Responsive image
博碩士論文 etd-0317111-144724 詳細資訊
Title page for etd-0317111-144724
論文名稱
Title
強韌穩定性、廣義性能、二次穩定性及KYP引理之間的關係
On the Relationships Between Robust Stability, Generalized Performance, Quadratic Stability, and KYP Lemma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-03-04
繳交日期
Date of Submission
2011-03-17
關鍵字
Keywords
強韌穩定性、廣義性能、二次穩定性、KYP引理、強韌極點放置
robust stability, generalized performance, quadratic stability, KYP lemma, robust pole placement
統計
Statistics
本論文已被瀏覽 5827 次,被下載 37
The thesis/dissertation has been browsed 5827 times, has been downloaded 37 times.
中文摘要
處理強韌穩定性分析大致可分成兩種方式:輸入輸出及李亞普諾夫穩定性分析。通常這兩類方式都是獨立發展,除了少數特例外,少有文獻探討兩者之間的關聯,此為本論文欲探討此題目的動機。
廣義性能問題旨在判斷轉移函數是否滿足某些頻域條件;本論文證明在適當假設下廣義性能與強韌穩定性之間有一等價關係。然而廣義性能假設轉移函數必須是內部穩定,此非閉迴路系統穩定的必要條件,有鑑於此,本論文進一步推導不需要內部穩定的頻域條件,並證明所得的結果包含某一版本的圓環準則 (circle criterion)。
為了探討廣義性能問題,本論文提出某一版本的Kalman-Yakubovich-Popov (KYP) 引理將頻域條件轉成線性矩陣不等式,並建立此線性矩陣不等式與二次穩定性之間的連結。綜合上述所得結果可讓我們對強韌穩定性、廣義性能、二次穩定性及KYP引理之間的關聯更加清楚,本論文不但整合了之前文獻的結果,並將這些結果推廣到更廣義的穩定區域及不確定量描述。
除了穩定性分析,本論文同時探討控制器設計問題,即強韌極點放置。強韌極點放置的區域可為簡單區域的交集或是連集。(簡單區域指的是半平面、圓的內部或圓的外部)關於控制器設計部分本論文的主要貢獻是極點放置區域可以是非凸集合—大部分現有文獻都只探討凸集合。本論文並以戰鬥機的縱向控制及衛星的姿態控制驗證所提結果的可行性。

Abstract
There are two main approaches to robust stability analysis:
the input-output stability framework with scaling or multiplier, and the Lyapunov functions.
Analysis methods in these two directions are usually developed independently,
and the relationship between the two is not clear except for some special cases.
This motivates us to study the relationship between the two approaches.

The generalized performance problem refers to certain frequency-domain conditions on a transfer matrix.
We prove the equivalent relationship between generalized performance and robust stability under certain assumptions.
The definition of generalized performance requires the internal stability of a transfer matrix,
which is not a necessity for robust stability.
In view of this, we derive new frequency-domain conditions for robust stability without this requirement.
Our result contains a version of the circle criterion as a special case.

To tackle the generalized performance problem, we propose a version of the Kalman-Yakubovich-Popov (KYP) lemma to
transform the frequency-domain conditions into linear matrix inequalities (LMIs).
The proposed LMI condition is then connected to the quadratic stability of an uncertain linear system.
Combining the derived results gives a clear picture of
the relationships between robust stability, generalized performance, quadratic stability, and KYP lemma.
The connections not only unify some previous results
but also extend those results to more general stability regions and types of uncertainty.

In addition to robust stability analysis,
we also tackle the corresponding synthesis problem, i.e. robust pole placement.
The desired region for robust pole placement can be the intersection or the union of simple regions.
(Simple regions are the half plane, the disk, and the outside of a disk.)
One contribution of our synthesis result is that
the desired region can be non-convex—most results on robust pole placement focus on convex regions only.
Two examples of the longitudinal control of a combat aircraft and
the attitude control of a satellite demonstrate the effectiveness of our result.
目次 Table of Contents
1 Introduction 1
1.1 Literature Overview and Thesis Outline . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Well-Posedness of Feedback Loops 7
2.1 Properties of the Uncertainty Set . . . . . . . . . . . . . . . . . . . . 7
2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Frequency-Domain Inequalities and RobustMatrix Root-Clustering 14
3.1 Generalized Performance and Robust Stability . . . . . . . . . . . . . 15
3.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Weak Generalized Performance . . . . . . . . . . . . . . . . . 23
3.2 Loop Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Circle Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4 KYP Lemmas for Simple Regions 40
4.1 KYP Lemma with Positive Definite P . . . . . . . . . . . . . . . . . 41
4.1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Quadratic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
iii
4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Equivalent Relationships Between Generalized Performance,
Robust Stability, and Quadratic Stability . . . . . . . . . . . . 56
5 KYP Lemmas for Arbitrary Intersections and Unions of Simple
Regions 58
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Simple Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 DR Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Arbitrary Union of Intersections . . . . . . . . . . . . . . . . . . . . . 70
6 Controller Design 72
6.1 Introduction of Extra Variables . . . . . . . . . . . . . . . . . . . . . 72
6.2 Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Static State-Feedback Control . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Robust Pole Placement . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Robust Partial Pole Placement . . . . . . . . . . . . . . . . . 82
6.4 Dynamic Output-Feedback Control . . . . . . . . . . . . . . . . . . . 85
6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.1 Longitudinal Control of a Combat Aircraft . . . . . . . . . . . 92
6.5.2 Attitude Control of a Satellite . . . . . . . . . . . . . . . . . . 97
7 Conclusions 102
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Appendix A 105
Bibliography 109

參考文獻 References
[1] G. Zames, “On the input-output stability of time-varying nonlinear feedback
systems. Part I: Conditions derived using concepts of loop gain, conicity, and
positivity,” IEEE Trans. Autom. Control, vol. 11, pp. 228–238, 1966.
[2] A. Packard and J. Doyle, “The complex structured singular value,” Automatica,
vol. 29, no. 1, pp. 71–109, 1993.
[3] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,”
IEEE Trans. Autom. Control, vol. 42, no. 6, pp. 819–830, 1997.
[4] C. Scherer and I. K‥ose, “Robustness with dynamic IQCs: An exact state-space
characterization of nominal stability with applications to robust estimation,”
Automatica, vol. 44, no. 7, pp. 1666–1675, 2008.
[5] P. Seiler, A. Packard, and G. Balas, “A gain-based lower bound algorithm for
real and mixed μ problems,” Automatica, vol. 46, no. 3, pp. 493–500, 2010.
[6] P. Gahinet, P. Apkarian, and M. Chilali, “Affine parameter-dependent Lyapunov
functions and real parametric uncertainty,” IEEE Trans. Autom. Con-
trol, vol. 41, no. 3, pp. 436–442, 1996.
[7] M. de Oliveira, J. Bernussou, and J. Geromel, “A new discrete-time robust
stability condition,” Syst. Control Lett., vol. 37, no. 4, pp. 261–265, 1999.
[8] P.-A. Bliman, “A convex approach to robust stability for linear systems with
uncertain scalar parameters,” SIAM J. Control Optim., vol. 42, no. 6, pp. 2016–
2042, 2003.
[9] G. Chesi, A. Garulli, A. Tesi, and A. Vicino, “Polynomially parameterdependent
Lyapunov functions for robust stability of polytopic systems: An
LMI approach,” IEEE Trans. Autom. Control, vol. 50, no. 3, pp. 365–370,
2005.
[10] R. Oliveira and P. Peres, “Parameter-dependent LMIs in robust analysis: Characterization
of homogeneous polynomially parameter-dependent solutions via
LMI relaxations,” IEEE Trans. Autom. Control, vol. 52, no. 7, pp. 1334–1340,
2007.
[11] P. Khargonekar, I. Petersen, and K. Zhou, “Robust stabilization of uncertain
linear systems: Quadratic stabilizability and H∞ control theory,” IEEE Trans.
Autom. Control, vol. 35, no. 3, pp. 356–361, 1990.
109
[12] A. Packard and J. Doyle, “Quadratic stability with real and complex perturbations,”
IEEE Trans. Autom. Control, vol. 35, no. 2, pp. 198–201, 1990.
[13] M. Rotea, M. Corless, D. Da, and I. Petersen, “Systems with structured uncertainty:
Relations between quadratic and robust stability,” IEEE Trans. Autom.
Control, vol. 38, no. 5, pp. 799–803, 1993.
[14] W. M. Haddad and D. S. Bernstein, “Robust stabilization with positive real
uncertainty: Beyond the small gain theorem,” Syst. Control Lett., vol. 17, no. 3,
pp. 191–208, 1991.
[15] A. Tits, V. Balakrishnan, and L. Lee, “Robustness under bounded uncertainty
with phase information,” IEEE Trans. Autom. Control, vol. 44, no. 1, pp. 50–
65, 1999.
[16] K. °Astr‥om and L. Rundqwist, “Integrator windup and how to avoid it,” in
Proc. Amer. Control Conf., 1989, pp. 1693–1698.
[17] G. Grimm, J. Hatfield, I. Postlethwaite, A. Teel, M. Turner, and L. Zaccarian,
“Antiwindup for stable linear systems with input saturation: An LMI-based
synthesis,” IEEE Trans. Autom. Control, vol. 48, no. 9, pp. 1509–1525, 2003.
[18] B. Hencey and A. Alleyne, “A KYP lemma for LMI regions,” IEEE Trans.
Autom. Control, vol. 52, no. 10, pp. 1926–1930, 2007.
[19] ——, “An anti-windup technique for LMI regions,” Automatica, vol. 45, no. 10,
pp. 2344–2349, 2009.
[20] T. Iwasaki and S. Hara, “Well-posedness of feedback systems: Insights into exact
robustness analysis and approximate computations,” IEEE Trans. Autom.
Control, vol. 43, no. 5, pp. 619–630, 1998.
[21] M. Chilali, P. Gahinet, and P. Apkarian, “Robust pole placement in LMI regions,”
IEEE Trans. Autom. Control, vol. 44, no. 12, pp. 2257–2270, 1999.
[22] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, “A new robust Dstability
condition for real convex polytopic uncertainty,” Syst. Control Lett.,
vol. 40, no. 1, pp. 21–30, 2000.
[23] D. Arzelier, D. Henrion, and D. Peaucelle, “Robust D stabilization of a polytope
of matrices,” Int. J. Control, vol. 75, no. 10, pp. 744–752, 2002.
[24] O. Bachelier and D. Mehdi, “Robust matrix DU-stability analysis,” Int. J.
Robust Nonlinear Control, vol. 13, no. 6, pp. 533–558, 2003.
[25] O. Bachelier, D. Henrion, B. Pradin, and D. Mehdi, “Robust root-clustering
of a matrix in intersections or unions of regions,” SIAM J. Control Optim.,
vol. 43, pp. 1078–1093, 2004.
[26] J. Bosche, O. Bachelier, and D. Mehdi, “An approach for robust matrix rootclustering
analysis in a union of regions,” IMA Journal of Mathematical Control
and Information, vol. 22, no. 3, pp. 227–239, 2005.
110
[27] B. A. Francis, A Course in H∞ Control Theory. Springer-Verlag, 1987.
[28] K. Zhou and J. Doyle, Essentials of Robust Control. New Jersey, NJ: Prentice
Hall, 1998.
[29] W. Sun, P. Khargonekar, and D. Shim, “Solution to the positive real control
problem for linear time-invariant systems,” IEEE Trans. Autom. Control,
vol. 39, no. 10, pp. 2034–2046, 1994.
[30] D. Shim, “Equivalence between positive real and norm-bounded uncertainty,”
IEEE Trans. Autom. Control, vol. 41, no. 8, pp. 1190–1193, 1996.
[31] Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Methods in Convex
Programming: Theory and Applications. Philadelphia, PA: SIAM, 1994.
[32] L. Vandenberghe and S. Boyd, “A primal-dual potential reduction method for
problems involving matrix inequalities,” Mathematical Programming, vol. 69,
no. 1, pp. 205–236, 1995.
[33] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI Control Toolbox.
Natick, MA: The MathWorks, 1995.
[34] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones,” Optimization methods and software, vol. 11, no. 1, pp. 625–653,
1999.
[35] B. Borchers, “CSDP, a C library for semidefinite programming,” Optimization
Methods and Software, vol. 11, no. 1, pp. 613–623, 1999.
[36] R. T‥ut‥unc‥u, K. Toh, and M. Todd, “Solving semidefinite-quadratic-linear programs
using SDPT3,” Mathematical Programming, vol. 95, no. 2, pp. 189–217,
2003.
[37] A. Rantzer, “On the Kalman Yakubovich Popov lemma,” Syst. Control Lett.,
vol. 28, no. 1, pp. 7–10, 1996.
[38] V. Balakrishnan and L. Vandenberghe, “Semidefinite programming duality and
linear time-invariant systems,” IEEE Trans. Autom. Control, vol. 48, no. 1, pp.
30–41, 2003.
[39] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic
Systems, 5th ed. Prentice-Hall, 2006.
[40] J. Kautsky, N. Nichols, and P. Van Dooren, “Robust pole assignment in linear
state feedback,” Int. J. Control, vol. 41, no. 5, pp. 1129–1155, 1985.
[41] Y. Juang, “A fundamental multivariable robustness theorem for robust eigenvalue
assignment,” IEEE Trans. Autom. Control, vol. 33, pp. 940–941, 1988.
[42] J. Martin, “State space measures of robustness of pole locations for structured
and unstructured perturbations,” Syst. Control Lett., vol. 16, no. 6, pp. 423–
433, 1991.
111
[43] M. Cook, Flight Dynamics Principles, 2nd ed. Butterworth-Heinemann, 2007.
[44] N. Maamri, O. Bachelier, and D. Mehdi, “Pole placement in a union of regions
with prespecified subregion allocation,” Mathematics and Computers in
Simulation, vol. 72, no. 1, pp. 38–46, 2006.
[45] P. Park, “Stability criteria of sector- and slope-restricted Lur’e systems,” IEEE
Trans. Autom. Control, vol. 47, no. 2, pp. 308–313, 2002.
[46] I. Hodaka, N. Sakamoto, and M. Suzuki, “New results for strict positive realness
and feedback stability,” IEEE Trans. Autom. Control, vol. 45, no. 4, pp. 813–
819, 2000.
[47] S. Boyd and C. Desoer, “Subharmonic functions and performance bounds on
linear time-invariant feedback systems,” IMA Journal of Mathematical Control
and Information, vol. 2, no. 2, pp. 153–170, 1985.
[48] S. Joshi and S. Gupta, “On a class of marginally stable positive-real systems,”
IEEE Trans. Autom. Control, vol. 41, no. 1, pp. 152–155, 1996.
[49] H. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[50] T. Iwasaki and S. Hara, “Generalized KYP lemma: Unified frequency domain
inequalities with design applications,” IEEE Trans. Autom. Control, vol. 50,
no. 1, pp. 41–59, 2005.
[51] I. Petersen, “A stabilization algorithm for a class of uncertain linear systems,”
Syst. Control Lett., vol. 8, no. 4, pp. 351–357, 1987.
[52] M. Khlebnikov and P. Shcherbakov, “Petersen’s lemma on matrix uncertainty
and its generalizations,” Autom. Remote Control, vol. 69, no. 11, pp. 1932–1945,
2008.
[53] L. Xie, “Output feedback H∞ control of system with parameter uncertainty,”
Int. J. Control, vol. 4, pp. 741–750, 1996.
[54] M. Chilali and P. Gahinet, “H∞ design with pole placement constraints: An
LMI approach,” IEEE Trans. Autom. Control, vol. 41, no. 3, pp. 358–367, 1996.
[55] S. Gutman and E. Jury, “A general theory for matrix root-clustering in subregions
of the complex plane,” IEEE Trans. Autom. Control, vol. 26, no. 4, pp.
853–863, 1981.
[56] S. Wang, “Robust pole clustering in a good ride quality region of aircraft for
matrices with structured uncertainties,” Automatica, vol. 39, no. 3, pp. 525–532,
2003.
[57] M. de Oliveira and R. Skelton, “Stability tests for constrained linear systems,”
in Perspectives in Robust Control. Springer, 2001, pp. 241–257.
[58] T. Iwasaki and G. Shibata, “LPV system analysis via quadratic separator for
uncertain implicit systems,” IEEE Trans. Autom. Control, vol. 46, no. 8, pp.
1195–1208, 2001.
112
[59] J. Doyle, A. Packard, and K. Zhou, “Review of LFTs, LMIs, and μ,” in Proc.
Conf. Decision Control, 1991, pp. 1227–1232.
[60] R. Nelson, Flight Stability and Automatic Control. McGraw-Hill, 1989.
[61] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequal-
ities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
[62] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,”
Int. J. Robust Nonlinear Control, vol. 4, no. 4, pp. 421–448, 1994.
[63] D. Henrion and G. Meinsma, “Rank-one LMIs and Lyapunov’s inequality,”
IEEE Trans. Autom. Control, vol. 46, no. 8, pp. 1285–1288, 2001.
[64] T. Iwasaki, G. Meinsma, and M. Fu, “Generalized S-procedure and finite frequency
KYP lemma,” Mathematical Problems in Engineering, vol. 6, no. 2-3,
pp. 305–320, 2000.


電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code