Responsive image
博碩士論文 etd-0314105-155909 詳細資訊
Title page for etd-0314105-155909
論文名稱
Title
雷射模組構裝之光纖偏移量測與補償研究
A Study of Fiber Alignment Shift Measurement and Compensation in Laser Module Packages
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
157
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-03-12
繳交日期
Date of Submission
2005-03-14
關鍵字
Keywords
構裝、補償、量測、光纖偏移、雷射模組
Laser module package, Fiber alignment shift
統計
Statistics
本論文已被瀏覽 5622 次,被下載 0
The thesis/dissertation has been browsed 5622 times, has been downloaded 0 times.
中文摘要
本研究利用實驗與數值方法探討雷射銲接構裝圓柱式雷射模組因銲後位移(Post-weld-shift, PWS)所造成光纖對準偏移。圓柱式雷射模組構裝銲後位移造成光纖對準偏移可利用20nm超高精度雷射測位儀(Ultra high precision laser displacement meter, LDM)來量化量測大小與方向,其四組量化幾何參數:橫向位移(r)、橫向位移位置角(α)、傾斜角(Ψ)與擺角(θ)。雷射模組在銲接前、銲接後、補償後所量測到主要量化幾何參數:橫向位移(r)與橫向位移位置角(α),是互相印證的,即耦光功率變化量較大者,其幾何參數變化量較大。利用光纖偏移主要幾何參數之反方向,即銲後位移補銲補償技術可成功將偏移光纖拉回接近最佳耦光位置,因此本研究圓柱式雷射模組構裝因銲後位移而損失的耦光功率由95%∼68%,被補償而恢復到97%∼84%,其八組雷射模組耦光效率增加量為2%∼16%。與先前其他國外實驗室的定性銲後位移補償技術研究比較,本研究LDM量測技術提供銲後位移量化量測與補償技術。
利用熱彈塑耦合有限元素法(Finite-element method, FEM)數值計算來模擬圓柱式雷射模組因銲後位移造成的光纖對準偏移,銲後位移造成光纖對準偏移主要參數橫向位移(r)與橫向位移位置角(α)的模擬結果與實驗結果甚為吻合,即針對橫向位移與橫向位移位置角補償可將光纖偏移拉回接近最佳耦光位置。因此本研究結合實驗與數值模擬結果,已經成功研發一套重要雷射模組構裝製造技術,使得高可靠度、高性能應用在低成本的光纖通訊系統的圓柱式雷射模組的製造可以實現。
本研究同時建立一套高倍數影像擷取系統(High-magnification camera with image capturing system, HMCICS),來量測與補償高性能蝶式雷射模組因銲後位移造成的光纖對準偏移。實驗結果顯示在蝶式雷射模組中,銲後位移造成光纖對準偏移的方向與大小可以量化量測與補償。蝶式雷射模組在銲接後、銲後位移補償後量測到的耦光功率與相對應銲後位移造成光纖對準偏移的平移參數x, y, z與旋轉參數θx, θy互相印證。利用y方向光纖偏移的反方向與二倍偏移最大值在5μm以內的銲後位移補償技術可以成功將光纖拉回靠近最佳耦光位置,因此由於銲後位移而損失的耦光功率從63%∼79%之間,經補償而恢復到69%∼89%,其八組雷射模組耦光效率增量為3%∼10%。與先前其他國外實驗室的定性銲後位移補償技術研究比較,本研究HMCICS量測技術提供銲後位移量化量測與補償技術。因此利用HMCICS實驗結果,已經成功研發一套重要構裝製造技術,使得高可靠度、高性能、應用在高性能光纖通訊系統的蝶式雷射模組的生產技術更成熟。
本研究利用超高精度雷射測位儀(LDM)與高倍數影像擷取系統(HMCICS)實驗與數值模擬結果,已經成功研發高良率雷射模組構裝,使高可靠度、高性能及低成本應用於光纖通訊傳輸系統的圓柱式與蝶式雷射模組的製造可以實現。
Abstract
The fiber alignment shifts induced by the post-weld-shift (PWS) in laser-welded TO(Transistor outline)-Can type laser module packages is studied experimentally and numerically. The PWS induced fiber alignment shifts were quantitatively determined by four geometrical parameters: the lateral shift(r), the position angle(α), the tilt angle(Ψ), and the swing angle(θ). The measured coupling powers in laser module packages before welding, after welding, and after a compensation clearly confirmed with the measured fiber alignment shifts determined by the dominant parameters of the r and α that the fiber shifts due to the PWS could be realigned back closer to their original optimum position after applying a welding compensation, and hence the coupling powers loss due to the PWS could be regained. The measured coupling efficiency after laser welding was from 68% to 95%, and the overall coupling efficiency after the PWS compensation was from 77% to 97%. The increased coupling efficiency after this PWS compensation was from 2% to16%. A coupled thermal-elasto-plasticity model of finite-element method (FEM) analysis was performed to evaluate the effects of PWS on fiber alignment shifts in laser module packages. The measured fiber alignment shifts determined by the dominant parameters of the r and α were in good agreement with the numerical calculation of the FEM analysis. In this study, the combination of the experimental and numerical results have significantly provided a practical design guideline for fabricating reliable laser-welded TO-Can type laser module packages with a high yield and high performance for use in low-cost lightwave transmission systems.
A novel measurement and compensation technique employing a high-magnification camera with image capturing system (HMCICS) to probe the post-weld-shift (PWS) induced fiber alignment shifts in high-performance butterfly-type laser module packages is investigated. The results show that the direction and magnitude of the fiber alignment shifts induced by the PWS in laser-welded butterfly-type laser module packaging can be quantitatively determined and then compensated. The measured coupling powers in laser module packages after welding and compensation clearly confirmed the measured fiber alignment shifts determined by the translational and rotational parameters that the fiber shifts due to the PWS could be realigned back closer to their original optimum position after applying a welding compensation, and hence the coupling powers loss due to the PWS could be regained. The measured coupling efficiency after laser welding was from 63% to 79%, and the overall coupling efficiency after the PWS compensation was from 69% to 89%. The increased coupling efficiency after this PWS compensation was from 3% to 10%. In comparison with previous studies of the PWS compensation by a qualitatively estimated technique in butterfly-type laser module packages, this novel HMCICS technique has significantly provided an important tool for quantitative measurement and compensation to the effect of the PWS on the fiber alignment shifts in laser module packages. Therefore, the reliable butterfly-type laser modules with a high yield and a high performance used in lightwave transmission systems can be developed and fabricated.
目次 Table of Contents
目 錄
中文摘要
英文摘要
目錄
表目錄
圖目錄
頁次
第一章 緒論---------------------------------------------------------------- 1
1-1 前言---------------------------------------------------------------- 1
1-2 研究動機---------------------------------------------------------- 1
1-3 研究目標與章節介紹------------------------------------------- 3
1-4 參考文獻---------------------------------------------------------- 4

第二章 雷射模組銲點及耦光效率之研究---------------------------- 10
2-1 前言---------------------------------------------------------------- 10
2-2 銲點與材料之研究---------------------------------------------- 10
2-3 耦光功率的模擬------------------------------------------------- 16
2-4 參考文獻---------------------------------------------------------- 19

第三章 圓柱式雷射模組銲後位移量測與補償之研究------------- 28
3-1 圓柱式雷射模組簡介------------------------------------------- 28
3-2 圓柱式雷射模組成、構裝及量測---------------------------- 30
3-3 銲後位移之定位、量測及結果------------------------------- 36
3-4 銲後位移補償研究---------------------------------------------- 43
3-5 小結---------------------------------------------------------------- 47
3-6 參考文獻---------------------------------------------------------- 48

第四章 圓柱式雷射模組有限元素法之模擬------------------------- 66
4-1 有限元素法軟體MARC、MENTAT簡介------------------ 66
4-2 有限元素分析---------------------------------------------------- 68
4-3 有限元素模型與數值計算------------------------------------- 71
4-4 小結---------------------------------------------------------------- 76
4-5 參考文獻---------------------------------------------------------- 78
頁次
第五章 蝶式雷射模組之馬鞍夾與金屬套管設計-------------------- 84
5-1 前言----------------------------------------------------------------- 84
5-2 兩種形式馬鞍夾的銲後位移實驗結果----------------------- 85
5-3 實驗結果分析----------------------------------------------------- 87
5-4 金相分析結果----------------------------------------------------- 88
5-5 小結----------------------------------------------------------------- 88

第六章 蝶式雷射模組銲後位移量測與補償之研究----------------- 99
6-1 蝶式雷射模組簡介----------------------------------------------- 99
6-2 蝶式雷射模組組成、構裝及量測----------------------------- 101
6-3 銲後位移之定位、量測與補償-------------------------------- 110
6-4 銲後位移量測及補償研究-------------------------------------- 115
6-5 小結----------------------------------------------------------------- 118
6-6 參考文獻----------------------------------------------------------- 120

第七章 結論----------------------------------------------------------------- 135

作者著作----------------------------------------------------------------------- 138
作者簡介----------------------------------------------------------------------- 141
參考文獻 References
1. Y. Lin, W. Liu, and F. G. Shi, “Laser Welding Induced Alignment Distortion in Butterfly Laser Module Packages: Effect of Welding Sequence,” IEEE Transactions on Advanced Packaging, Vol. 25, No. 1, pp. 73-78, 2002.
2. J.H. kuang, M.T. Sheen, S.C. Wang, G.L. Wang, and W.H. Cheng, “Post-Weld-Shift in Dual-in-line Laser Package,” IEEE Transactions on Advanced Packaging, Vol.25 , No. 1, pp. 81-85, 2001.
3. M. W. Park, J. R. Kim, S. Park, J. S. Lee, H. I. Kim, A. G. Choo, T. I. Kim, “Lens less Semiconductor Optical Amplifier (SOA) Modules Using Laser Welding Techniques”, IEEE Electronic Components and Technology Conference, pp.733-735, 2000.
4. S. Jang, “Automation Manufacturing Systems Technology for Optoelectronic Device Packaging”, IEEE Electronic Components and Technology Conference, pp.10-14, 2000.
5. P. Mueller, B. Valk, “Automated Fiber Attachment for 980nm Pump Modules”, IEEE Electronic Components and Technology Conference, pp.5-9, 2000.
6. S. G. Kang, M. K. Song, S. S. Park, S. H. Lee, N. Hwang, H. T. Lee, K. R. Oh, G. C. Joo, and D. Lee, “Fabrication of Semiconductor Optical Switch Module Using Laser Welding Technique”, IEEE Electronic Components and Technology Conference, pp.672-680, 2000.
7. J.H. kuang, M.T. Sheen, S.C. Wang, and W.H. Cheng., “Crack Formation Mechanism in Laser Welded Au-coated materials for Semiconductor Laser Packages” , IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 22, No.1, pp 94-100, 1999.
8. J. H. Lau, Y. H. Pao, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies”, New York : McGrew-Hill, 1997.
9. M. K. Song, S. G. Kang, N. Hwang, H. T. Lee, S. S. Park, and K. E. Pyum, “Laser Weldability Analysis of High-Speed Optical Transmission Device Packaging”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol.19, No.4, pp.758-763, November, 1996.
10. S. Jang, “Packaging of Photonic Devices Using Laser Welding”, SPIE, Laser Diode Chip and Packaging Technology, Vol. 2610 ,pp.138-149, October, 1995.
11. B. Valk, R. Battig, O. Anthamatten, “Laser Welding for Fiber Pigtailing with Long-term Stability and Submicron Accuracy”, Optical Engineering ,Vol. 34, No.9, pp.2675-2682, September, 1995.
12. W. H. Cheng, W. H. Wang, and Y. M. Huang, “Failure Mechanism of Hole Formation in Laser Welding Technique For optoelectronic Packaging”, IEEE Electronic Components and Technology Conference, pp.914- 916, 1995.
13. N. Kalonji, J. Tanniou and M. Foucher, “Packaging Technology for Wide Bandwidth High Optical Coupling Pigtailed Optoelectronic Modules”, IEEE Electronic Components and Technology Conference, pp.777- 779, 1995.
14. Y.Oikawa, H.Kuwatsuka, T. Yamamoto, T. Ihara, H. Hamano, T. Minami, “Packaging Technology for 10-Gb/s Photoreceiver Module” Journal of Lightwave Technology, Vol 12, No. 2, February, 1994.
15. 鄭木海, 沈茂田, 章鴻倫, 王中庸,“元件封裝技術”, 光電半導體技術手冊, 第十ㄧ章, 2002.10.
16. 鄭木海博士, “雷射二極體構裝技術之近況與趨勢”, 光訊, 第69期, 1997.12.
17. 黃韋凱,“2.5-10Gb/s高速蝶式半導體雷射模組銲後位移之研究”, 中山大學光電工程所碩士論文, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.162.247
論文開放下載的時間是 校外不公開

Your IP address is 3.17.162.247
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code