Responsive image
博碩士論文 etd-0313116-153727 詳細資訊
Title page for etd-0313116-153727
論文名稱
Title
以耗散粒子動力學分析多面體矽氧烷寡聚物與聚甲基丙烯酸甲酯嵌段共聚物其自主裝結構
Self-Assembly of PMMA-b-PMMAPOSS: A Dissipative Particle Dynamics Study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-03-25
繳交日期
Date of Submission
2016-04-13
關鍵字
Keywords
分子動力學、耗散粒子動力學、聚甲基丙烯酸甲酯、多面體矽氧烷寡聚物、自組裝結構
Polymethylmethacrylate, Molecular dynamics, Dissipative particle dynamics, Polyhedral oligomeric silsesquioxane, Self-assembly
統計
Statistics
本論文已被瀏覽 5676 次,被下載 224
The thesis/dissertation has been browsed 5676 times, has been downloaded 224 times.
中文摘要
本研究利用分子動力學與耗散粒子動力學探討聚甲基丙烯酸甲酯與多面體矽氧烷寡聚物之嵌段共聚物其自組裝結構。為確保模擬之準確性,本研究建立一套流程,先由分子動力學模擬,系統性地得到耗散粒子動力學參數,最後透過耗散粒子模擬其自組裝結構。在分子動力學部分,透過計算材料的溶解度參數、壓縮係數與鍵長、鍵角分佈,取得耗散粒子動力學的參數,且透過模擬計算所得到的溶解度參數與壓縮係數皆與前人實驗結果相近。本次研究將會採用兩種粗殼粒子模型進行耗散粒子動力學模擬,並與實驗結果進行對照。模型一將會將甲基丙烯酸甲酯單體作為單元粒子,而多面體矽氧烷寡聚物則分割成8顆單元粒子;而在模型二則是將九個甲基丙烯酸甲酯單體做為一個單元粒子。由耗散粒子動力學中的結果得知,模型一的多面體矽氧烷粒子並沒有辦法遮蔽住甲基丙烯酸粒子,與實驗中所觀察到的自組裝結構不一致。模型二則可以反應出與實驗相同的自組裝結構,說明模型二的粗殼粒子模型較適用於聚甲基丙烯酸甲酯與多面體矽氧烷寡聚物之嵌段共聚物。透過本研究所建立的模擬流程,可以成功地擬合耗散粒子動力學之作用力參數,且可深入觀察聚甲基丙烯酸甲酯與多面體矽氧烷寡聚物之嵌段共聚物其自組裝的過程,對於未來類似的材料之研究有所幫助。
Abstract
Molecular dynamics (MD) and dissipative particle dynamics (DPD) simulation was applied to investigate the self-assemble of poly(methyl methacrylate)–b–poly(methyl methacrylate) polyhedral oligomeric silsesquioxane (PMMA-b-PMAPOSS) Copolymer. A standard process was developed to systematic obtain the DPD potential parameters from molecular dynamics method. Finally, the DPD was performed to investigate the self-assemble of PMMA-b-PMAPOSS copolymer. In molecular dynamics simulation, the solubility and compressibility of PMMA and POSS were calculated, the results were in agreement with experiments and used to obtain the potential parameters of DPD. In DPD simulations, there were two types of coarse-grain models was constructed to represent the target material and both compare with experimental results. In first model, each MMA monomer was represented by one DPD bead and the POSS was represented by eight another beads separately. In second model, there were night MMA monomers contained in one DPD bead and the whole MMAPOSS monomer were represented by another bead. According the DPD simulation of first model, the PMMA was not shielded by POSS completely in PMAPOSS part, which inconsistent with experiments. In second model, the consistent self-assembly structure with experiments was exhibited, which indicate that the second model is more suitable for PMMA-b-PMAPOSS copolymer. Following the simulation process of this study, the DPD potential parameters were obtained successfully and the detailed process of self-assembly of PMMA-b-PMAPOSS copolymer was also investigated. This work may provide a pathway to predict the self-assemble behavior of other materials
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
圖次 viii
表次 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2聚甲基丙烯酸甲酯與多面體矽氧烷寡聚物簡介 3
1.2.1聚甲基丙烯酸甲酯(polymethylmethacrylate , PMMA) 3
1.2.2多面體矽氧烷寡聚物(Polyhedral Olgomeric Silsequioxans, POSS) 4
1.3文獻回顧 5
1.4 本文架構 8
第二章 模擬方法與理論介紹 9
2.1 分子動力學 9
2.1.1 PCFF力場 10
2.1.2週期邊界 12
2.1.3運動方程式 13
2.1.4 積分法則 14
2.1.5 系綜 15
2.1.6諾斯-胡佛恆溫法 16
2.2 耗散粒子動力學動力學 17
2.2.1 耗散粒子動力學之作用力 18
2.2.2積分法則 20
2.3 物理參數與無因次化 21
2.3.1 連接分子動力學與耗散粒子動力學 21
2.3.2無因次化 24
第三章 數值模擬方法 25
3.1 鄰近原子表列法 25
3.1.1 截斷半徑法 25
3.1.2 維理表列法 26
3.1.3 巢室表列法 27
3.1.4 維理表列法結合巢室表列法 28
3.2 模擬流程圖 29
3.2.1 NVT模擬流程圖 29
3.2.2 NRT模擬流程圖 30
3.2.3 DPD模擬流程圖 31
第四章 結果分析與討論 32
4.1 分子動粒學之模擬結果 32
4.1.1 聚甲基丙烯酸甲酯與多面體矽氧烷寡聚物之物理模型 32
4.1.2 壓縮係數之物理模型 38
4.2耗散粒子動力學結構與參數擬合 39
4.2.1 結構建立 39
4.2.2 鍵長鍵角分析 41
4.2.3 參數擬合及系統設定 46
4.3耗散粒子動力學之模擬結果 47
4.3.1 模型一結果 47
4.3.2 模型二結果 50
第五章 結論與未來展望 52
5.1 結論 52
5.2 未來展望 53
參考文獻 54
參考文獻 References
[1] C. Liang, K. Hong, G. A. Guiochon, J. W. Mays, and S. Dai, "Synthesis of a Large‐Scale Highly Ordered Porous Carbon Film by Self‐Assembly of Block Copolymers," Angewandte Chemie International Edition, vol. 43, pp. 5785-5789, 2004.
[2] A. Rösler, G. W. M. Vandermeulen, and H.-A. Klok, "Advanced drug delivery devices via self-assembly of amphiphilic block copolymers," Advanced Drug Delivery Reviews, vol. 64, Supplement, pp. 270-279, 12// 2012.
[3] V. Percec, A. E. Dulcey, V. S. K. Balagurusamy, Y. Miura, J. Smidrkal, M. Peterca, et al., "Self-assembly of amphiphilic dendritic dipeptides into helical pores," Nature, vol. 430, pp. 764-768, 08/12/print 2004.
[4] V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, et al., "Self-organization of supramolecular helical dendrimers into complex electronic materials," Nature, vol. 417, pp. 384-387, 09/26/print 2002.
[5] Z. Wang and T. J. Pinnavaia, "Hybrid Organic−Inorganic Nanocomposites:  Exfoliation of Magadiite Nanolayers in an Elastomeric Epoxy Polymer," Chemistry of Materials, vol. 10, pp. 1820-1826, 1998/07/01 1998.
[6] S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, "Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review," Progress in Polymer Science, vol. 38, pp. 1232-1261, 8// 2013.
[7] A. C. Balazs, T. Emrick, and T. P. Russell, "Nanoparticle Polymer Composites: Where Two Small Worlds Meet," Science, vol. 314, pp. 1107-1110, 2006-11-17 00:00:00 2006.
[8] S. Chol, "Enhancing thermal conductivity of fluids with nanoparticles," ASME-Publications-Fed, vol. 231, pp. 99-106, 1995.
[9] T. Von Werne and T. E. Patten, "Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerizations," Journal of the American Chemical Society, vol. 121, pp. 7409-7410, 1999.
[10] B. X. Fu, M. Y. Gelfer, B. S. Hsiao, S. Phillips, B. Viers, R. Blanski, et al., "Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules," Polymer, vol. 44, pp. 1499-1506, 3// 2003.
[11] J. Gidden, P. R. Kemper, E. Shammel, D. P. Fee, S. Anderson, and M. T. Bowers, "Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS)," International Journal of Mass Spectrometry, vol. 222, pp. 63-73, 1/1/ 2003.
[12] Y.-L. Liu and M.-H. Fangchiang, "Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures," Journal of Materials Chemistry, vol. 19, pp. 3643-3647, 2009.
[13] S.-W. Kuo and F.-C. Chang, "POSS related polymer nanocomposites," Progress in Polymer Science, vol. 36, pp. 1649-1696, 12// 2011.
[14] S. H. Phillips, T. S. Haddad, and S. J. Tomczak, "Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers," Current Opinion in Solid State and Materials Science, vol. 8, pp. 21-29, 1// 2004.
[15] K. Pielichowski, J. Njuguna, B. Janowski, and J. Pielichowski, "Polyhedral Oligomeric Silsesquioxanes (POSS)-Containing Nanohybrid Polymers," in Supramolecular Polymers Polymeric Betains Oligomers, ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 225-296.
[16] W. O. Herrmann and H. Wolfram, "Process for the preparation of polymerized vinyl alcohol and its derivatives," ed: Google Patents, 1928.
[17] K. P. J. Williams and N. J. Everall, "Use of micro Raman spectroscopy for the quantitative determination of polyethylene density using partial least-squares calibration," Journal of Raman Spectroscopy, vol. 26, pp. 427-433, 1995.
[18] M. T. Peracchia, C. Vauthier, C. Passirani, P. Couvreur, and D. Labarre, "Complement consumption by poly(ethylene glycol) in different conformations chemically coupled to poly(isobutyl 2-cyanoacrylate) nanoparticles," Life Sciences, vol. 61, pp. 749-761, 7/11/ 1997.
[19] J. Feng and C.-M. Chan, "Carbon black–filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: Electrical properties and morphology," Polymer Engineering & Science, vol. 38, pp. 1649-1657, 1998.
[20] D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, et al., "A New Class of Polymers: Starburst-Dendritic Macromolecules," Polym J, vol. 17, pp. 117-132, 01//print 1985.
[21] S. P. Nunes, A. R. Behzad, B. Hooghan, R. Sougrat, M. Karunakaran, N. Pradeep, et al., "Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly," ACS Nano, vol. 5, pp. 3516-3522, 2011/05/24 2011.
[22] L.-T. Yan, N. Popp, S.-K. Ghosh, and A. Böker, "Self-Assembly of Janus Nanoparticles in Diblock Copolymers," ACS Nano, vol. 4, pp. 913-920, 2010/02/23 2010.
[23] J. R. Spaeth, I. G. Kevrekidis, and A. Z. Panagiotopoulos, "Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly," The Journal of Chemical Physics, vol. 135, p. 184903, 2011.
[24] J. Zhang, Z.-Y. Lu, and Z.-Y. Sun, "A possible route to fabricate patchy nanoparticlesviaself-assembly of a multiblock copolymer chain in one step," Soft Matter, vol. 7, pp. 9944-9950, 2011.
[25] P. Petrus, M. Lísal, and J. K. Brennan, "Self-Assembly of Lamellar- and Cylinder-Forming Diblock Copolymers in Planar Slits: Insight from Dissipative Particle Dynamics Simulations," Langmuir, vol. 26, pp. 14680-14693, 2010/09/21 2010.
[26] M. Chen, M. Sun, and X. Liu, "Dissipative Particle Dynamics Simulations on the Self-Assembly of New Segmented Random-Block Copolymers in Selective Solvents," Journal of Dispersion Science and Technology, vol. 37, pp. 900-907, 2016/06/02 2016.
[27] J.-H. Huang, Z.-X. Fan, and M.-B. Luo, "Simulation study on the structure of rod-coil-rod triblock copolymer and nanoparticle mixture within slit," The Journal of Chemical Physics, vol. 139, p. 204904, 2013.
[28] J. Chen, C. Yu, Z. Shi, S. Yu, Z. Lu, W. Jiang, et al., "Ultrathin Alternating Copolymer Nanotubes with Readily Tunable Surface Functionalities," Angewandte Chemie International Edition, vol. 54, pp. 3621-3625, 2015.
[29] X. Li, F. Huang, T. Jiang, X. He, S. Lin, and J. Lin, "Phase behaviors of side chain liquid crystalline block copolymers," RSC Advances, vol. 5, pp. 1514-1521, 2015.
[30] Y. Zhou, C. Zhou, X. He, X. Xue, W. Qian, S. Luo, et al., "Shear-induced self-assembly of linear ABC triblock copolymers in solution: creation of 1D cylindrical micellar structures," RSC Advances, vol. 6, pp. 5711-5717, 2016.
[31] W.-J. Lee, S.-P. Ju, Y.-C. Wang, and J.-G. Chang, "Modeling of polyethylene and poly (L-lactide) polymer blends and diblock copolymer: Chain length and volume fraction effects on structural arrangement," The Journal of Chemical Physics, vol. 127, p. 064902, 2007.
[32] D.-Y. Kim, S. Kim, S.-A. Lee, Y.-E. Choi, W.-J. Yoon, S.-W. Kuo, et al., "Asymmetric Organic–Inorganic Hybrid Giant Molecule: Cyanobiphenyl Monosubstituted Polyhedral Oligomeric Silsesquioxane Nanoparticles for Vertical Alignment of Liquid Crystals," The Journal of Physical Chemistry C, vol. 118, pp. 6300-6306, 2014/03/27 2014.
[33] H.-W. Yang, J.-K. Chen, S.-W. Kuo, and A.-W. Lee, "Degradable coronas comprising polyelectrolyte complexes of PDMAEMA and gelatin for pH-triggered antibiotic release," Polymer, vol. 55, pp. 2678-2687, 5/27/ 2014.
[34] C.-C. Liu, W.-C. Chu, J.-G. Li, and S.-W. Kuo, "Mediated Competitive Hydrogen Bonding Form Mesoporous Phenolic Resins Templated by Poly(ethylene oxide-b-ε-caprolactone-b-l-lactide) Triblock Copolymers," Macromolecules, vol. 47, pp. 6389-6400, 2014/09/23 2014.
[35] Y.-S. Lu and S.-W. Kuo, "Functional groups on POSS nanoparticles influence the self-assembled structures of diblock copolymer composites," RSC Advances, vol. 4, pp. 34849-34859, 2014.
[36] J. A. Meads and F. S. Kipping, "LIV.-Organic derivatives of silicon. Part XXIII. Further experiments on the so-called siliconic acids," Journal of the Chemical Society, Transactions, vol. 107, pp. 459-468, 1915.
[37] T. S. Haddad and J. D. Lichtenhan, "Hybrid Organic−Inorganic Thermoplastics:  Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers," Macromolecules, vol. 29, pp. 7302-7304, 1996/01/01 1996.
[38] J. D. Lichtenhan, Y. A. Otonari, and M. J. Carr, "Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers," Macromolecules, vol. 28, pp. 8435-8437, 1995/11/01 1995.
[39] L. Zheng, R. M. Kasi, R. J. Farris, and E. B. Coughlin, "Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane," Journal of Polymer Science Part A: Polymer Chemistry, vol. 40, pp. 885-891, 2002.
[40] W. Zhang, B. X. Fu, Y. Seo, E. Schrag, B. Hsiao, P. T. Mather, et al., "Effect of Methyl Methacrylate/Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends," Macromolecules, vol. 35, pp. 8029-8038, 2002/10/01 2002.
[41] G. Li, L. Wang, H. Ni, and C. Pittman, Jr., "Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A Review," Journal of Inorganic and Organometallic Polymers, vol. 11, pp. 123-154, 2001/09/01 2001.
[42] N. Cioffi, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, et al., "Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties," Chemistry of Materials, vol. 17, pp. 5255-5262, 2005/10/01 2005.
[43] J. You, C.-C. Chen, L. Dou, S. Murase, H.-S. Duan, S. A. Hawks, et al., "Metal Oxide Nanoparticles as an Electron-Transport Layer in High-Performance and Stable Inverted Polymer Solar Cells," Advanced Materials, vol. 24, pp. 5267-5272, 2012.
[44] W.-H. Liao, S.-Y. Yang, S.-T. Hsiao, Y.-S. Wang, S.-M. Li, C.-C. M. Ma, et al., "Effect of Octa(aminophenyl) Polyhedral Oligomeric Silsesquioxane Functionalized Graphene Oxide on the Mechanical and Dielectric Properties of Polyimide Composites," ACS Applied Materials & Interfaces, vol. 6, pp. 15802-15812, 2014/09/24 2014.
[45] J. M. Beierle, K. Yoshimatsu, B. Chou, M. A. A. Mathews, B. K. Lesel, and K. J. Shea, "Polymer Nanoparticle Hydrogels with Autonomous Affinity Switching for the Protection of Proteins from Thermal Stress," Angewandte Chemie International Edition, vol. 53, pp. 9275-9279, 2014.
[46] A. J. Meuler, S. S. Chhatre, A. R. Nieves, J. M. Mabry, R. E. Cohen, and G. H. McKinley, "Examination of wettability and surface energy in fluorodecyl POSS/polymer blends," Soft Matter, vol. 7, pp. 10122-10134, 2011.
[47] H. W. Milliman, M. Sánchez-Soto, A. Arostegui, and D. A. Schiraldi, "Structure–property evaluation of trisilanolphenyl POSS®/polysulfone composites as a guide to POSS melt blending," Journal of Applied Polymer Science, vol. 125, pp. 2914-2919, 2012.
[48] S. Li, G. P. Simon, and J. G. Matisons, "Morphology of blends containing high concentrations of POSS nanoparticles in different polymer matrices," Polymer Engineering & Science, vol. 50, pp. 991-999, 2010.
[49] M. Salami-Kalajahi, V. Haddadi-Asl, S. Rahimi-Razin, F. Behboodi-Sadabad, M. Najafi, and H. Roghani-Mamaqani, "A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization," Journal of Polymer Research, vol. 19, pp. 1-11, 2012/02/22 2012.
[50] P. J. Flory, "Thermodynamics of High Polymer Solutions," The Journal of Chemical Physics, vol. 10, pp. 51-61, 1942.
[51] Y. C. Chen and C. H. Su.
[52] D. Mu, J.-Q. Li, and S.-Y. Feng, "MesoDyn simulation study on the phase morphologies of Miktoarm PEO-b-PMMA copolymer doped by nanoparticles," Molecular Physics, vol. 111, pp. 687-695, 2013/03/01 2012.
[53] K. Akamatsu, F. Han, Y. Kaneko, and S.-i. Nakao, "Permeation Properties of PMMA and Silica Particles through MF Membranes in Dead-End Mode," JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 44, pp. 957-962, 2011.
[54] H. Xu, L. Cheng, C. Wang, X. Ma, Y. Li, and Z. Liu, "Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery," Biomaterials, vol. 32, pp. 9364-9373, 12// 2011.
[55] N. Guo, S. A. DiBenedetto, P. Tewari, M. T. Lanagan, M. A. Ratner, and T. J. Marks, "Nanoparticle, Size, Shape, and Interfacial Effects on Leakage Current Density, Permittivity, and Breakdown Strength of Metal Oxide−Polyolefin Nanocomposites: Experiment and Theory," Chemistry of Materials, vol. 22, pp. 1567-1578, 2010/02/23 2010.
[56] D. Antonioli, S. Deregibus, G. Panzarasa, K. Sparnacci, M. Laus, L. Berti, et al., "PTFE–PMMA core–shell colloidal particles as building blocks for self-assembled opals: synthesis, properties and optical response," Polymer International, vol. 61, pp. 1294-1301, 2012.
[57] T. Hirai, M. Leolukman, T. Hayakawa, M.-a. Kakimoto, and P. Gopalan, "Hierarchical nanostructures of organosilicate nanosheets within self-organized block copolymer films," Macromolecules, vol. 41, pp. 4558-4560, 2008.
[58] J. S. Smith, D. Bedrov, and G. D. Smith, "A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite," Composites Science and Technology, vol. 63, pp. 1599-1605, 8// 2003.
[59] Z. Wang and J. Jiang, "Dissipative Particle Dynamics Simulation on Paclitaxel Loaded PEO–PPO–PEO Block Copolymer Micelles," Journal of Nanoscience and Nanotechnology, vol. 14, pp. 2644-2647, // 2014.
[60] J. Cheng, A. Vishnyakov, and A. V. Neimark, "Morphological Transformations in Polymer Brushes in Binary Mixtures: DPD Study," Langmuir, 2014.
[61] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," The Journal of Chemical Physics, vol. 18, pp. 817-829, 1950.
[62] H. Sun, "COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds," The Journal of Physical Chemistry B, vol. 102, pp. 7338-7364, 1998/09/01 1998.
[63] C.-W. Chiou, Y.-C. Lin, L. Wang, R. Maeda, T. Hayakawa, and S.-W. Kuo, "Hydrogen Bond Interactions Mediate Hierarchical Self-Assembly of POSS-Containing Block Copolymers Blended with Phenolic Resin," Macromolecules, vol. 47, pp. 8709-8721, 2014/12/23 2014.
[64] T. Milek and D. Zahn, "Molecular Simulation of Ag Nanoparticle Nucleation from Solution: Redox-Reactions Direct the Evolution of Shape and Structure," Nano Letters, vol. 14, pp. 4913-4917, 2014/08/13 2014.
[65] S. Techane, D. R. Baer, and D. G. Castner, "Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces," Analytical Chemistry, vol. 83, pp. 6704-6712, 2011/09/01 2011.
[66] Z. Fan-lin, S. Yi, Z. Yu, and L. Qing-kun, "A molecular dynamics simulation study to investigate the elastic properties of PVDF and POSS nanocomposites," Modelling and Simulation in Materials Science and Engineering, vol. 19, p. 025005, 2011.
[67] C.-W. Chiou, Y.-C. Lin, L. Wang, C. Hirano, Y. Suzuki, T. Hayakawa, et al., "Strong screening effect of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles on hydrogen bonded polymer blends," Polymers, vol. 6, pp. 926-948, 2014.
[68] P. Pi, D. Qin, J.-l. Lan, Z. Cai, X. Yuan, S.-p. Xu, et al., "Dissipative Particle Dynamics Simulation on the Nanocomposite Delivery System of Quantum Dots and Poly(styrene-b-ethylene oxide) Copolymer," Industrial & Engineering Chemistry Research, vol. 54, pp. 6123-6134, 2015/06/17 2015.
[69] H.-Y. Chang, Y.-F. Chen, Y.-J. Sheng, and H.-K. Tsao, "Blending-induced helical morphologies of confined linear triblock copolymers," Journal of the Taiwan Institute of Chemical Engineers, vol. 56, pp. 196-200, 11// 2015.
[70] H. Tan, W. Wang, C. Yu, Y. Zhou, Z. Lu, and D. Yan, "Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching," Soft Matter, vol. 11, pp. 8460-8470, 2015.
[71] C. Zhou, H. Xia, Y. Zhou, X. Xue, and S. Luo, "Dissipative particle dynamics simulations of the morphologies and dynamics of linear ABC triblock copolymers in solutions," RSC Advances, vol. 5, pp. 58024-58031, 2015.
[72] N. K. Li, W. H. Fuss, L. Tang, R. Gu, A. Chilkoti, S. Zauscher, et al., "Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles," Soft Matter, vol. 11, pp. 8236-8245, 2015.
[73] S.-P. Ju, Y.-C. Wang, G.-J. Huang, and J.-W. Chang, "Miscibility of graphene and poly(methyl methacrylate) (PMMA): molecular dynamics and dissipative particle dynamics simulations," RSC Advances, vol. 3, pp. 8298-8307, 2013.
[74] Y.-C. Wang, S.-P. Ju, H.-Z. Cheng, J.-M. Lu, and H.-H. Wang, "Modeling of Polyethylene and Functionalized CNT Composites: A Dissipative Particle Dynamics Study," The Journal of Physical Chemistry C, vol. 114, pp. 3376-3384, 2010/03/04 2010.
[75] A. T. Hagler, S. Lifson, and P. Dauber, "Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields," Journal of the American Chemical Society, vol. 101, pp. 5122-5130, 1979/08/01 1979.
[76] H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, "An ab Initio CFF93 All-Atom Force Field for Polycarbonates," Journal of the American Chemical Society, vol. 116, pp. 2978-2987, 1994/04/01 1994.
[77] A. D. Mackerell, M. Feig, and C. L. Brooks, "Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations," Journal of Computational Chemistry, vol. 25, pp. 1400-1415, 2004.
[78] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, et al., "A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules," Journal of the American Chemical Society, vol. 117, pp. 5179-5197, 1995/05/01 1995.
[79] D. C. Rapaport, The art of molecular dynamics simulation: Cambridge university press, 2004.
[80] M. P. Allen and D. J. Tildesley, Computer simulation of liquids: Oxford university press, 1989.
[81] J. Rudnick and G. Gaspari, "The aspherity of random walks," Journal of Physics A: Mathematical and General, vol. 19, p. L191, 1986.
[82] A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, et al., "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," The Journal of Physical Chemistry B, vol. 102, pp. 3586-3616, 1998/04/01 1998.
[83] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical Review A, vol. 31, pp. 1695-1697, 03/01/ 1985.
[84] P. J. Hoogerbrugge and J. M. V. A. Koelman, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics," EPL (Europhysics Letters), vol. 19, p. 155, 1992.
[85] H. Wang, Y.-T. Liu, H.-J. Qian, and Z.-Y. Lu, "Dissipative particle dynamics simulation study on complex structure transitions of vesicles formed by comb-like block copolymers," Polymer, vol. 52, pp. 2094-2101, 4/19/ 2011.
[86] Y. Wang, B. Li, Y. Zhou, Z. Lu, and D. Yan, "Dissipative particle dynamics simulation study on the mechanisms of self-assembly of large multimolecular micelles from amphiphilic dendritic multiarm copolymers," Soft Matter, vol. 9, pp. 3293-3304, 2013.
[87] T. Curk, F. J. Martinez-Veracoechea, D. Frenkel, and J. Dobnikar, "Nanoparticle Organization in Sandwiched Polymer Brushes," Nano Letters, vol. 14, pp. 2617-2622, 2014/05/14 2014.
[88] X. Liu, K. Yang, and H. Guo, "Dissipative Particle Dynamics Simulation of the Phase Behavior of T-Shaped Ternary Amphiphiles Possessing Rodlike Mesogens," The Journal of Physical Chemistry B, vol. 117, pp. 9106-9120, 2013/08/01 2013.
[89] O. A. Guskova and C. Seidel, "Mesoscopic Simulations of Morphological Transitions of Stimuli-Responsive Diblock Copolymer Brushes," Macromolecules, vol. 44, pp. 671-682, 2011/02/08 2011.
[90] Z. Posel, P. Posocco, M. Fermeglia, M. Lisal, and S. Pricl, "Modeling hierarchically structured nanoparticle/diblock copolymer systems," Soft Matter, vol. 9, pp. 2936-2946, 2013.
[91] Z. Rao, X. You, Y. Huo, and X. Liu, "Dissipative particle dynamics study of nano-encapsulated thermal energy storage phase change material," RSC Advances, vol. 4, pp. 39552-39557, 2014.
[92] J. Yang, X. Zhang, P. Gao, X. Gong, and G. Wang, "Molecular dynamics and dissipative particle dynamics simulations of the miscibility and mechanical properties of GAP/DIANP blending systems," RSC Advances, vol. 4, pp. 41934-41941, 2014.
[93] W. J. Lin, S. Y. Nie, Q. Chen, Y. Qian, X. F. Wen, and L. J. Zhang, "Structure–property relationship of pH-sensitive (PCL)2(PDEA-b-PPEGMA)2 micelles: Experiment and DPD simulation," AIChE Journal, vol. 60, pp. 3634-3646, 2014.
[94] S.-P. Ju, Y.-C. Wang, and W.-J. Lee, "Dissipative Particles Dynamics Model for Polymer Nanocomposites," in Modeling and Prediction of Polymer Nanocomposite Properties, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 215-235.
[95] R. D. Groot and P. B. Warren, "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation," Journal of Chemical Physics, vol. 107, p. 4423, 1997.
[96] F. Murnaghan, "The compressibility of media under extreme pressures," Proceedings of the National Academy of Sciences, vol. 30, pp. 244-247, 1944.
[97] M. L. Huggins, "Solutions of Long Chain Compounds," The Journal of Chemical Physics, vol. 9, pp. 440-440, 1941.
[98] S. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics," Journal of Computational Physics, vol. 117, pp. 1-19, 3/1/ 1995.
[99] C. J. van Oss and R. J. Good, "Surface Tension and the Solubility of Polymers and Biopolymers: The Role of Polar and Apolar Interfacial Free Energies," Journal of Macromolecular Science: Part A - Chemistry, vol. 26, pp. 1183-1203, 1989/08/01 1989.
[100] H. W. Milliman, D. Boris, and D. A. Schiraldi, "Experimental determination of hansen solubility parameters for select POSS and polymer compounds as a guide to POSS–polymer interaction potentials," Macromolecules, vol. 45, pp. 1931-1936, 2012.
[101] B. P. Shtarkman, I. M. Monich, S. A. Arzhakov, and N. Y. Averbakh, "The isothermal compressibility of polymethylmethacrylate in various physical states," Polymer Science U.S.S.R., vol. 18, pp. 1203-1209, 1976/01/01 1976.
[102] E. R. Chan, A. Striolo, C. McCabe, P. T. Cummings, and S. C. Glotzer, "Coarse-grained force field for simulating polymer-tethered silsesquioxane self-assembly in solution," The Journal of Chemical Physics, vol. 127, p. 114102, 2007.
[103] A. Chai, D. Zhang, Y. Jiang, L. He, and L. Zhang, "Ordered structures of diblock nanorods induced by diblock copolymers," The Journal of Chemical Physics, vol. 139, p. 104901, 2013.
[104] L. He, Z. Chen, R. Zhang, L. Zhang, and Z. Jiang, "Self-assembly of cyclic rod-coil diblock copolymers," The Journal of Chemical Physics, vol. 138, p. 094907, 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code