Responsive image
博碩士論文 etd-0310120-142753 詳細資訊
Title page for etd-0310120-142753
論文名稱
Title
符合不同應用導向之創新式永磁電動機設計、製作與應用評估
Application-oriented Designs and Performance Assessment of Advanced Permanent-magnet Motors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-04-07
繳交日期
Date of Submission
2020-04-10
關鍵字
Keywords
V型同極永磁電動機、表面型永磁電動機、V型永磁電動機、製冷壓縮機、維尼爾電動機、穿戴式行動輔具
V-type permanent magnet motors, V-type consequent-pole permanent-magnet motor, surface-mounted permanent-magnet motor, refrigerant compressors, Vernier motors, exoskeleton system
統計
Statistics
本論文已被瀏覽 5625 次,被下載 0
The thesis/dissertation has been browsed 5625 times, has been downloaded 0 times.
中文摘要
隨著日漸嚴苛的電動機能源效率標準,永磁電動機受到的關注度也愈來愈高,該結構通過在轉子中安置永久磁鐵,能將電動機的能量密度與效率提升至更高的水平。然而根據其不同之應用導向,永磁電動機又可以分為短時間運轉與長時間運轉兩大類,在本研究中,將針對短時間運轉之穿戴式行動輔具以及長時間運轉之製冷壓縮機中的永磁電動機進行深入的探討。
在穿戴式行動輔具的應用中,本文將引入一維尼爾電動機,並透過其獨特之減速效應,設法提升輸出轉矩為市售電動機的兩倍,並搭配減半之減速齒輪齒比,進而降低其外部機械成本。同時通過有限元素法優化與硬體實測,證明其滿足該應用之性能需求並提供電動機設計者不同的選擇指南。
而在製冷壓縮機應用中,主要探討創新式V型永磁電動機、創新式V型同極永磁電動機與創新式表面型永磁電動機應用於其中之可行性。藉由理論分析模型與結構調整,改變其諧波組成以提升其平均轉矩與轉矩漣波表現,同時結合有限元素法與硬體實測證實其作為該應用替代方案之可行性。
Abstract
With the stringent energy efficiency ratio (EER), the permanent-magnet (PM) motor gains more and more attention. Based on the different application-oriented, the PM motors can be divided into short-time operational motor, and continuous operational motor.
In the short-time operational application, the Vernier motor (VM) be proposed as the possible alternative of the exoskeleton system, because the advantage of high output torque. With the structural harmonic injection, the output torque can be doubled and halved the operational speed. Hence, the gear ratio and mechanical cost also can thus be decreased. Besides, by the finite element analysis (FEA) and hardware validation, the optimal VM not only can satisfy the application requirement but also provides a cost-effective selection to the manufacturer.
In the second topic, there are some possible alternatives to the refrigerant compressor application that were evaluated, include I-type permanent-magnet motor (IPM), V-type permanent-magnet motor (VPM), V-type consequent-pole permanent-magnet motor (CVPM), and surface-mounted permanent-magnet motor (SPM). Based on the theoretical analysis model, the output torque and torque ripple can thus be further improved by the structural adjustment. Besides, combining with FEA and hardware validation, those advanced structures were certified that are the possible alternative of refrigerant compressor application.
目次 Table of Contents
目錄
頁次
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 ix
符號對照表 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與方法 2
1.3 研究重點與目標 2
第二章 維尼爾電動機應用於穿戴式行動輔具 4
2.1 商用行動輔具之電動機系統性能分析 5
2.2 槽極比選擇 7
2.3 最佳化設計 8
2.4 穩態性能分析 12
2.5 暫態性能分析 12
2.6 溫升性能分析 16
2.7 硬體實測與驗證 21
2.8 小結與討論 22
第三章 內藏型永磁電動機應用於小馬力製冷壓縮機 24
3.1 設計目標與性能需求 25
3.2 建構等效磁路模型 26
3.3 聚磁效應分析 28
3.4 理論分析模型建構 29
3.5 靈敏度分析 33
3.6 透過諧波濾除優化轉矩漣波 33
3.7 結構參數最佳化 36
3.8 穩態性能分析 33
3.9 硬體實測與驗證 40
3.10 小結與討論 44
第四章 表面型永磁電動機應用於一馬力製冷壓縮機 45
4.1 設計目標與性能需求 46
4.2 理論分析模型建構 47
4.3 三次諧波注入 50
4.4 相異轉子結構之穩態性能驗證 52
4.5 靈敏度分析 53
4.6 結構參數最佳化 55
4.7 穩態性能分析 57
4.8 硬體實測與驗證 59
4.9 定子繞線與疊片積厚選擇之進階評估 61
4.10 小結與討論 64
第五章 結論與討論 65
參考文獻 66
作者自述 73
參考文獻 References
[1] 台灣電力公司/資訊掲露/電力供需資訊/過去電力供需資訊 [Online]. Available: https://www.taipower.com.tw/TC/page.aspx?mid=210.
[2] J.-H. Kim, M. Shim, D.-H. Ahn, B.-J. Son, S.-Y Kim, D.-Y. Kim, Y.-S. Baek, and B.-K. Cho, “Design of a knee Exoskeleton using foot pressure and knee torque sensors,” International Journal of Advanced Robotic System, vol. 12, no. 8, DOI 10.5772/60782, Aug. 2015.
[3] S. Hyoseok, N. Niguchi, and K. Hirata, “Characteristic analysis of surface permanent-magnet Vernier motor according to pole ratio and winding pole number,” IEEE Trans. Magn., vol. 53, no. 11, Art. ID 8211104, Nov. 2017.
[4] J. Zhang, A. Tounzi, P. Delarue, F. Piriou, V. Leontidis, A. Dazin, G. Caignaert, and A. Libaux, “Quantitative design of a high performance permanent magnet Vernier generator,” IEEE Trans. Magn., vol. 53, no. 11, Art. ID 8209004, Nov. 2017.
[5] D. Jang and J. Chang, “Effects of flux modulation poles on the radial magnetic forces in surface-mounted permanent-magnet Vernier machines,” IEEE Trans. Magn., vol. 53, no. 6, Art. ID 8202704, Jun. 2017.
[6] M. Raza, W. Zhao, T. A. Lipo, and B.-I. Kwon, “Performance comparison of dual airgap and single airgap spoke-type permanent-magnet Vernier machines,” IEEE Trans. Magn., vol. 53, no. 6, Art. ID 8106604, Jun. 2017.
[7] G. Liu, S. Jiang, W. Zhao, and Q. Chen, “A new modeling approach for permanent magnet Vernier machine with modulation effect consideration,” IEEE Trans. Magn., vol. 53, no. 1, Art. ID 8100312, Jan. 2017.
[8] K.-T. Chau, D. Zhang, J.-Z. Jiang, C.-H. Liu, and Y.-J. Zhang, “Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles,” IEEE Trans. Magn., vol. 43, no. 6, Art. ID 9479504, June. 2007.
[9] S. Murata et.al., “Relationship between the 10-second chair stand test (Frail CS-10) and physical function among the frail elderly,” Physiotherapy Science, vol. 25, no. 3, pp. 431-435, 2010.
[10] W. Wang, J.-H. Zhang, and M. Cheng, “Line-modulation-based flux-weakening control for permanent-magnet synchronous machines,” IET Elect. Power Appl., vol. 11, no. 5, pp. 930-936, Apr. 2018.
[11] M. Xiao, T.-N. Shi, X. Gu, and C.-L. Xia, “Simplified predictive torque control for permanent magnet synchronous motor with discrete duty cycle control,” IET Elect. Power Appl., vol. 13, no. 3, pp. 294-201, Apr. 2019.
[12] W.-X. Zhao, M. Cheng, K.-T. Chau, and C.-C. Chan, “Control and operation of fault-tolerant flux-switching permanent-magnet motor drive with second harmonic current injection,” IET Elect. Power Appl., vol. 6, no. 9, pp. 707-715, Apr. 2012.
[13] T.-J. Zou, X Han, D. Jiang, R.-H. Qu, and D.-W. Li, “Inductance evaluation and sensorless control of a concentrated winding PM Vernier machine,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2175-2184, May/June 2018.
[14] Kabushiki Kaisha Yaskawa Denki, “Winding change-over switch of three-phase ac motor,” Taiwan Patent I383575, Jan. 21, 2013.
[15] Maxon Motor. (2018, Feb. 16). Driven by Precision, Maxon EC flat motors [Online]. Available: https://www.maxonmotor.com/maxon/view/content/ec-
flat-motors.
[16] S.-W. Hwang, M.-S. Lim, and J.-P. Hong, “Hysteresis torque estimation method based on iron-loss analysis for permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 52, no. 7, Art. ID 8204904, July. 2016.
[17] L.-L. Wu, R.-H. Qu, D.-W. Li, and Y.-T. Gao, “Influence of pole ratio and winding pole numbers on performance and optimal design parameters of surface permanent-magnet Vernier machine,” IEEE Trans. Ind. Appl., vol. 52, no. 7, Art. ID 8204904, July. 2016.
[18] B. Kim and T. A. Lipo, “Operation and design principles of a PM Vernier motor,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3656-3663, Nov./Dec. 2014.
[19] W. Ren, Q. Xu, and Q. Li, “Asymmetrical V-shape rotor configuration of an interior permanent magnet machine for improving torque characteristics,” IEEE Trans. Magn., vol. 51, no. 11, Art. ID 8113704, Nov. 2015.
[20] C.-H. Lin and C.-C. Hwang, “Multi-objective optimization design for a six-phase copper rotor induction motor mounted with a scroll compressor,” IEEE Trans. Magn., vol. 52, no. 7, Art. ID 9401604, July 2016.
[21] D.-W. Li, T.-J. Zou, R.-H. Qu, and D. Jiang, “Analysis of fractional-slot concentrated winding PM Vernier machines with regular open-slot Stators,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1320-1330, Mar./Apr. 2018.
[22] C.-T. Liu, K. Yang, Y.-C. Wu, H.-L. Chang, and R. C.-L. Lee, “Designs and performance assessments of permanent-magnet motors for personal mobility-assistive device applications,” in Proc. XXIII Int. Conf. Electrical Machines (ICEM), Alexandroupoli, Greece, Sept., 2018, pp. 2130-2136.
[23] C.-T. Liu, P.-C. Shih, Z.-H. Cai, K. Yang, S.-C. Yen, H.-N. Lin, Y.-W. Hsu, T.-Y. Luo, and S.-Y. Lin, “Designs of a four-in-one laminated electrical steel rotor structure for application-oriented synchronous reluctance motors,” IEEE Trans. Industry Appl., vol. 55, no. 4, pp. 4389-4397, July/Aug. 2019.
[24] Y.-W, Wang, M. Bonfante, N. Bianchi, and R. Petrella, “Scalability of synchronous reluctance machines considering thermal performance,” in Proc. 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, USA, Sept., 2019, DOI 10.1109/ECCE.2019.8912831.
[25] JETI model. (2019, Oct. 24). JETI SPIN Pro 99 opto [Online]. Available:http://www.jetimodel.com/en/katalog/Speed-Controllers/@produkt/SP
IN-Pro-99-opto/
[26] F. J. T. E. Ferreira, B. Leprettre, and A. T. de Almeida, “Comparison of protection requirements in IE2-, IE3-, and IE4-class motors,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3603-3610, July/Aug. 2016.
[27] C.-T. Liu, P.-C. Shih, Z.-H. Cai, K. Yang, S.-C. Yen, H.-N. Lin, Y.-W. Hsu, T.-Y. Luo, and S.-Y. Lin, “Designs of a four-in-one laminated electrical steel rotor structure for application-oriented synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 55, no. 4, pp. 4389-4397, July/Aug. 2019.
[28] I. P Brown, M.W. Critchley, J. Yin, S. B. Memory, G. Y. Sizov, S. W. Elbel, C. D. Browers, M. Petersen, and P. S. Hmjak, “Design and evaluation of interior permanent-magnet compressor motors for commercial transcortical CO2 (R-744) heat pump water heaters,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 161-167, Jan./Feb. 2015.
[29] G.-H. Kang, Y.-D. Son, G.-T. Kim, and J. Hur, “A Novel cogging torque reduction method for interior-type permanent-magnet motor,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 576-586, Jan./Feb. 2009.
[30] P. Akiki, M. H. Hassen, J-C. Vannier, M. Bensetti, D. Prieto, B. Daguse, and M. McClelland, “Nonlinear analytical model for a multi-V-shape IPM with concentrated winding,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2156-2174, May/June 2018.
[31] K. Yamazaki, Y. Togashi, T. Ikemi, S. Ohki, and R. Mizokami, “Reduction of inverter carrier harmonic losses in interior permanent magnet synchronous motors by optimizing rotor and stator shapes,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 306-315, Jan./Feb. 2019.
[32] J. Li, K. Wang, and C. Liu, “Torque improvement and cost reduction of permanent magnet machine with a dovetailed consequent-pole rotor,” IEEE Trans. Energy Conversion, vol. 33, no. 4, pp. 1628-1640, Dec. 2018.
[33] M.-T. Chiu, J.-A. Chiang, and C.-H. Lin, “Design and optimization of a novel V-type consequent-pole interior permanent magnet synchronous motor for applying to refrigerant compressor,” in Proc. XXI Int. Conf. Electrical Machines and Systems (ICEMS), Jeju, South Korea, Oct., 2018, pp. 413-418, 2018.
[34] W. Zhao, F. Zhao, T. A. Lipo, and B. Kwon, “Optimal design of a novel V-type interior permanent magnet motor with assisted barriers for the improvement of torque characteristics,” IEEE Trans. Magn., vol. 50, no. 11, Art. ID 8104504, Nov. 2014.
[35] M.-T. Chiu, C.-H. Lin, Y.-Y. Hsieh, and J.-A. Chiang, “Consequent-pole motor rotor with magnetic-flux-separating recesses,” Taiwan Patent M566434, Sept. 1, 2018.
[36] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery and drive systems, 2nd Edition, Wiley‐IEEE Press, Hoboken, NJ, U.S.A., 2013, pp. 149-157.
[37] C.-T. Liu, K.-Y. Hung, and C.-C. Hwang, “Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines,” IEEE Trans. Magn., vol. 52, no. 7, Art. ID 8202404, July 2016.
[38] J.-H. Seo and H.-S. Choi, “Cogging torque calculation for IPM have single layer based on magnetic circuit model,” IEEE Trans. Magn., vol. 50, no. 10, Art. ID 8102104, Oct. 2014.
[39] H. A. Toilyat, M. M. Rahimian, and T. A. Lipo, “dq Modeling of five phase synchronous reluctance machine including third harmonic of air-gap MMF,” in Proc. 2018 IEEE Industry Applications Society Annual Meeting, Dearborn, USA Sept. 1991, DOI 10.1109/IAS.1991.178160.
[40] S. Kallio, M. Andriollo, A. Tortella, and J. Karttunen, “Decoupled d-g model of double-star interior-permanent synchronous machines,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2486-2494, June 2013.
[41] STMicroelectronics. (2019, Dec. 11). STEVAL-IPM15B [Online]. Available: https://www.st.com/content/st_com/en/products/evaluation-tools/solution-evaluation-tools/motor-control-solution-eval-boards/stev al-ipm15b.html
[42] P. Jin, S.-H Fang, and S.-L. Ho, “Distribution characteristic and combined optimization of maximum cogging torque of surface-mounted permanent-magnet machines,” IEEE Trans. Magn., vol. 54, no. 3, Art. ID 17596246, Mar. 2018.
[43] Y.-X. Li, Z.-Q Zhu, and G.-J. Li, “Influence of stator topologies on average torque and torque ripple of fractional-slot SPM machines with fully closed slots,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2151-2164, May/June 2018.
[44] K. Wang, Z.-Q. Zhu, and G. Omabach, “Torque improvement of five-phase surface-mounted permanent magnet machine using third-order harmonic,” IEEE Trans. Energy Conversion, vol. 29, no. 3, pp. 735-747, Sept. 2014.
[45] K. Wang, Z.-Y. Gu, Z.-Q. Zhu, and Z.-Z. Wu, “Optimum injected harmonics into magnet shape in multiphase surface-mounted PM machine for maximum output torque,” IEEE Trans. Ind. Electron., vol. 64, no. 6, pp. 4434-4443, June 2017.
[46] K. Wang, Z.-Q. Zhu, and G. Omabach, “Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic,” IEEE Trans. Magn., vol. 50, no. 3, Art. ID 14180471, Mar. 2014.
[47] K. Wang, Z.-Q. Zhu, G. Omabach, and W. Chiebosz, “Average torque improvement of interior permanent-magnet machine using third harmonic in rotor shape,” IEEE Trans. Ind. Electron., vol. 61, no. 9, Art. ID 14181300, Sept. 2014.
[48] Y.-S Hu, Z.-Q Zhu, and M. Odavic, “Torque capability enhancement of dual three-phase PMSM drive with fifth and seventh current harmonics injection,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 4526-4535, Sept./Oct. 2017.
[49] K. Wang, Z.-Q Zhu, Y. Ren, and G. Ombach, “Torque improvement of dual three-phase permanent-magnet machine with third-harmonic current injection,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6833-6844, Nov. 2015.
[50] C.-T. Liu, K. Yang, Y.-H. Chen, M.-T. Chiu, J.-A. Chiang, and C.-M. Lin, “Design optimizations of advanced interior permanent-magnet motors for small-horsepower refrigerant compressor applications,” in Proc. XXIII Int. Conf. Electrical Machines and System (ICEMS), Harbin, China, Aug., 2019, DOI: 10.1109/ICEMS.2019.8922207.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.222.12
論文開放下載的時間是 校外不公開

Your IP address is 18.226.222.12
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code