Responsive image
博碩士論文 etd-0316118-095910 詳細資訊
Title page for etd-0316118-095910
論文名稱
Title
KRT融合體參與癌症發展過程中基因組的不穩定性
Involvement of KRT fusion in genome instability during cancer development
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
44
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-03-06
繳交日期
Date of Submission
2018-04-16
關鍵字
Keywords
鱗片狀細胞口腔癌、DNA 損害反應、LINC複合體、角蛋白融合、中間絲
oral squamous cell carcinomas, DNA damage response, LINC complex, keratin fusions, intermediate filaments
統計
Statistics
本論文已被瀏覽 5621 次,被下載 1
The thesis/dissertation has been browsed 5621 times, has been downloaded 1 times.
中文摘要
中間絲(IF)是細胞對抗機械應力一個主要架構,然而在核轉錄的調控的新功能,在癌症研究中越來越多的關注。這種調控已經被認為是幹細胞發育的關鍵步驟。我們最近的研究也證實了鱗片狀細胞口腔癌中角蛋白融合的存在與腫瘤大小,轉移和總生存相關。在所鑑定的融合體中,發現KRT6-KRT14融合體V 7(KRT6-KRT14/V7)在細胞核周圍形成與核變形和微核形成相關的過度活躍的顆粒狀聚集體。在Time-lapse及免疫染色研究進一步證實K6-K14 / V7可以干擾LINC complex (核骨架和細胞骨架的連接子)的結構,導致染色體分離不均勻並活化 DNA 損害反應造成細胞凋零死亡。有趣的是,隨著p53-p21自我監測中的遺傳缺陷,長期的基因打開效應可能引發基因改變的積累。未來此計畫還將討論涉及由KRT6-KRT14/V7介導的核機械轉導的幾個關鍵途徑,我們的研究結果揭示了在癌症發展中起作用的角蛋白融合的獨特功能。
Abstract
Intermediate filaments (IFs), a major structural architecture in cells against mechanical stresses, gain more attention in cancer research due to thei novel functions in regulation of nuclear mechano-transduction. Such regulation has been noted as a key step for stem cell development and tissue homeostasis. Our recent studies also confirmed the existence of keratin fusions in OSCCs that correlate with tumor size, metastasis and overall survival. Among the fusions identified, the variant 7 of K6-K14 fusions (K6-K14/V7) was found to form over-active granule-like aggregates surrounding the cell nucleus that associate with nuclear deformation and micronucleus formation. Time-lapse study further confirmed that the K6-K14/V7 can disturb the structure of LINC complex (linker of nucleoskeleton and cytoskeleton), resulting in uneven chromosome segregation followed by cell apoptosis via activating DNA damage responses. Interestingly, genetic defects in p53-p21 self-surveillance. Long-term gene-turned on can trigger accumulations of genetic alterations. Several key pathways involved in nuclear mechano-transduction mediated by K6-K14/V7 will be also discussed. Our findings uncover a unique function of keratin fusions that plays roles in cancer development.
目次 Table of Contents
論文審定書-----------------------------------------------------------------------------------------ii
誌謝 (Ackowledgements) -----------------------------------------------------------------------iii
中文摘要 (Chinese of abstract) ---------------------------------------------------------------- iv
英文摘要 (English of abstract) -----------------------------------------------------------------v
縮寫表(Abbreviations) ---------------------------------------------------------------------------vi
前言 (Introduction) -------------------------------------------------------------------------------1
材料與方法 (Materials and Methods) ---------------------------------------------------------5
實驗結果 (Results)--------------------------------------------------------------------------------9
討論 (Discussion)--------------------------------------------------------------------------------13
圖表 (Figures)------------------------------------------------------------------------------------16
圖1、識別染色體易位t(12; 17)(q13;q21)在口腔鱗狀上皮細胞癌(OSCC) --------16
圖2、將基因融合KRT6-KRT14轉錄在口腔鱗狀細胞癌進行鑑定-----------------17
圖3、臨床資料中顯示KRT6-KRT14基因融合變異與口腔鱗狀細胞癌之相關----18
圖4、KRT6-KRT14基因融合變異與口腔鱗狀細胞癌細胞關係----------------------19
圖5、K6-K14基因融合V7型態基因建構-------------------------------------------------20
圖6、角蛋白融合V7型態及在細胞內核變形和微核形成-----------------------------21
圖7、角蛋白融合V7型態及在細胞內核變形和微核形成-----------------------------22
圖8、角蛋白融合V7表達誘導DNA鏈斷裂並和細胞生長抑制---------------------23
圖9、角蛋白融合V7激活發 DNA損傷反應--------------------------------------------24
圖10、角蛋白融合V7激活發 DNA損傷反應使用檢測其路徑指標(1)-------------25
圖11、角蛋白融合V7激活發 DNA損傷反應使用檢測其路徑指標(2)-------------26
圖12、ATM抑制劑及p53突變逆轉KRT6-KRT14/V7誘導的細胞生長停滯---27
圖13、K6-K14 / V7通過中心體改變干擾細胞分裂------------------------------------28
圖14、K6-K14 / V7通過打亂LINC複合體導致細胞核的不穩定--------------------29
圖15、K6-K14 / V7通過打亂LINC複合體及中心體改變導致基因組不穩定-30
圖16、KRT6-KRT14/V7通過打亂LINC複合體及中心體改變導致基因組不穩31
圖17、K6-K14 / V7通過基因表達去影響組蛋白活化---------------------------------32
圖18、K6-K14 / V7通過基因表達改變調節葡萄糖和酮體的代謝控制------------33
參考資料(References)--------------------------------------------------------------------------- 34
參考文獻 References
1. Birchmeier W. Cytoskeleton structure and function. Trends in Biochemical Sciences. 1984;9:192-5.
2. Galbraith C, Skalak R, Chien S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cytoskeleton. 1998;40:317-30.
3. Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function and disease. Annual review of biochemistry. 1994;63:345-82.
4. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980;283:249-56.
5. Steinert PM, Parry DA. Intermediate filaments: conformity and diversity of expression and structure. Annual review of cell biology. 1985;1:41-65.
6. Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular scaffolds. Annual review of biochemistry. 2004;73:749-89.
7. Fuchs E, Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345-82.
8. Hesse M, Magin TM, Weber K. Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. Journal of cell science. 2001;114:2569-75.
9. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219-50.
10. Listwan P, Rothnagel JA. Keratin bundling proteins. Methods in cell biology. 2004;78:817-27.
11. Hattori H. Epidermal cyst containing numerous spherules of keratin. The British journal of dermatology. 2004;151:1286-7.
12. Dong F, Su H, Huang Y, Zhong Y, Zhong G. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infection and immunity. 2004;72:3863-8.
13. Toivola DM, Ku NO, Resurreccion EZ, Nelson DR, Wright TL, Omary MB. Keratin 8 and 18 hyperphosphorylation is a marker of progression of human liver disease. Hepatology. 2004;40:459-66.
14. Olsen V, Hyatt AD, Boyle DG, Mendez D. Co-localisation of Batrachochytrium dendrobatidis and keratin for enhanced diagnosis of chytridiomycosis in frogs. Diseases of aquatic organisms. 2004;61:85-8.
15. Takahashi K, Yamamoto H, Yokote Y, Hattori M. Thermal behavior of fowl feather keratin. Bioscience, biotechnology, and biochemistry. 2004;68:1875-81.
16. Alvarado DM, Coulombe PA. Directed expression of a chimeric type II keratin partially rescues keratin 5-null mice. The Journal of biological chemistry. 2014;289:19435-47.
17. Toivola DM, Strnad P, Habtezion A, Omary MB. Intermediate filaments take the heat as stress proteins. Trends in cell biology. 2010;20:79-91.
18. Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes & development. 2007;21:1581-97.
19. Windoffer R, Leube RE. Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods in cell biology. 2004;78:321-52.
20. Chetty R, Asa SL. Pancreatic endocrine tumour with cytoplasmic keratin whorls. Is the term "rhabdoid" appropriate? Journal of clinical pathology. 2004;57:1106-10.
21. Csikos M, Szalai Z, Becker K, Sebok B, Schneider I, Horvath A, et al. Novel keratin 14 gene mutations in patients from Hungary with epidermolysis bullosa simplex. Experimental dermatology. 2004;13:185-91.
22. Yoneda K, Furukawa T, Zheng YJ, Momoi T, Izawa I, Inagaki M, et al. An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor alpha-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex. The Journal of biological chemistry. 2004;279:7296-303.
23. Langner C, Wegscheider BJ, Ratschek M, Schips L, Zigeuner R. Keratin immunohistochemistry in renal cell carcinoma subtypes and renal oncocytomas: a systematic analysis of 233 tumors. Virchows Archiv : an international journal of pathology. 2004;444:127-34.
24. Abdulmajed K, Heard CM, McGuigan C, Pugh WJ. Topical delivery of retinyl ascorbate co-drug. 2. Comparative skin tissue and keratin binding studies. Skin pharmacology and physiology. 2004;17:274-82.
25. Parker BC, Zhang W. Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment. Chinese journal of cancer. 2013;32:594-603.
26. Alam SG, Zhang Q, Prasad N, Li Y, Chamala S, Kuchibhotla R, et al. The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Scientific reports. 2016;6:38063.
27. Sheu JJ, Guan B, Choi JH, Lin A, Lee CH, Hsiao YT, et al. Rsf-1, a chromatin remodeling protein, induces DNA damage and promotes genomic instability. The Journal of biological chemistry. 2010;285:38260-9.
28. Sheu JJ-C, Hua C-H, Wan L, Lin Y-J, Lai M-T, Tseng H-C, et al. Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer research. 2009;69:2568-76.
29. van Houten VM, Leemans CR, Kummer JA, Dijkstra J, Kuik DJ, van den Brekel MW, et al. Molecular diagnosis of surgical margins and local recurrence in head and neck cancer patients: a prospective study. Clinical Cancer Research. 2004;10:3614-20.
30. Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nature genetics. 2004;36:331.
31. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer. 2007;7:233.
32. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486:405.
33. Stephens PJ, McBride DJ, Lin M-L, Varela I, Pleasance ED, Simpson JT, et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature. 2009;462:1005.
34. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nature Reviews Cancer. 2008;8:497.
35. Groves-Kirkby N. Prostate cancer: gene fusions. Nature Reviews Urology. 2010;7:473.
36. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S, et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nature medicine. 2010;16:793.
37. Greenhill C. Gene fusion identified in gastric cancer. Nature Reviews Gastroenterology & Hepatology. 2011;8.
38. Bass AJ, Lawrence MS, Brace LE, Ramos AH, Drier Y, Cibulskis K, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature genetics. 2011;43:964.
39. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561.
40. Chung B-M, Rotty JD, Coulombe PA. Networking galore: intermediate filaments and cell migration. Current opinion in cell biology. 2013;25:600-12.
41. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980;283:249.
42. Coulombe PA, Wong P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nature cell biology. 2004;6:699.
43. Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nature reviews Molecular cell biology. 2009;10:75.
44. Chiou S-H, Yu C-C, Huang C-Y, Lin S-C, Liu C-J, Tsai T-H, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clinical cancer research. 2008;14:4085-95.
45. Beil M, Micoulet A, von Wichert G, Paschke S, Walther P, Omary MB, et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature cell biology. 2003;5:803.
46. Wilson AK, Coulombe PA, Fuchs E. The roles of K5 and K14 head, tail, and R/KLLEGE domains in keratin filament assembly in vitro. The Journal of Cell Biology. 1992;119:401-14.
47. Tsai F-J, Sheu J-CJ, Cheng J, Chao CC. Method for in vitro detecting keratin gene fusion of squamous-cell cancer. Google Patents; 2014.
48. Parry DA. Microdissection of the sequence and structure of intermediate filament chains. Advances in protein chemistry: Elsevier; 2005. p. 113-42.
49. Demichelis F, Rubin MA. TMPRSS2-ETS fusion prostate cancer: biological and clinical implications. Journal of clinical pathology. 2007;60:1185-6.
50. Helgason GV, Karvela M, Holyoake TL. Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood. 2011;118:2035-43.
51. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071.
52. Cortez D, Wang Y, Qin J, Elledge SJ. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science. 1999;286:1162-6.
53. Nelson WG, Kastan MB. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Molecular and cellular biology. 1994;14:1815-23.
54. Deng C-X. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic acids research. 2006;34:1416-26.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code