Responsive image
博碩士論文 etd-0317115-155304 詳細資訊
Title page for etd-0317115-155304
論文名稱
Title
具可調的共振頻率之壓電獵能器研究
Research of Piezoelectric Energy Harvesters with Adjustable Resonance Frequency
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-19
繳交日期
Date of Submission
2016-08-31
關鍵字
Keywords
非線性彈簧、自然頻率可調、獵能器
nonlinear springs, energy harvester, natural frequency-adjusting
統計
Statistics
本論文已被瀏覽 5701 次,被下載 201
The thesis/dissertation has been browsed 5701 times, has been downloaded 201 times.
中文摘要
隨著環保意識的提升,綠色能源的發展備受各界矚目,如何有效地將環境中之能量並轉換電能,進而取代現有之化學電池,成為目前的研發趨勢。本研究將透過機構設計與運動方程式推導,使得獵能器在共振頻率下運動,獲得較大的能量輸出,同時儘可能縮小獵能器之體積與重量,希望實現胎壓感測系統自主供電之目標。
本研究從一個均勻斷面懸臂樑出發,透過拉格朗日方程式(Lagrange equation)推導運動方程式,了解其運動狀態,並根據運動方程式堆導結果,獲得良好的結構設計參數,進而提出可伸長之梯形懸臂樑構型。梯形懸臂樑之作用長度在離心力作用下隨車速伸長、縮短,改變其截面慣性矩。本研究利用截面慣性矩可改變之特性,來調整一般結構之固有頻率,使得本獵能器在共振的狀態下運動,獲得最大的能量輸出。為了增加運動方程式之完整度,透過能量法將壓電材料所造成之電氣阻尼加入運動方程式。
完成梯形懸臂樑壓電獵能器製作,並且實際裝置於旋轉平台模擬車輪轉動之狀態,實驗結果顯示,在車速60 km/hr下的輸出電壓為16 V,輸出電量為25.6 μW;車速30、40和50 km/hr之輸出電能實驗值分別為16.9、19.6和20.45 μW。
Abstract
Because of the rise in environmental protection awareness, the development of green energy is currently garnering much interest. The efficient conversion of ambient energy into usable electrical energy for replacing traditional electrochemical batteries is a recent trend in research and development. In this study, the resonant frequency of harvested energy was adjusted using a self-tuning mechanism with the goal of approaching maximum power output. We reduce the size and weight of the energy harvester to achieve autonomous power supply for a tire pressure monitoring system.
The origin of this study is the design of a uniform cantilever beam for the main body of an energy harvester. The equation of motion is derived from the Lagrange equation to determine the dynamic behavior of the energy harvester. To obtain adequate structural design parameters from the resulting equation of motion, a configuration using an extensible trapezoidal cantilever is proposed. The effective length of the trapezoidal cantilever beam can be extended through centrifugal force from a rotating wheel to vary the area moment of inertia of the trapezoidal cantilever beam. In this study, the variation of area moment of inertia facilitated the adjustment of the harvester’s natural frequency to meet the wheel rotation frequency, obtaining maximum output power. Electrical damping caused by the piezoelectric effect was derived from the energy method and added to complete the equation of motion.
A prototype for a piezoelectric energy harvester with natural frequency self-tuning was developed. To investigate the dynamic behavior of the energy harvester, a car wheel emulator was constructed. The experimental output power was 16.9, 19.6, 20.45, and 25.6 μW at 30, 40, 50, and 60 km/hr, respectively.
目次 Table of Contents
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖次 vii
表次 viii
符號說明 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 發電方式介紹 2
1.2.2 壓電材料 3
1.2.3 壓電式振動獵能器 4
1.2.4 獵能器於胎壓感測器之應用 4
1.3 研究動機 6
1.4 本文架構 6
第二章 獵能器結構模型與動態分析 8
2.1 結構模型與統御方程式 8
2.2梯形懸臂樑獵能器之運動方程式與動態分析 16
2.2.1 梯形懸臂樑獵能器之運動方程式 16
2.2.2 動態分析 20
第三章 參數化調整與機構設計 27
3.1 配重塊重力位能項次之參數調整與機構實現 27
3.2 懸臂樑彈性位能項次之參數調整與機構設計 29
3.3 各項參數對於頻率比值之影響與獵能器設計參數 31
第四章 電氣阻尼之推導與動態分析 33
4.1 壓電本構與電氣阻尼之推導 33
4.2 動態分析 40
第五章 梯形懸臂樑壓電獵能器之實驗量測 49
5.1實驗架設 49
5.2壓電電路之分析與輸出電能估算 50
5.3梯形懸臂樑壓電獵能器之原型機 52
5.4梯形懸臂樑壓電獵能器之實驗 53
第六章 結論與未來展望 56
6.1結論 56
6.2未來展望 57
參考文獻 58
參考文獻 References
[1] S. Roundy, P. K. Wright, and J. Rabaey,“A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes,” Computer communications ,vol. 26, pp. 1131-1144, 2003.
[2] U. Mikio, K. Nakamura, and S. Ueha,“Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator,” Japanese Journal of Applied Physics, vol. 35, no. 5B, pp. 3267-3273, 1996.
[3] J. Kymissis, C. Kendall , J. Paradiso , N. Gershenfeld,“Parasitic power harvesting in shoes,” Wearable Computers, 1998. Digest of Papers. Second International Symposium on. IEEE, pp. 132-139, 1998.
[4] S. Roundy, P. K. Wright,“A Piezoelectric Vibration Based Generator for Wireless Electronics,” Smart Materials and structures , vol. 13, no. 5, pp. 1131-1142, 2014.
[5] Y. C. Shu and I.C. Lien,“Analysis of Power Output for Piezoelectric Energy Harvesting Systems,” Smart materials and structures, vol. 15, no. 6, pp. 1499-1512, 2006.
[6] I. C. Lien and Y. C. Shu,“Array of Piezoelectric Energy Harvesting by the Equivalent Impedance Approach,” Smart Materials and Structures, vol. 21, no. 8, 2012.
[7] Y. J. Wang, C. D. Chen, C. K. Sung and C. Li, “Natural frequency self-tuning energy harvester using a circular Halbach array magnetic disk,” Journal of Intelligent Material Systems and Structures, vol. 23, no. 8, pp. 933–943, 2012.
[8] Y. J. Wang, C. D. Chen, C. K. Sung, “Design of a frequency-adjusting device for harvesting energy from a rotating wheel,” Sensors and Actuators A: Physical, vol. 159, pp. 196-203, 2010.
[9] Y. J. Wang, C. D. Chen, C. K. Sung, “System design of a weighted-pendulum type electromagnetic generator for harvesting energy from a rotating wheel,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2, pp. 754-763, 2013.
[10] S. Roundy and J. Tola,“Energy Harvester for Rotating Environments Using Offset Pendulum and Nonlinear Dynamics,” Smart Materials and Structures ,vol. 23, no. 10, 2014.
[11] L. Gu and C. Livermore,“Compact Passively Self-Tuning Energy Harvesting for Rotating Applications. ” Smart materials and structures, vol. 21, no. 1, 2011.
[12] L. Gu and C. Livermore, “Passive self-tuning energy harvester for extracting energy from rotational motion,” Applied Physics Letters, vol. 97, no. 8, pp. 081904-1- 081904-3, 2010.
[13] X. Wu, M. Parmar, and D. W. Lee,“A Seesaw-Structured Energy Harvester with Superwide Bandwidth for Tpms Application,” IEEE/ASME Transactions on Mechatronics ,vol. 19, no. 5, pp. 1514-1522, 2014.
[14] M. Li, Y. Wen, P. Li, J. Yang,“A Resonant Frequency Self-Tunable Rotation Energy Harvester Based on Magnetoelectric Transducer,” Sensors and Actuators A: Physical , Volume 194, pp. 16-24, 1 May 2013.
[15] E. D. Niri and S. Salamone,“A Passively Tunable Mechanism for a Dual Bimorph Energy Harvester with Variable Tip Stiffness and Axial Load. ” Smart Materials and Structures,vol. 21, no. 12, 125025, 2012.
[16] 林顥育,可變係數彈簧式獵能器設計,國立台北科技大學碩士論文,2015
[17] 黃信瀚,新型PVDF壓電獵能器之設計分析與實驗研究,國立成功大學碩士 論文,2009
[18] G. Manla, N. M. White and M. J. Tudor,“Numerical model of a non-contact piezoelectric energy harvester for rotating objects,” IEEE Sensors journal, vol. 12, pp. 1785-1793, 2012.
[19] R. L. Harne and K. W. Wang,“A review of the recent research on vibration energy harvesting via bistable systems. ” Smart Materials and Structures,vol. 22, no. 2, 023001, 2013.
[20] D. Zhu, M. J. Tudor, S. P. Beeby, “Strategies for increasing the operating frequency range of vibration energy harvesters: a review. ” Measurement Science and Technology, vol. 21, no. 2, 022001, 2010.
[21] J. Ajitsaria1, S. Y, Choe1, D. Shen and D. J. Kim, “Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation,” Smart Materials and Structures, vol. 16, no. 2, pp. 447-454, 2007.
[22] F. Lu, H. P. Lee, S. P. Lim,“Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systemsapplications. ” Smart Materials and Structures,vol. 13, no. 1, pp. 57-63, 2004
[23] MEASUREMENT,“Piezo Film Sensors Technical Manual,”.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code