyundong Shin, M. Z. Win, and A. Lippman, “Cooperative diversity
with opportunistic relaying,” in IEEE Wireless Communications and Networking
Conference, 2006. WCNC 2006., vol. 2, 2006, pp. 1034–1039.
[46] “Better explained,” https://betterexplained.com/articles/tag/complex-numbers/, accessed:
2021-03-27.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code