Responsive image
博碩士論文 etd-0315101-160840 詳細資訊
Title page for etd-0315101-160840
論文名稱
Title
快速立方樣條插補法及其應用
A Fast Cubic-Spline Interpolation and Its Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-03-09
繳交日期
Date of Submission
2001-03-15
關鍵字
Keywords
立方樣條插補法、線性樣條插補法、立方迴旋插補法
Cubic-Convolution Interpolation, Linear-Spline Interpolation, Cubic-Spline Interpolation
統計
Statistics
本論文已被瀏覽 5751 次,被下載 2755
The thesis/dissertation has been browsed 5751 times, has been downloaded 2755 times.
中文摘要
本論文提出了影像與視訊壓縮技術中,用於資料取樣和資料重建的一種新的插值補償法,稱為立方樣條插補法(cubic-spline interpolation),簡稱CSI。這種新的CSI插補法,是根據最小平方法和立方樣條函數兩種基本理論,以及快速富立葉轉換(FFT)發展而成。在本論文中將詳細說明、推導這種簡單且快速的插值補償法。並利用電腦模擬程式,將它和線性插補法(linear interpolation)、線性樣條插補法(linear-spline interpolation)、立方迴旋插補法(cubic-convolution interpolation)、立方B-樣條插補法(cubic B-spline interpolation)等相互比較,證實此CSI插補法,是一種極為精確的插補法。而線性插補法、線性樣條插補法、立方迴旋插補法和立方B-樣條插補法等,在性能上均明顯較差。
在本論文中亦進一步提出此CSI插補法,可以利用一種更快速且有效率的計算法來改進,茲說明如下:
1. 根據資料分佈在取樣點的位置特性,提出一種帶狀區域的濾波器(zonal filter),可以大幅減少CSI插補法在取樣過程所需的加法及乘法計算量。
2. 此CSI插補法除了可以使用FFT轉換之外,還可以改用一種更有效率的9點Winograd離散富立葉轉換(Winograd DFT),來加速CSI插補法的演算性能。
3. 對於實際的影像處理,提出一種新的交互重疊(overlap-save)技術,可以快速且輕易解決兩個相鄰次影像區塊的邊界問題。
此外,本論文亦將此新的快速CSI插補法,與JPEG演算法結合,設計一種擁有高壓縮率的改良式JPEG影像壓縮法。並且再以電腦模擬程式實驗證明,在高壓縮率時,此新的改良式JPEG法比傳統的JPEG影像壓縮法,以及美國線上(America on Line, AOL)演算法,獲得較佳的重建影像品質,而且在編解碼過程所需的時間均較少。最後,本論文再將此快速CSI插補法,運用於JPEG 2000、MPEG-1及MPEG-2演算法中,並且經由電腦模擬程式驗證,在高壓縮率時,所獲得的重建影像品質,與JPEG 2000相近,但是在編解碼過程所需的時間大幅減少;而在高壓縮率及低位元率的視訊壓縮編碼時,比傳統的MPEG-1及MPEG-2演算法,獲得較佳的重建視訊品質。
Abstract
In this dissertation, a new cubic-spline interpolation (CSI) for both one-dimensional and two-dimensional signals is developed to sub-sample signal, image and video compression data. This new interpolation scheme that is based on the least-squares method with a cubic-spline function can be implemented by the fast Fourier transform (FFT). The result is a simpler and faster interpolation scheme than can be obtained by other conventional means. It is shown by computer simulation that such a new CSI yields a very accurate algorithm for smoothing. Linear interpolation, linear-spline interpolation, cubic-convolution interpolation and cubic B-spline interpolation tend to be inferior in performance.
In addition it is shown in this dissertation that the CSI scheme can be performed by a fast and efficient computation. The proposed method uses a simpler technique in the decimation process. It requires substantially fewer additions and multiplications than the original CSI algorithm. Moreover, a new type of overlap-save scheme is utilized to solve the boundary-condition problems that occur between two neighboring subimages in the actual image. It is also shown in this dissertation that a very efficient 9-point Winograd discrete Fourier transform (Winograd DFT) can be used to replace the FFT needed to implement the CSI scheme.
Furthermore, the proposed fast new CSI scheme is used along with the Joint Photographic Experts Group (JPEG) standard to design a modified JPEG encoder- decoder for image data compression. As a consequence, for higher compression ratios the proposed modified JPEG encoder-decoder obtains a better quality of reconstructed image and also requires less computational time than both the conventional JPEG method and the America on Line (AOL) algorithm. Finally, the new fast CSI scheme is applied to the JPEG 2000, MPEG-1 and MPEG-2 algorithms, respectively. A computer simulation shows that in the encoding and decoding, the proposed modified JPEG 2000 encoder-decoder speeds up the JPEG 2000 standard, respectively, and still obtains a good quality of reconstructed image that is similar to JPEG 2000 standard for high compression ratios. Additionally, the reconstructed video using the modified MPEG encoder-decoder indicates a better quality than the conventional MPEG-1 and MPEG-2 algorithms for high compression ratios or low-bit rates.
目次 Table of Contents
Contents
Acknowledgments
中文摘要………………………………………………………… i
Abstract …………………………………………………………… iii
List Of Figures …………………………………………………… vii
List Of Tables ……………………………………………………… xii
1 Introduction …………………………………………………… 1
1.1 Motivation and Recent Related Research ………………… 1
1.2 Summary of the Dissertation ……………………………... 4
1.3 Organization of the Dissertation ………………………… 7
2 Interpolation Functions ……………………………………… 10
2.1 The Cubic-Convolution Interpolation …………………….. 15
2.2 The Cubic B-Spline Function …………………………….. 22
2.3 The Linear-Spline Interpolation ………………………….. 27
3 Encoding Algorithm of Cubic-Spline Interpolation ………... 32
3.1 Cubic-Spline Interpolation for the 1-D Signal ……………. 32
3.2 Cubic-Spline Interpolation for the 2-D Signal ……………. 38
4 Decoding Algorithm of Cubic-Spline Interpolation ………... 45
4.1 Decoding of the Compressed 1-D Signal ………………… 45
4.2 Decoding of the Compressed 2-D Signal ………………… 46
5 Fast Computation of Cubic-Spline Interpolation …………... 48
5.1 The Use of Zonal Filter to Compute CSI …………………. 48
5.2 Calculation of Constants ………………………………….. 52
5.3 Winograd DFT and Overlap-Save Method ……………….. 57
6 The Application of Cubic-Spline Interpolation …………….. 66
6.1 A Modified JPEG Encoder-Decoder ……………………... 66
6.2 A Modified JPEG 2000 Encoder-Decoder ……………….. 69
6.3 Low-Bit-Rate Video Coding ……………………………… 71
7 Experimental Results and Discussion ……………………….. 73
7.1 Experimental Results for CSI and FCSI ………………….. 74
7.2 Experimental Results for Modified JPEG ………………... 89
7.3 Experimental Results for Modified JPEG 2000 ………….. 94
7.4 Experimental Results for Low-Bit-Rate Video Coding ….. 97
8 Conclusions and Further Research …………………………. 108
8.1 Conclusions ………………………………………………. 108
8.2 Further Research …………………………………………. 109
Appendix A
A.1 The 9-Point Winograd Discrete Fourier Transform ………. 113
A.2 The 5-Point Winograd Discrete Fourier Transform ………. 114
Appendix B
B.1 The C Program for the 9-Point Winograd DFT …………... 116
B.2 The C Program for the 5-Point Winograd DFT …………... 121
Bibliography ……………………………………………………… 126
參考文獻 References
Bibliography
[1] R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-29, no.6, pp.1153-1160, Dec. 1981.
[2] H. S. Hou, and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. ASSP-26, no.6, pp.508-517, Dec. 1978.
[3] W. K. Pratt, Digital Image Processing, 2nd ed. New York: Wiley, 1991.
[4] C. de Boor, A Practical Guide to Splines. Berlin, Germany: Springer- Verlag, 1978.
[5] M. Unser, A. Aldroubi, and M. Eden, “B-Spline Signal Processing: Part II-Efficient Design and Applications,” IEEE Trans. Signal Processing, vol.41, pp.834-848, Feb. 1993.
[6] M. Unser, A. Aldroubi, and M. Eden, “Enlargement or reduction of digital images with minimum loss of information,” IEEE Trans. Image Processing, vol.4, pp.247-258, Mar. 1995.
[7] I. S. Reed, Notes on Image Data Compression Using Linear Spline Interpolation. Los Angeles, CA: Dept. Elect. Eng. Southern Calif., Nov. 1981.
[8] I. S. Reed and A. Yu, “Optimal Spline Interpolation for Image Compression,” U. S. Patent 5822456, Oct. 13, 1998.
[9] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard. New York: Van Nostrand Reinhold, 1993.
[10] T. K. Truong, L. J. Wang, I. S. Reed, and W. S. Hsieh, “Image data compression using cubic convolution spline interpolation,” IEEE Trans. Image Processing, vol.9, no.11, pp.1988-1995, Nov. 2000.
[11] B. Ramamurthi and A. Gersho, “Nonlinear space variant postprocessing of block coded images,” IEEE Trans. Acoustics, Speech, Signal Processing, vol. ASSP-34, pp.1258-1267, 1986.
[12] Y. Yang, N. Galatsanos, and A. Katsaggelos, “Projection-based spatially adaptive reconstruction of block-transform compressed images,” IEEE Trans. Image Processing, vol.4, pp.896-908, July 1995.
[13] T. Lane, Independent JPEG Group’s free JPEG software, 1998.
[14] E. O. Brigham, The Fast Fourier Transform and its Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
[15] A. V. Oppenheim, and R. W. Schafer, Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1975.
[16] Dean P. Kolba and Thomas W. Parks, “A prime factor FFT algorithm using high-speed convolution,” IEEE Trans. Acoustic, Speech, and Signal Processing, vol. ASSP-25, no.4, pp.281-294, Aug. 1977.
[17] S. Winograd, “On computing the discrete Fourier transform,” Mathematics of Computation, vol. 32, no.141, pp.175-199, Jan. 1978.
[18] I. S. Reed, T. K. Truong, R. L. Miller, and B. Benjauthrit, “Further results on fast transforms for decoding Reed-Solomon codes over GF(2n) for n = 4, 5, 6, 8,” in the Deep Space Network Progress Report 42-50, Jet Propulsion Laboratory, Pasadena, CA, pp.132-155, Jan. and Feb. 1979.
[19] L. J. Wang, Still Image Data Compression Using Both Cubic Convolution Spline Interpolation and the JPEG Algorithm, M.S. Thesis, Kaohsiung Polytechnic Institute, Taiwan, R.O.C., June 1997.
[20] L. J. Wang, W. S. Hsieh, T. K. Truong, I. S. Reed, T. C. Cheng, “A fast and efficient computation of cubic-spline interpolation in image codec,” accepted and to appear in IEEE Trans. Signal Processing, June 2001.
[21] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. Image Processing, vol.9, no.7, pp.1158-1170, July 2000.
[22] ISO/IEC JTC1/SC29/WG1 N1646R, JPEG 2000 Part I Final Committee Draft Version 1.0, Mar. 2000.
[23] M. Gormish, D. Lee, and M. Marcellin, “JPEG 2000: Overview, architecture, and applications,” Proceedings ICIP-2000, Sept. 2000.
[24] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, MPEG Video Compression Standard. New York: Chapman & Hall, 1997.
[25] D. J. Le Gall, “The MPEG video compression algorithm,” Signal Processing: Image Communication, vol. 4, no. 2, pp.129-140, Apr. 1992.
[26] T. Sikora, “MPEG digital video-coding standards,” IEEE Signal Processing Magazine, pp. 82-100, Sept. 1997.
[27] ISO/IEC 14496-2 MPEG-4 Video Coding Standard, “Information technology — Generic coding of audio-visual objects – Part 2: Visual,” Oct. 1998.
[28] MPEG Video Group, “MPEG-4 video verification model – version 16.0,” ISO/IEC JTC1/SC29/WG11, Mar. 2000.
[29] T. Sikora, “The MPEG-4 video standard verification model,” IEEE Trans. Circuits and Systems for Video Technology, vol. 7, no. 1, pp. 19-31, Feb. 1997.
[30] M. J. Munteanu and L. L. Schumaker, “Some multi-dimensional spline approximation methods,” J. Approximation Theory, vol. 10, pp. 23-40, 1974.
[31] M. Unser, “Splines – A perfect fit for signal and image processing,” IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, Nov. 1999.
[32] S. J. Orfanidis, Introduction To Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1996.
[33] G. H. Golub, “Matrix decomposition and statistical calculations,” in Statistical Computation, R. C. Milton and J. A. Nelder, Eds. New York: Academic, 1969, pp. 365-397.
[34] R. T. Gregory and D. L. Karney, A Collection of Matrices for Testing Computational Algorithms. New York: Wiley, 1969, p.48.
[35] L. Chiariglione, “MPEG and multimedia communications,” IEEE Trans. Circuits and Systems for Video Technology, vol.7, no.1, pp.5-18, Feb. 1997.
[36] B. G. Haskell, A. Puri, and A. N. Netravali, Digital Video: An Introduction to MPEG-2. New York: International Thomson, 1997.
[37] J. S. Lim, Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 1990.
[38] S. K. Park and R. A. Schowengerdt, “Image reconstruction by parametric cubic convolution,” Computer Vision, Graphics, and Image Processing, vol.23, pp.258-272, Sept. 1983.
[39] T. C. Chen and R. J. P. deFigueiredo, “Two-dimensional interpolation by generalized spline filters based on partial differential equations,” IEEE Trans. Acoustics, Speech, Signal Processing, vol.33, pp.631-642, June 1985.
[40] J. K. Han and S. U. Baek, “Parametric cubic convolution scaler for enlargement and reduction of image,” IEEE Trans. Consumer Electronics, vol.46, no.2, pp.247-256, May 2000.
[41] H. S. Hou, and H. C. Andrews, “Least squares image restoration using spline basis functions,” IEEE Trans. Computers, vol. C-26, no.9, pp.856- 873, Sept. 1977.
[42] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Trans. Consumer Electronics, vol.38, no.1, Feb. 1992.
[43] M. Boliek, S. Houchin, and G. Wu, “JPEG 2000 Next Generation Image Compression System: Features and Syntax,” Proceedings ICIP-2000, Sept. 2000.
[44] D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and F. Ono, “Embedded Block Coding in JPEG 2000,” Proceedings ICIP-2000, Sept. 2000.
[45] CCITT Recommendation MPEG-1, Coding of Moving Pictures and Associated Audio for Digital Storage Media at Up to About 1.5 Mbit/s, ISO/IEC 11172, Geneva, Switzerland, 1993.
[46] CCITT Recommendation MPEG-2, Generic Coding of Moving Pictures and Associated Audio, ISO/IEC 13818, Geneva, Switzerland, 1994.
[47] ISO/IEC 13818-2 MPEG-2 Video Coding Standard, “Information technology — Generic coding of moving pictures and associated audio information: Video,” Mar. 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code