Responsive image
博碩士論文 etd-0317115-123644 詳細資訊
Title page for etd-0317115-123644
論文名稱
Title
鋰鋁氧非揮發性電阻式記憶體特性機制與突觸仿生之研究
Study on the Bionic Synapse Application of Lithium aluminum oxide Non-Volatile Resistance Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
86
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-06-26
繳交日期
Date of Submission
2015-08-04
關鍵字
Keywords
類神經網路、多位元存取、尖峰時間依賴可塑性、電阻式記憶體、多阻絲、鋰鋁氧
Neural Networks, Lithium Aluminum Oxide, STDP, Multi-Bits Access, Multi-Filament, RRAM
統計
Statistics
本論文已被瀏覽 5679 次,被下載 266
The thesis/dissertation has been browsed 5679 times, has been downloaded 266 times.
中文摘要
自古以來,自然界即為人類各種技術、工程原理及重大發明的思想泉源,隨著生產的需要和科學技術發展,仿生科技在近年來備受矚目。本論文製備鋰鋁氧薄膜電阻式記憶體元件,其具有優良的多位元(Multi-Bite)存取功能,能仿效大腦記憶突觸的運作方式,有助於未來類神經網路的發展。
本論文使用多靶式磁控濺鍍機,製作絕緣層分別為鋰鋁氧及氧化鋁薄膜電阻式記憶體,上下電極為鉑與氮化鈦。從I-V電性,發現此鋰鋁氧元件為鋰阻絲進行阻態切換。高電阻阻態(HRS)之阻態變化能從10-4~10-7 Ω的阻值分布。在Reset過程中常出現兩階段Reset現象,此行為可藉由離子的擴散與氮化鈦吸引鋰離子模型解釋廣域電阻值與利用氧離子對鋰阻絲的氧化還原解釋兩階段Reset。
隨後在氮化鈦上濺鍍鉑電極,藉以阻止鋰離子擴散至氮化鈦電極中,發現HRS的分布降至一個Order,消除了廣域電阻分布現象。但低電阻阻態分布卻比無鉑之氮化鈦上電極時較廣,此係由於鉑電極阻擋氧離子與鋰離子擴散至電極裡,氧離子使鋰阻絲氧化而致LRS不穩定現象。
利用DC電壓與Pulse電壓操作皆可使鋰鋁氧電阻式記憶體產生連續阻態變化,在氧化鋁RRAM則無此現象。再者利用Pulse電壓可使鋰鋁氧電阻式記憶體產生出仿生物腦神經記憶之行為-尖峰時間相關之可塑性(Spike-Timing Dependent Plasticity, STDP),此為生物上大腦記憶中最重要的特性之一。利用DC電壓產生的連續阻態變化,配合電性擬合機制找出Ohmic區段,分析其電阻與掃描次數之關係,建立出Multi-Filament模型解釋其電性之Multi-Reset機制。
Abstract
Since long time ago, the nature being has been the source of human’s senses of invention principles productions, in which bionic technology has been well developed in recent years. Lithium aluminum oxide (LiAlO) thin film Resistance Random Access memory (RRAM) reveals an excellent multi-bites memory. It is considered for application of artificial neural network and analog storage to emulating memory rules in the brain.
In this thesis, two different RRAMs, investigated are that in one the insulation layer is lithium aluminum oxide, and the other one is aluminum oxide, fabricated by Multi-target magnetron sputtering. The RRAM upper and lower electrodes are platinum and titanium nitride, respectively. In operating process of this LiAlO RRAM the reset process reveals two reset stages. Applying the ionic diffusion and the titanium nitride attraction an ion model of lithium-ion, is discussed about the phenomenon of the two-phase wide resistance value. And utilizing oxygen ions model the two-stage redox Reset resistance of lithium wires are explained.
The experiment using sputtering platinum on the titanium nitride electrodes can prevent lithium ions diffusing into the TiN electrode, that HRS distribution is reduced to one Order. However, the distribution of LRS on titanium nitride becomes wider than that one without Pt layer on titanium nitride electrode. Since the Pt electrode blocks oxygen ions and lithium ions diffusing into the titanium nitride electrode, causes preventing of the instability of LRS.

Both DC and Pulse Voltage have been applied to perform lithium aluminum oxide RRAM, and reveal the HRS resistance changing continuously, but alumina RRAM does not. Applied with Pulse voltage on lithium aluminum oxide RRAM can induce a bionic brain behavior of Spike-Timing-Dependent Plasticity (STDP), which is one of the most important characteristics of biological brain and memories. the LRS of LiAlO RRAM changes gradually after applying a continuous DC voltage. From the fitting of their I-V curves the conductive mechanism is identified. From its resistance of Ohmic conduction region changes after numbers of I-V scans, a Multi-filament model is proposed to explain the Multi-Reset electrical mechanism.
目次 Table of Contents
[ 致謝 + i ]
[ 中文摘要 + ii ]
[ Abstract + iii ]
[ 目錄 + v ]
[ 圖目錄 + viii ]
[ 表目錄 + x ]
[ 縮寫對照 + xi ]
[ 第一章、概論 + 1 ]
[ 1-1前言 + 1 ]
[ 1-2研究目的與動機 + 2 ]
[ 第二章、文獻回顧 + 3 ]
[ 2-1 揮發式記憶體 + 3 ]
[ 2-2非揮發式記憶體 + 3 ]
[ 2-3 電阻式記憶體 + 4 ]
[ 2-2-1 電阻式記憶體阻絲理論 + 4 ]
[ 2-2-2 電阻式記憶體切換機制 + 6 ]
[ 2-3 絕緣體載子傳導機制 + 8 ]
[ 2-3-1歐姆傳導(Ohmic Conduction) + 9 ]
[ 2-3-2蕭基發射(Schottky Emission) + 10 ]
[ 2-3-3法蘭克-普爾發射(Frenkel- Poole Emission) + 11 ]
[ 2-3-4跳躍傳導(Hopping Conduction) + 12 ]
[ 2-3-5穿隧傳導(Tunneling) + 13 ]
[ 2-3-5空間電荷電流傳導(Space Charge) + 14 ]
[ 2-3生物之大腦記憶神經系統 + 15 ]
[ 2-3-1 記憶神經元(Neurons) + 15 ]
[ 2-3-2突觸(Synapse) + 16 ]
[ 2-4-3尖峰時間依賴可塑性(Spike-Timing-Dependent Plasticity, STDP) + 17 ]
[ 2-4-5人類大腦記憶模型(Memory Model) + 18 ]
[ 2-4-6長期增益效應(Long-Term Potentiation, LTP) + 19 ]
[ 第三章、鋰鋁氧電阻式記憶體製作與量測 + 20 ]
[ 3-1 鋰鋁氧電阻式記憶體製作流程 + 20 ]
[ 3-1-1鋰鋁氧薄膜RRAM元件備製 + 20 ]
[ 3-1-2Pt電極薄膜製備 + 22 ]
[ 3-1 鋰鋁氧材料分析 + 23 ]
[ 3-2-1 Far-FTIR 分析結果 + 23 ]
[ 3-2-2 XPS分析結果 + 24 ]
[ 3-3 鋰鋁氧 RRAM元件電性分析 + 25 ]
[ 3-3-1 Forming 過程 + 25 ]
[ 3-3-2 Reset與Set 步驟 + 26 ]
[ 3-3-3 鋰鋁氧 RRAM 元件之Size Effect量測 + 27 ]
[ 3-3-4 鋰鋁氧RRAM阻絲成分實驗 + 29 ]
[ 3-3-5 鋰鋁氧RRAM IV Sweep 與記憶保存力測試(Retention) + 30 ]
[ 3-3-6鋰鋁氧RRAM電流機制擬合 + 32 ]
[ 3-4 鋰鋁氧傳導機制模型 + 36 ]
[ 第四章、惰性電極及對鋰鋁氧電阻式記憶體之影響 + 37 ]
[ 4-1 TiN上加鍍鉑金屬電極之鋰鋁氧RRAM製備 + 37 ]
[ 4-2 Pt-RRAM元件電性分析 + 39 ]
[ 4-2-1 Forming 步驟 + 39 ]
[ 4-2-2 Pt-LiAlO RRAM IV Sweep 與電流機制擬合 + 40 ]
[ 4-3鋰鋁氧RRAM與Pt-LiAlO RRAM電性與機制模型比較 + 43 ]
[ 4-3-1 HRS電性與機制比較 + 43 ]
[ 4-3-2 LRS電性與機制比較 + 45 ]
[ 第五章、鋰鋁氧電阻式記憶體之仿生特性與應用 + 47 ]
[ 5-1 DC固定停止電壓連續操作 + 47 ]
[ 5-1-1 DC固定負停止電壓連續操作 + 47 ]
[ 5-2-2 DC固定正截止電壓連續操作 + 48 ]
[ 5-2 Fast IV 系統操作 + 49 ]
[ 5-2-1 Fast IV Pulse Set、Pulse Reset 連續操作 + 49 ]
[ 5-2-2 RRAM之尖峰時間依賴可塑性(Spike-Timing-Dependent Plasticity, STDP) + 51 ]
[ 5-3 多阻絲模型 + 54 ]
[ 5-3-1 DC固定停止電壓Reset過程 + 54 ]
[ 第六章、結論 + 62 ]
[ 參考文獻 + 63 ]
[ 附錄A 電阻式記憶體仿造長期記憶特性 + 67 ]
[ 附錄B 氧化鋁與鋰鋁氧RRAM特性比較 + 69 ]
參考文獻 References
[1] B. Bhushan, "Biomimetics: lessons from nature–an overview," Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 367, (2009), pp. 1445-1486.
[2] P. Ball, "Life's lessons in design," Nature, vol. 409, (2001) , pp. 413-416.
[3] M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, "A Low-Power Nonvolatile Switching Element Based on Copper-Tungsten Oxide Solid Electrolyte," Nanotechnology, IEEE Transactions, vol. 5, (2006), pp. 535-544.
[4] C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, "Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2," Electron Devices, IEEE Transactions, vol. 54, (2007), pp. 2762-2768,.
[5] F. Alibart, E. Zamanidoost, and D. B. Strukov, "Pattern classification by memristive crossbar circuits using ex situ and in situ training," Nat Commun, vol. 4, (2013), pp. 2072.
[6] 王錫崗, 麥麗敏, 祈葉榮, 廖美華, 鍾麗琴, 戴瑄, 黃玉琪, and 呂國昀, "解剖生理學", 華杏出版社, 台灣; (2013), pp. 208-216.
[7] S. Skorobogatov, "Low temperature data remanence in static RAM," University of Cambridge Computer Laborary Technical Report, vol. 536, (2002), pp. 3-9.
[8] A. Sawa, "Resistive switching in transition metal oxides," Materials Today, vol. 11, (2008), pp. 28-36.
[9] K. M. Kim, B. J. Choi, and C. S. Hwang, "Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films," Applied Physics Letters, vol. 90, (2007), pp. 242906-1-242906-3.
[10] T.-M. Tsai, K.-C. Chang, T.-C. Chang, Y.-E. Syu, S.-L. Chuang, G.-W. Chang, G.-R. Liu, M.-C. Chen, H.-C. Huang, and S.-K. Liu, "Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications," Electron Device Letters, IEEE, vol. 33, (2012), pp. 1696-1698.
[11] X. A. Tran, W. Zhu, W. J. Liu, Y. C. Yeo, B. Y. Nguyen, and H. Y. Yu, "Self-Selection Unipolar HfO Based RRAM," Electron Devices, IEEE Transactions, vol. 60, (2013), pp. 391-395.
[12] Y.-S. Lai, C.-H. Tu, D.-L. Kwong, and J.-S. Chen, "Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films," Electron Device Letters, IEEE, vol. 27, (2006), pp. 451-453.
[13] K.-C. Chang, T.-M. Tsai, T.-C. Chang, Y.-E. Syu, C.-C. Wang, S.-L. Chuang, C.-H. Li, D.-S. Gan, and S. M. Sze, "Reducing operation current of Ni-doped silicon oxide resistance random access memory by supercritical CO2 fluid treatment," Applied Physics Letters, vol. 99, (2011), pp. 263501-1-4.
[14] S. Yu, X. Guan, and H.-S. P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model," Applied Physics Letters, vol. 99, (2011), pp. 063507-1-3.
[15] C. Kuan-Chang, P. Chih-Hung, C. Ting-Chang, T. Tsung-Ming, Z. Rui, L. Jen-Chung, Y. Tai-Fa, C. Jung-Hui, S. Chih-Cheng, C. Tian-Jian, C. Jian-Yu, S. Yu-Ting, J. Jhao-Ping, C. Kai-Huang, H. Hui-Chun, S. Yong-En, G. Der-Shin, and S. M. Sze, "Hopping effect of hydrogen-doped silicon oxide insert RRAM by supercritical CO2 fluid treatment," Electron Device Letters, IEEE, vol. 34, (2013), pp. 617-619.
[16] S. M. Sze and K. K. Ng, "Physics of semiconductor devices.", John Wiley & Sons, New York; (2006), p.227-228.
[17] Y.-E. Syu, T.-C. Chang, T.-M. Tsai, G.-W. Chang, K.-C. Chang, J.-H. Lou, Y.-H. Tai, M.-J. Tsai, Y.-L. Wang, and S. M. Sze, "Asymmetric Carrier Conduction Mechanism by Tip Electric Field in Resistance Switching Device," Electron Device Letters, IEEE, vol. 33, (2012), pp. 342-344.
[18] 王錫崗, 高美媚, 蔡秀純, 溫小娟, 廖美華, 羅瑋瑜, 張林松, and 張澎心, "人體生理學", 美商麥格羅希爾國際, 台灣; (2002), p.152-184.
[19] M. Asashima, H. Fukuda, T. Ide, M. Ikeuchi, S. Ishiura, T. Kodama, S. Komazaki, N. Sato, and Y. Watanabe, "Intercellular Communication and Tissue Architecture", The University of Tokyo, Japen; (2010), pp.223-223.

[20] D. Randall, W. Burggren, and K. French, "Mechanisms and Adaptations", W. H. Freeman and Company, New York; (2002), pp. 167-170.
[21] W. B. Levy and O. Steward, "Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus," Neuroscience, vol. 8, (1983), pp. 791-797.
[22] G.-q. Bi and M.-m. Poo, "Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type," The Journal of Neuroscience, vol. 18, (1998), pp. 10464-10472.
[23] R. C. Atkinson and R. M. Shiffrin, "Human memory: A proposed system and its control processes," The psychology of learning and motivation, vol. 2, (1968), pp. 89-195.
[24] S. Cooke and T. Bliss, "Plasticity in the human central nervous system," Brain, vol. 129, (2006), pp. 1659-1673.
[25] L. E. Dobrunz, "Long-term potentiation and the computational synapse," Proceedings of the National Academy of Sciences, vol. 95, (1998), pp. 4086-4088.
[26] T. V. Bliss and G. L. Collingridge, "A synaptic model of memory: long-term potentiation in the hippocampus," Nature, vol. 361, (1993), pp. 31-39.
[27] A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Mauger, and C. M. Julien, "FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries," Spectrochim Acta A Mol Biomol Spectrosc, vol. 65, (2006), pp. 1007-13.
[28] T.-T. A. Li, S. Ruffell, M. Tucci, Y. Mansoulié, C. Samundsett, S. De Iullis, L. Serenelli, and A. Cuevas, "Influence of oxygen on the sputtering of aluminum oxide for the surface passivation of crystalline silicon," Solar Energy Materials and Solar Cells, vol. 95, (2011), pp. 69-72.
[29] C. Kuan-Chang, T. Tsung-Ming, C. Ting-Chang, C. Kai-Huang, Z. Rui, W. Zhi-Yang, C. Jung-Hui, Y. Tai-Fa, C. Min-Chen, C. Tian-Jian, H. Syuan-Yong, S. Yong-En, B. Ding-Hua, and S. M. Sze, "Dual Ion Effect of the Lithium Silicate Resistance Random Access Memory," Electron Device Letters, IEEE, vol. 35, (2014), pp. 530-532.
[30] Y. Yue, P. Han, X. He, K. Zhang, Z. Liu, C. Zhang, S. Dong, L. Gu, and G. Cui, "In situ synthesis of a graphene/titanium nitride hybrid material with highly improved performance for lithium storage," Journal of Materials Chemistry, vol. 22, (2012), pp. 4938.
[31] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett, vol. 10, (2010), pp. 1297-301.
[32] Z. Q. Wang, H. Y. Xu, X. H. Li, H. Yu, Y. C. Liu, and X. J. Zhu, "Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor," Advanced Functional Materials, vol. 22, (2012), pp. 2759-2765.
[33] D. Kuzum, R. G. Jeyasingh, B. Lee, and H. S. Wong, "Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing," Nano Lett, vol. 12, (2012), pp. 2179-86.
[34] T. Chang, S.-H. Jo, and W. Lu, "Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor," ACS Nano, vol. 5, (2011), pp. 7669-7676.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code