Responsive image
博碩士論文 etd-0315117-103833 詳細資訊
Title page for etd-0315117-103833
論文名稱
Title
2MW風力發電齒輪傳動系統之動力分析
The Dynamic Analysis of A Gear Transmission System for 2MW Wind Turbines
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-03-23
繳交日期
Date of Submission
2017-04-15
關鍵字
Keywords
AGMA齒輪應力分析、動力分析、行星齒輪系、齒輪傳動系統、風力發電
Wind turbine, Gear transmission system, Planetary gear train, Dynamic analysis, AGMA strength equation
統計
Statistics
本論文已被瀏覽 5792 次,被下載 0
The thesis/dissertation has been browsed 5792 times, has been downloaded 0 times.
中文摘要
風力發電做為綠色能源之一,近年來廣受世界各國採用,以取代傳統石化燃料發電。行星齒輪系因其結構緊緻,普遍被選擇做為大型風力發電之傳動系統。為減少大型風力發電系統設計、製造及維修成本,本論文提出一風力發電齒輪傳動系統動力模型,作為模擬分析之工具。此工具除在設計階段對參數提供模擬外,並可針對參數進行優化,減少齒輪傳動系統失效頻率,進而提升風力發電系統運轉效益。
本研究以剛體向量法與牛頓第二運動定律進行齒輪傳動系統運動與動力分析,考慮加速度對於傳動系統負載之影響,以承載2MW風力發電系統進行模型建立。利用動態特性驗證模型可信度後,加入葉片機制,取得各齒輪元件的運動及負載情況。接著,將負載結果導入AGMA規範下應力分析,試以求得齒輪傳動系統各元件應力、安全性及系統可承受之最大陣風。為驗證其可用性,本文依商轉中2MW風力發電系統導入實際風場數據情境進行應用,在不影響齒輪傳動系統的空間要求下,提出齒輪參數優化流程,得到一組優化後設計參數,由此參數分析結果,可將系統可承受之最大陣風速提升22%。
Abstract
Wind power is green energy which has been extensively used worldwide as a replacement of traditional fossil fuel energy. Due to the compact structure of a planetary gear train, it is predominantly utilized as transmission systems for large wind turbines. To reduce the time and cost for designing, manufacturing, and repairing large wind turbines, a simulation model was proposed as an analytical tool for gear transmission systems of wind turbines. In addition to simulating the dynamic behavior of a transmission system, the gear design parameters can be optimized with elevated safety factors. As a result, the frequency of failure may be significantly reduced and the operational efficiency of wind turbines can be improved.
This study was conducted to investigate kinematic and dynamic behavior of 2MW wind turbines, based on the analysis of vector method of rigid body and Newton's second law of motion. Firstly, the reliability of the simulation model was confirmed with the dynamic characteristics of a 2MW transmission system. To obtain the movement and loading data of the gear transmission system, wind field data and blade-pitch control mechanism were imported. With the loading data, the contact and bending stresses will be analyzed using the AGMA strength equation, thus the safety factors and the maximum wind gust limit of the gear transmission system were derived. Lastly, In order to verify the versatility of the simulation model, this tool was further applied to an existing 2MW wind turbine with realistic wind field data for its gear transmission system. With the same transmission system space, the optimized design parameters were generated hence the wind gust speed limitation can be enhanced over 22%.
目次 Table of Contents
論文審定書 i
誌謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 viii
表次 xi
符號說明 xii
第一章 緒論 1
1.1. 前言 1
1.2. 文獻回顧 2
1.3. 研究目的 4
1.4. 論文架構 5
第二章 傳動系統運動與動力分析 6
2.1. 齒輪機構運動分析 7
2.1.1. 平行軸齒輪系 7
2.1.2. 行星齒輪系 8
2.1.1. 風機傳動系統運動分析 9
2.2. 傳動系統動力分析 10
2.2.1. 解聯立方程式 20
第三章 傳動系統模型建置 24
3.1. 風力能量輸入 24
3.2. 同步發電機輸出 25
3.3. 系統模型參數說明 26
3.4. 系統模型驗證 27
第四章系統模擬分析 36
4.1. 風力發電葉片控制系統 36
4.2. 模擬風場數據分析 38
4.3. 實際風場情境導入 41
第五章 傳動系統齒輪強度分析及優化 46
5.1. 齒輪破壞型態 46
5.2. AGMA應力分析 48
5.2.1. 過負載係數(Overload Factor) 48
5.2.2. 動態係數(Dynamic Factor) 49
5.2.3. 尺寸係數(Size Factor) 49
5.2.4. 力量分布係數(Load Distribution Factor) 50
5.2.5. 輪緣厚度係數(Rim Thickness Factor) 50
5.2.6. 彎曲強度幾何係數(Bending Strength Geometry Factor) 50
5.2.7. 彈性係數(Elastic Coefficient) 51
5.2.8. 孔蝕幾何係數(Pitting Resistance Geometry Factor) 51
5.2.9. 安全係數(Safety Factor) 52
5.3. 傳動系統齒輪AGMA應力分析程式 54
5.4. 齒輪安全性考量 60
5.5. 齒輪傳動系統參數優化 63
第六章 結論 68
文獻參考 69
參考文獻 References
[1] Sheng, S. and Yang W., “Wind Turbine Drivetrain Condition Monitoring-An Overview”, National Renewable Energy Laboratory, 2013
[2] Fisseha, M. A. and Stephen, E. O., “Loading and Design Parameter Uncertainty in the Dynamic and Performance of High Speed Parallel Helical Stage of a Wind Turbine Gearbox”, Journal of Mechanical, Vol. 136, 2014.
[3] Wang, J., Wang, Y., and Huol, Z., “Analysis of Dynamic Behavior of Multiple-Stage Planetary Gear Train Used in Wind Driven Generator”, The Scientific World Journal, Art. ID 627045, 2016.
[4] Crowther, A., Ramakrishnan, V., Zaidi, N. A., and Halse, C., “Sources of Time-Varying Contact Stress and Misalignments in Wind Turbine Planetary Sets”, Journal of wind energy, Vol. 14, pp 637-651, 2011.
[5] Todorov, M., Dobrev, I., and Massouh, F., “Analysis of Torsional Oscillation of The Drive Train in Horizontal-Axis Wind Turbine”, Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, pp. 1-7, 2009.
[6] Heege, A., Radovcic, Y., and Betran., J., “Fatigue Load Computation of Wind Turbine Gearboxes by Coupled Structural Mechanism and Aerodynamic Analysis”, DEWI Magazin, 2006.
[7] Bhargave, V., Krushna, B., and Sairam, KVRS., “2.1 MW Wind Turbine Performance and Dynamic Analysis using Power Curve”, International Journal of Engineering Research, Vol. 5, pp 717-720, 2016.
[8] 黃欽兒,「大型風機啟動力矩計算研究」,中國直升機設計研究所,2007
[9] Alex, T. B. and Song, Y., “Integrated Software for Wind Turbine Gearbox Design & Development Analysis”, Romax Technology Ltd.
[10] Nejad1, A. R., Xing Y., and Moan, T., “Gear Train Internal Dynamics In Large Offshore Wind Turbines”, ASME Biennial Conference on Engineering Systems Design and Analysis, Vol. 3, 2012, pp. 823-831, 2012.
[11] Ahme, W. K., “Mechanical Modelling of Wind Turbine: Comparative Study”, International Journal of Renewable Energy Research, Vol. 3, 2013.
[12] Wang, L., Shen, T., Chen C., and Chen, H., “Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters”, Mathematical Problems in Engineering, pp. 261767-1~10, 2014.
[13] Morten, H., Michael, R. H., Morten K. E., Ole, M., “Modeling and Parameter Identification of Deflections in Planetary Stage of Wind Turbine Gearbox”, Modeling, Identification and Control, Vol. 33, pp. 1-11, 2012.
[14] Freudenstein, F., “An Application of Boolean Algebra to the Motion of Epicyclical Derives” , ASME Transaction, Journal of Engineering for Industry, Vol. 93, pp. 176-182, 1971.
[15] Saggere, L. and Olson, D. G., “A simplified Approach for Force and Power-Flow Analysis of Compound Epicyclic Spur-Gear Trains”, ASME, Advances in Design Automation, DE-Vol. 44-2, pp.83-89, 1992.
[16] Mangialardi, L. and Mantriota, G, “Power Flow and Efficiency in Infinitely Variable Transmissions”, Mechanism and Machine Theory Vol. 34, pp. 973-994, 1999.
[17] 楊智仁,“五速車輛自動變速器之設計”,國立中山大學機電所碩士論文, 2000。
[18] Tsai, L. W. and Schultz, G., “A Motor-Integrated Parallel Hybrid Transmission”, UCEI Energy Policy and Economics Working Paper Series , 2005.
[19] Salgado, D. R. and Del Castillo, J. M., “Selection and Design of Planetary Gear Trains Based on Power Flow Maps”, ASME, Journal of Engineering for Industry, Vol. 127, pp. 120-134, 2005.
[20] 吳益彰,“整合行星齒輪式減速機直流無刷馬達之設計與分析”,國立成功大學機械所博士論文,2005。
[21] Chen, C., “Power Flow Analysis of Compound Epicycle Gear Transmission: Simpson Gear Train”, ASME, Journal of Mechanical Design Vol. 133, pp. 094502-1-094502-5, 2011.
[22] Pennestri, E., Mariti, L., Valentini, P. P., and Mucino, V. H., “Efficiency evaluation of gear box for parallel hybrid vehicles: Theory and Applications”, Sci Verse Science Direct Mechanical and Machine Theory 49, pp. 157-176, 2012.
[23] 蕭先佑,“雙輸入型風機傳動機構之動力流分析”,國立中山大學碩士論文,2011。
[24] 王玟丰,“MW級風機雙輸出可獨立控制傳動系統之動力分析”,國立中山大學碩士論文,2016。
[25] Ragheb, H., “Wind Energy Conversion Theory, Betz Equation”, University of Illinois at Urbana-Champaign, 2014.
[26] AGMA,ANSI/AGMA 2101-D04-2004 Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth
[27] AGMA,ANSI/AGMA 908-B89 Geometry Factors for Determining the Pitting Resistance and Bending Strength of Spur , Helical and Herringbone Gear Teeth
[28] Dehner, E. and Weber, F., “Experience with Large, High-Speed Load Gears”, GEAR TECHNOLOGY, July 2007
[29] AGMA,ANSI/AGMA 2000-A88 Gear Classification And Inspection Handbook Tolerances And Measuring Methods For Unassembled Spur And Helical Gears (Including Metric Equivalents)
[30] AGMA,AGMA 913-A98 Method for Specifying the Geometry of Spur and Helical Gears
[31] AGMA,AGMA/ANSI 2004-B89 Gear Materials and Heat Treatment Manual
[32] Errichello, R. and Muller, J., “Application Requirements for Wind Turbine Gearboxes”, National Renewable Energy Laboratory, 1994.
[33] 4C offshore, http://www.4coffshore.com/windfarms/turbine-samsung-heavy-industries-s7.0-171-tid37.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.202.54
論文開放下載的時間是 校外不公開

Your IP address is 3.141.202.54
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code