Responsive image
博碩士論文 etd-0314116-101517 詳細資訊
Title page for etd-0314116-101517
論文名稱
Title
以紋藤壺腺介幼生探討天然化合物及其衍生物 之抗污損潛力
Antifouling activity of natural compounds and their derivatives against barnacle (Amphibalanus amphitrite) cypris larvae
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-31
繳交日期
Date of Submission
2016-06-24
關鍵字
Keywords
藤壺、抗汙損活性、腺介幼生、天然化合物、汙損生物
antifouling activity, cypris larvae, fouling organism, barnacle, natural compounds
統計
Statistics
本論文已被瀏覽 5719 次,被下載 0
The thesis/dissertation has been browsed 5719 times, has been downloaded 0 times.
中文摘要
全世界海洋中皆存在生物污損 (biofouling) 的問題,舉凡會附著在人工結構上及造成經濟上損失的海洋生物皆稱為污損生物 (fouling organsim)。本研究以廣泛分佈的污損生物紋藤壺 (Amphibalanus amphitrite) 為目標物種,從超過一百多種的天然化合物及衍生物中篩選具有抗汙損潛力者。實驗分成三個階段:(ㄧ)初步活性篩選:先將所有天然化合物及衍生物的濃度統一稀釋至10 ppm或20 ppm,記錄48小時內紋藤壺腺介時期幼生的附著狀況;(二)抗汙損活性化合物試驗:將初步活性篩選中具有抑制腺介幼生附著效果的化合物進行1~100 ppm的三重複試驗,推算半數有效濃度 (EC50)、半數致死濃度 (LC50) 及治療比 (TR);(三)野外掛板試驗:將有效抗汙損化合物與防鏽船用漆混合,塗板後放置野外觀察實際附著情況。經過初步篩選各化合物抑制紋藤壺幼生附著之功效後,發現純化合物S28為最具有抗附著活性潛力之天然化合物。純化合物S28的EC50為8.824 ppm,LC50為101.080 ppm,TR為11.454,符合國際對抗汙損化合物的評判標準。S28抗汙損生物附著所需之濃度相當低,其高治療比顯示對生物的毒性亦相當低,因此可視為未來發展抗汙損塗漆之潛力天然化合物。
Abstract
Biofouling is a serious global issue of our oceans. Marine fouling organisms can attach on immersed artifical surfaces thus thus cause economic loss. This study utilized the major fouling barnacle species Amphibalanus amphitrite to test anti-fouling activities of more than one hundred natural compounds, including crude extracts, pure compounds and the derivatives isolated from marine organisms. There are more than one hundred natural compounds isolated from marine organisms and the derivatives were screened. There are three steps in our experiments: (1) Preliminary test: we prepared all natural compounds and the derivatives at the concertation of 10 ppm or 20 ppm and recorded the settlement condition of barnacle cypris larvae for 48 hours. (2) Antifouling activity test: we tested antifouling activities of potential compounds from step 1 at concentrations from 1-100 ppm. Then we estimated half maximal effective concentration (EC50), half lethal concentration (LC50) and therapeutic ratio (TR) of each compound. (3) Field test: we mixed the candidate compound with marine paint, then observed actual effect of the antifouling paint in the field. Our results showed that the pure compound S28 has high antifouling activity. The EC50 of S28 is 8.824 ppm, LC50 is 101.080 ppm and the therapeutic ratio (TR) is 11.454. These results suggested S28 is effective and has low toxicity. In conclusion, S28 has great potential for future development of antifouling paint.
目次 Table of Contents
論文審定書……………………………………………………………………………i
謝辭……………………………………………………………………………………ii
中文摘要………………………………………………………………………………iii
英文摘要………………………………………………………………………………iv
目錄……………………………………………………………………………………v
圖次……………………………………………………………………………………vi
表次……………………………………………………………………………………vii
壹、前言
第一節、 生物汙損…………………………………………………………1
第二節、 汙損生物紋藤壺…………………………………………………6
第三節、 抗汙損化合物對紋藤壺附著之文獻回顧………………………9
貳、材料與方法
第一節、 採樣地點及方法…………………………………………………10
第二節、 餌料生物培養……………………………………………………12
第三節、 紋藤壺飼養………………………………………………………13
第四節、 天然化合物及其衍生物抗汙損活性試驗………………………15
第五節、 野外掛板試驗……………………………………………………17
第六節、 數據分析…………………………………………………………18
參、結果
第一節、 餌料生物培養……………………………………………………19
第二節、 紋藤壺飼養………………………………………………………20
第三節、 天然化合物及衍生物之抗汙損活性……………………………22
第四節、 半數有效濃度及半數致死濃度…………………………………23
第五節、 野外掛板試驗……………………………………………………24
肆、 討論
第一節、 以紋藤壺腺介幼生測試天然化合物及衍生物抗汙損潛力之最適實驗條件…………………………………………………………29
第二節、 具抗汙損潛力之天然化合物S28………………………………34
第三節、 未來研究方向……………………………………………………37
參考文獻………………………………………………………………………………38
附錄一、2003~2014年所發表的抗汙損化合物之有效濃度………………………84
附錄二、所有粗萃物列表……………………………………………………………86
附錄三、所有純化合物及衍生物列表………………………………………………88
附錄四、初篩抗附著粗萃物之幼生沉降狀況………………………………………92
附錄五、初篩抗附著純化合物之幼生沉降狀況…………………………………102
參考文獻 References
1. 陳國勤、李坤瑄(2007)。臺灣的藤壺-生物多樣性與生態。國立自然科學博物館。
2. 蘇惠美(1999)。餌料生物之培養與利用。台灣水產試驗所。
3. 陳秉弘(2006)。影響白脊藤壺(Balanusal bicostatus)成長與附著之因子探討。國立中山大學海洋生物科技技資源學系,高雄市。
4. Abarzua, S., & Jakubowski, S. (1995). Biotechnological investigation for the prevention of biofouling. 1. Biological and biochemical principles for the prevention of biofouling. Marine ecology progress series. Oldendorf, 123(1), 301-312.
5. Angarano, M. B., McMahon, R. F., Hawkins, D. L., & Schetz, J. A. (2007). Exploration of structure-antifouling relationships of capsaicin-like compounds that inhibit zebra mussel (Dreissena polymorpha) macrofouling. Biofouling, 23(5), 295-305.
6. Anil, A. C., Desai, D., & Khandeparker, L. (2001). Larval development and metamorphosis in Balanus amphitrite Darwin (Cirripedia; Thoracica): significance of food concentration, temperature and nucleic acids. Journal of Experimental Marine Biology and Ecology, 263(2), 125-141.
7. Armstrong, E., Boyd, K. G., & Burgess, J. G. (2000). Prevention of marine biofouling using natural compounds from marine organisms. Biotechnology annual review, 6, 221-241.
8. Barnett, B., & Crisp, D. (1979). Laboratory studies of gregarious settlement in Balanus balanoides and Elminius modestus in relation to competition between these species. Journal of the Marine Biological Association of the United Kingdom, 59(03), 581-590.
9. Berk, S. G., Mitchell, R., Bobbie, R. J., Nickels, J. S., & White, D. C. (2001). Microfouling on metal surfaces exposed to seawater. International Biodeterioration & Biodegradation, 48(1), 167-175.
10. Bettin, C., Oehlmann, J., & Stroben, E. (1996). TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level. Helgoländer Meeresuntersuchungen, 50(3), 299-317.
11. Bhadury, P., & Wright, P. C. (2004). Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta, 219(4), 561-578.
12. Cahill, P. L., Heasman, K., Jeffs, A., & Kuhajek, J. (2013). Laboratory assessment of the antifouling potential of a soluble-matrix paint laced with the natural compound polygodial. Biofouling, 29(8), 967-975.
13. Cardwell, R. D., Brancato, M. S., Toll, J., Deforest, D., & Tear, L. (1999). Aquatic ecological risks posed by tributyltin in united states surface waters: Pre‐1989 to 1996 data. Environmental toxicology and chemistry, 18(3), 567-577.
14. Clare, A., & Aldred, N. (2009). Surface colonisation by marine organisms and its impact on antifouling research. Advances in marine antifouling coatings and technologies. Oxford: Woodhead Publishing, 46-79.
15. Clare, A. S., & Høeg, J. T. (2008). Balanus amphitrite or Amphibalanus amphitrite? A note on barnacle nomenclature. Biofouling, 24(1), 55-57.
16. Clare, A. S., Rittschof, D., Gerhart, D. J., Hooper, I. R., & Bonaventura, J. (1999). Antisettlement and narcotic action of analogues of diterpene marine natural product antifoulants from octocorals. Marine Biotechnology, 1(5), 427-436.
17. Clare, A. S. (1996). Marine natural product antifoulants: status and potential. Biofouling, 9(3), 211-229.
18. Clare, A., Thomas, R., & Rittschof, D. (1995). Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. Journal of Experimental Biology, 198(3), 655-664.
19. Clare, A., Rittschof, D., Gerhart, D., & Maki, J. (1992). Molecular approaches to nontoxic antifouling. Invertebrate Reproduction & Development, 22(1-3), 67-76.
20. Crommentuijn, T., Sijm, D., De Bruijn, J., Van Leeuwen, K., & Van de Plassche, E. (2000). Maximum permissible and negligible concentrations for some organic substances and pesticides. Journal of Environmental Management, 58(4), 297-312.
21. Culioli, G., Ortalo-Magné, A., Valls, R., Hellio, C., Clare, A. S., & Piovetti, L. (2008). Antifouling activity of meroditerpenoids from the marine brown alga Halidrys siliquosa. Journal of natural products, 71(7), 1121-1126.
22. Dahms, H.U., Dobretsov, S., & Qian, P.Y. (2004). The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina. Journal of Experimental Marine Biology and Ecology, 313(1), 191-209.
23. Davis, A. R., Targett, N. M., McConnell, O. J., & Young, C. M. (1989). Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In Bioorganic marine chemistry (pp. 85-114). Springer Berlin Heidelberg.
24. De Nys, R., & Guenther, J. (2009). The impact and control of biofouling in marine finfish aquaculture (pp. 177-221). Woodshead Publishing: Cambridge, UK.
25. De Nys, R., Steinberg, P., Willemsen, P., Dworjanyn, S., Gabelish, C., & King, R. (1995). Broad spectrum effects of secondary metabolites from the red alga Delisea pulchra in antifouling assays. Biofouling, 8(4), 259-271.
26. Desai, D. V., Anil, A., & Venkat, K. (2006). Reproduction in Balanus amphitrite Darwin (Cirripedia: Thoracica): influence of temperature and food concentration. Marine Biology, 149(6), 1431-1441.
27. Dworjanyn, S., De Nys, R., & Steinberg, P. (2006). Chemically mediated antifouling in the red alga Delisea pulchra. Marine Ecology Progress Series, 318, 153-163.
28. El-Komi, M., & Kajihara, T. (1991). Breeding and moulting of barnacles under rearing conditions. Marine Biology, 108(1), 83-89.
29. Ellis, D. W., & Wier, J. (1996). Net Loss: The salmon netcage industry in British Columbia. A report to the David Suzuki Foundation.
30. Evans, C. J. (1998). Industrial uses of tin chemicals. In Chemistry of Tin (pp. 442-479). Springer Netherlands.
31. Faimali, M., Sepcic, K., Turk, T., & Geraci, S. (2003). Non-toxic antifouling activity of polymeric 3-alkylpyridinium salts from the Mediterranean sponge Reniera sarai (Pulitzer-Finali). Biofouling, 19(1), 47-56.
32. Feng, D., Ke, C., Lu, C., & Li, S. (2009). Herbal plants as a promising source of natural antifoulants: evidence from barnacle settlement inhibition. Biofouling, 25(3), 181-190.
33. Fusetani, N., & Clare, A. S. (2006). Antifouling Compounds (Progress in molecular and subcellular biology (42).
34. Fusetani, N. (2004). Biofouling and antifouling. Natural Product Reports, 21(1), 94-104.
35. Ghisalberti, E. L., & Sivasithamparam, K. (1991). Antifungal antibiotics produced by Trichoderma spp. Soil Biology and Biochemistry, 23(11), 1011-1020.
36. Gibbs, P. E., Bryan, G., Pascoe, P., & Burt, G. (1987). The use of the dog-whelk, Nucella lapillus, as an indicator of tributyltin (TBT) contamination. Journal of the Marine Biological Association of the United Kingdom, 67(03), 507-523.
37. Gittings, S. R. (1985). Notes on barnacles (Cirripedia: Thoracica) from the Gulf of Mexico. Gulf and Caribbean Research, 8(1), 35-41.
38. Gohad, N. V., Aldred, N., Hartshorn, C. M., Lee, Y. J., Cicerone, M. T., Orihuela, B., ... & Mount, A. S. (2014). Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nature communications, 5.
39. Harrison, P. J. H., & Sandeman, D. C. (1999). Morphology of the nervous system of the barnacle cypris larva (Balanus amphitrite Darwin) revealed by light and electron microscopy. Biological Bulletin, 197(2), 144-158.
40. Head, R., Overbeke, K., Klijnstra, J., Biersteker, R., & Thomason, J. (2003). The effect of gregariousness in cyprid settlement assays. Biofouling, 19(4), 269-278.
41. Hellio, C., Tsoukatou, M., Marechal, J.-P., Aldred, N., Beaupoil, C., Clare, A. S., Roussis, V. (2005). Inhibitory effects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle Balanus amphitrite. Marine Biotechnology, 7(4), 297-305.
42. Henry, D. P., & McLaughlin, P. A. (1975). The barnacles of the Balanus amphitrite complex (Cirripedia, Thoracica). Zoologische verhandelingen, 141(1), 1-254.
43. Hertiani, T. (2007). Isolation and structure elucidation of bioactive secondary metabolites from indonesian marine sponges. Dusseldorf: Cuvillier Verlag, 344.
44. Hunt, H. L., & Scheibling, R. E. (1997). Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Marine Ecology Progress Series, 155, 269-301.
45. Hyodo, S., Etoh, H., Yamashita, N., Sakata, K., & Ina, K. (1992). Structure of resinosides from Eucalyptus resinifera as repellents against the blue mussel, Mytilus edulis. Bioscience, biotechnology, and biochemistry, 56(1), 138-138.
46. Jensen, P., Jenkins, K., Porter, D., & Fenical, W. (1998). Evidence that a New Antibiotic Flavone Glycoside Chemically Defends the Sea Grass Thalassia testudinumagainst Zoosporic Fungi. Applied and environmental microbiology, 64(4), 1490-1496.
47. Khandeparker, L., Anil, A. C., & Raghukumar, S. (2006). Relevance of biofilm bacteria in modulating the larval metamorphosis of Balanus amphitrite. FEMS microbiology ecology, 58(3), 425-438.
48. Koryakova, M. D., & Korn, O. M. (1993). Use of barnacle larvae to test the toxicity of some antifouling coatings. Biologiya morya-Marine biology. Vladivostok, (3), 106-113.
49. Maki, J., Yule, A., Rittschof, D., & Mitchell, R. (1994). The effect of bacterial films on the temporary adhesion and permanent fixation of cypris larvae, Balanus amphitrite Darwin. Biofouling, 8(2), 121-131.
50. Manning, C., Lytle, T., Walker, W., & Lytle, J. (1999). Life-cycle toxicity of bis (tributyltin) oxide to the sheepshead minnow (Cyprinodon variegatus). Archives of environmental contamination and toxicology, 37(2), 258-266.
51. Maréchal, J. P., & Hellio, C. (2011). Antifouling activity against barnacle cypris larvae: do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides)? International Biodeterioration & Biodegradation, 65(1), 92-101.
52. Martin, R. C., Dixon, D. G., Maguire, R. J., Hodson, P. V., & Tkacz, R. J. (1989). Acute toxicity, uptake, depuration and tissue distribution of tri-n-butyltin in rainbow trout, Salmo gairdneri. Aquatic toxicology, 15(1), 37-51.
53. Maximilien, R., de Nys, R., Holmström, C., Gram, L., Givskov, M. C., Crass, K., Steinberg, P. (1998). Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquatic Microbial Ecology, 15(3), 233-246.
54. McCaffrey, E., & Endean, R. (1985). Antimicrobial activity of tropical and subtropical sponges. Marine Biology, 89(1), 1-8.
55. Nasrolahi, A., Sari, A., Saifabadi, S., & Malek, M. (2007). Effects of algal diet on larval survival and growth of the barnacle Amphibalanus (= Balanus) improvisus. Journal of the Marine Biological Association of the United Kingdom, 87(05), 1227-1233.
56. Okino, T., Yoshimura, E., Hirota, H., & Fusetani, N. (1996). New antifouling kalihipyrans from the marine sponge Acanthella cavernosa. Journal of Natural Products, 59(11), 1081-1083.
57. Omae, I. (2003). Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry, 17(2), 81-105.
58. Ortlepp, S., Sjögren, M., Dahlström, M., Weber, H., Ebel, R., Edrada, R., Proksch, P. (2007). Antifouling activity of bromotyrosine-derived sponge metabolites and synthetic analogues. Marine Biotechnology, 9(6), 776-785.
59. Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4360-4365.
60. Pent, K., & Hunn, J. (1995). Organotins in freshwater harbors and rivers: temporal distribution, annual trends and fate. Environmental Toxicology and Chemistry, 14(7), 1123-1132.
61. Pérez, M., García, M., Blustein, G., & Stupak, M. (2007). Tannin and tannate from the quebracho tree: an eco-friendly alternative for controlling marine biofouling. Biofouling, 23(3), 151-159.
62. Pérez, M., Blustein, G., García, M., del Amo, B., & Stupak, M. (2006). Cupric tannate: a low copper content antifouling pigment. Progress in Organic Coatings, 55(4), 311-315.
63. Piazza, V., Dragic, I., Sepcic, K., Faimali, M., Garaventa, F., Turk, T., & Berne, S. (2014). Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model. Marine Drugs, 12(4), 1959-1976.
64. Pyefinch, K., & MOTT, J. C. (1948). The sensitivity of barnacles and their larvae to copper and mercury. Journal of Experimental Biology, 25(3), 276-298.
65. Qi, S., Zhang, S., Yang, L., & Qian, P. (2008). Antifouling and antibacterial compounds from the gorgonians Subergorgia suberosa and Scripearia gracillis. Natural Product Research, 22(2), 154-166.
66. Qian, P.-Y., Li, Z., Xu, Y., Li, Y., & Fusetani, N. (2015). Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009–2014. Biofouling, 31(1), 101-122.
67. Qian, P. Y., Xu, Y., & Fusetani, N. (2009). Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 26(2), 223-234.
68. Qian, P. Y., Thiyagarajan, V., Lau, S. C. K., & Cheung, S. C. K. (2003). Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquatic Microbial Ecology, 33(3), 225-237.
69. Qiu, J. W., Hung, O. S., & Qian, P. Y. (2008). An improved barnacle attachment inhibition assay. Biofouling, 24(4), 259-266.
70. Raimondi, P. T. (1988). Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology, 69(2), 400-407.
71. Mol, V. L., Raveendran, T. V., & Parameswaran, P. S. (2009). Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). International Biodeterioration & Biodegradation, 63(1), 67-72.
72. Ribeiro, S., Rogers, R., Rubem, A., Da Gama, B., Muricy, G., & Pereira, R. (2013). Antifouling activity of twelve demosponges from Brazil. Brazilian Journal of Biology, 73(3), 501-506.
73. Rittschof, D. (2000). Natural product antifoulants: one perspective on the challenges related to coatings development. Biofouling, 15(1-3), 119-127.
74. Rittschof, D., Sasikumar, N., Murlless, D., Clare, A., Gerhart, D., Bonaventura, J., Fingerman, M. (1994). Mixture interactions of lactones and furans and a commercial biocide: toxicity and antibarnacle settlement activity. Recent developments in biofouling control. Balkema, Rotterdam, 269-274.
75. Rittschof, D., Clare, A., Gerhart, D., Mary, S. A., & Bonaventura, J. (1992). Barnacle in vitro assays for biologically active substances: toxicity and settlement inhibition assays using mass cultured Balanus amphitrite amphitrite Darwin. Biofouling, 6(2), 115-122.
76. Rittschof, D., Hooper, I., Branscomb, E., & Costlow, J. (1985). Inhibition of barnacle settlement and behavior by natural products from whip corals, Leptogorgia virgulata (Lamarck, 1815). Journal of Chemical Ecology, 11(5), 551-563.
77. Rittschof, D., Branscomb, E. S., & Costlow, J. D. (1984). Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. Journal of Experimental Marine Biology and Ecology, 82(2), 131-146.
78. Satchell, E., & Farrell, T. (1993). Effects of settlement density on spatial arrangement in four intertidal barnacles. Marine Biology, 116(2), 241-245.
79. Sawant, S., Sonak, S., & Garg, A. (1995). Growth inhibition of fouling bacteria and diatoms by extract of terrestrial plant, Derris scandens (Dicotyledonae: Leguminocae). Indian Journal of Marine Sciences, 24(4), 229-230.
80. Sepčić, K., & Turk, T. (2006). 3-Alkylpyridinium compounds as potential non-toxic antifouling agents (pp. 105-124). Springer Berlin Heidelberg.
81. Sipkema, D., Osinga, R., Schatton, W., Mendola, D., Tramper, J., & Wijffels, R. H. (2005). Large‐scale production of pharmaceuticals by marine sponges: Sea, cell, or synthesis? Biotechnology and Bioengineering, 90(2), 201-222.
82. Sjögren, M., Dahlström, M., Hedner, E., Jonsson, P. R., Vik, A., Gundersen, L.-L., & Bohlin, L. (2008). Antifouling activity of the sponge metabolite agelasine D and synthesised analogs on Balanus improvisus. Biofouling, 24(4), 251-258.
83. Sjögren, M., Göransson, U., Johnson, A.-L., Dahlström, M., Andersson, R., Bergman, J., Bohlin, L. (2004). Antifouling activity of brominated cyclopeptides from the marine sponge Geodia barretti. Journal of Natural Products, 67(3), 368-372.
84. Targett, N. M. (1997). Natural antifouling compounds from marine organisms: a review. Fouling organisms of the Indian Ocean: biology and control technology. Oxford and IBH Publishing Co, New Delhi, 85-103.
85. Terlizzi, A., Fraschetti, S., Gianguzza, P., Faimali, M., & Boero, F. (2001). Environmental impact of antifouling technologies: state of the art and perspectives. Aquatic Conservation: Marine and Freshwater Ecosystems, 11(4), 311-317.
86. Townsin, R. (2003). The ship hull fouling penalty. Biofouling, 19(S1), 9-15.
87. Tsukamoto, S., Kato, H., Hirota, H., & Fusetani, N. (1997). Antifouling terpenes and steroids against barnacle larvae from marine sponges. 11(4), 283-291.
88. Tsukamoto, S., Kato, H., Hirota, H., & Fusetani, N. (1996). Ceratinamides A and B: new antifouling dibromotyrosine derivatives from the marine sponge Pseudoceratina purpurea. Tetrahedron, 52(24), 8181-8186.
89. Utinomi, H. (1960). On the world-wide dispersal of a Hawaiian barnacle, Balanus amphitrite hawaiiensis Broch. Pac Sci 14(1): 43-50.
90. van Wezel, A. P., & van Vlaardingen, P. (2004). Environmental risk limits for antifouling substances. Aquatic Toxicology, 66(4), 427-444.
91. Wieczorek, S. K., & Todd, C. D. (1998). Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling, 12(1-3), 81-118.
92. Wilsanand, V., Wagh, A., & Bapuji, M. (2000). Antifouling activities of octocorals on some marine microfoulers. Microbios, 104(409), 131-140.
93. Xu, Y., He, H., Schulz, S., Liu, X., Fusetani, N., Xiong, H., Qian, P. Y. (2010). Potent antifouling compounds produced by marine Streptomyces. Bioresource technology, 101(4), 1331-1336.
94. Yamashita, N., Etoh, H., Sakata, K., Yagi, A., Ina, H., & Ina, K. (1989). An acylated kaempferol glucoside isolated from Quercus dentata as a repellent against the blue mussel Mytilus edulis. Agricultural and Biological Chemistry, 53(5), 1383-1385.
95. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75-104.
96. Zardus, J. D., Nedved, B. T., Huang, Y., Tran, C., & Hadfield, M. G. (2008). Microbial biofilms facilitate adhesion in biofouling invertebrates. The Biological Bulletin, 214(1), 91-98.
97. Zhang, L., Liu, W., Zhang, R., Wang, Z., Shen, Z., Chen, X., & Bi, K. (2008). Pharmacokinetic study of matrine, oxymatrine and oxysophocarpine in rat plasma after oral administration of Sophora flavescens Ait. extract by liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 47(4), 892-898.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.209.249
論文開放下載的時間是 校外不公開

Your IP address is 3.135.209.249
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code