Responsive image
博碩士論文 etd-0317117-152308 詳細資訊
Title page for etd-0317117-152308
論文名稱
Title
合成硫醇分子功能化低維二硫化鉬材料應用於生物分子檢測、細胞成像,與藥物傳遞
Functionalization of Low-Dimensional Nanomaterials of MoS2 with Thiol-Terminated Molecules for Biomolecular Detection, Cellular Imaging, and Drug Delivery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-10
繳交日期
Date of Submission
2017-07-21
關鍵字
Keywords
奈米片、穀胱甘肽、巰嘌呤、藥物傳遞、螢光成像、鉀離子、奈米點、二硫化鉬、適體、螢光共振能量轉移
6-mercaptopurine, potassium ions, nanodots, glutathione, FRET, nanosheets, molybdenum disulfide, imaging, drug delivery, aptamer
統計
Statistics
本論文已被瀏覽 5726 次,被下載 39
The thesis/dissertation has been browsed 5726 times, has been downloaded 39 times.
中文摘要
壹、巰嘌呤誘導單層二硫化鉬奈米點螢光淬熄:應用於穀胱甘肽感測、細胞成像,與榖胱甘肽觸發藥物傳遞:
具備表面硫原子空乏缺陷 ( Sulfur vacancies, S-vacancies ) 的二硫化鉬奈米點 ( MoS2 NDs ) 已於過去文獻中被證實可與硫醇分子藉由化學吸附過程進行結合。然而,至今為止,硫醇分子誘導 MoS2 NDs 螢光淬熄的相關研究應用為數相當稀少;因此,我們以巰嘌呤 ( 6-mercaptopurine, 6-MP ) 對水溶液中具有高強度光致螢光放射的單層二硫化鉬奈米點 ( M-MoS2 NDs ) 作為高效的螢光淬熄劑,進行相關範疇的研究報告。6-MP 會藉由分子末端巰基結合於 M-MoS2 NDs 表面的 S-vacancies 上,形成 6-MP-M-MoS2 NDs,再藉由受體-激發光誘導電子轉移機制 ( Acceptor-excited photoinduced electron transfer, acceptor-excited PET ),使 M-MoS2 NDs 發生顯著的螢光淬熄效果。此外,我們發現穀胱甘肽 ( Glutathione, GSH ) 可以有效地觸發 6-MP 自 6-MP-M-MoS2 NDs 表面上被釋放,促使 M-MoS2 NDs 被 6-MP 淬熄的螢光強度大幅回升;於是,我們以 6-MP-M-MoS2 NDs 作為兼具選擇性與高靈敏度的 GSH 螢光強度回升 ( Switched-on ) 形式感測器,應用於紅血球與細胞內 GSH 偵測,其偵測極限達 30 nM。循上述機制,當搭載有巰基化阿黴素 ( Thiolated doxorubicin, DOX-SH ) 的 M-MoS2 NDs ( DOX-SH/M-MoS2 NDs ) 存在於含有 5 mM GSH 的水溶液中時,DOX-SH 會被大量釋放,這表示 DOX-SH/M-MoS2 NDs 可作為對 GSH 響應之奈米載體應用於 DOX-SH 傳遞;更進一步地,我們利用雷射掃描共軛焦螢光顯微鏡與活體分子影像系統分別證實細胞與生物體內 GSH 誘導 DOX-SH 自 DOX-SH/M-MoS2 NDs 表面被釋放之行為。總而言之,基於 M-MoS2 NDs 的螢光放光具有激發光波長依憑之特性,DOX-SH/M-MoS2 NDs 可望作為多功能奈米載體材料,同時應用於藥物傳遞與細胞成像監測。

貳、合成適體功能化二硫化鉬奈米片作為螢光比率探針應用於鉀離子感測與成像
鉀離子 ( Potassium ions, K+ ) 是人類必須營養中的一種宏量元素,也是動物細胞中最主要的金屬陽離子。K+ 對人體生理功能而言,主要是透過調節細胞膜的正常電位差,進一步維持人體生理狀態之恆定性與穩定性;倘若人體 K+ 濃度失調將導致人體產生不適甚至造成性命威脅。二硫化鉬奈米片 ( MoS2 nanosheets, MoS2 NSs ) 具有各項材料優勢,如:良好的人體降解抗性、高核酸親和力、易使細胞攝入,與低細胞毒性等,故我們於本研究中發展出以 MoS2 NSs 作為載體,以配體結合方式 ( Ligand conjugation ) 搭載巰基化寡核苷酸 ( cDNA-SH )。將與 cDNA-SH 部分序列互補,且於兩端修飾有互為螢光共振能量轉移 ( Förster resonance energy transfer, FRET ) 供體 ( Donor) 與受體 ( Acceptor ) 螢光團之對 K+ 具特異性適體 ( D-Apt-A ) 進行雙股雜合 ( D-Apt-A/cDNA-SH ),進一步將適體螢光探針修飾於 MoS2 NSs 上,成功合成 D-Apt-A/cDNA-SH-MoS2 NSs。以 D-Apt-A/cDNA-SH-MoS2 NSs 作為奈米螢光感測探針,利用高效的 FRET 機制誘導雙螢光團產生螢光強度比值為基礎,針對人體血清中 K+ 濃度進行專一性且高靈敏度的偵測應用,偵測極限達 0.3 mM;此外,以雷射掃描共軛焦螢光顯微鏡證實 D-Apt-A/cDNA-SH-MoS2 NSs 可對細胞中 K+ 進行濃度評估與成像。總而言之,我們合理認為 D-Apt-A/cDNA-SH-MoS2 NSs 可作為奈米螢光感測探針,對於許多牽涉到 K+ 的生物體生理調節或生理功能過程進行監測相關應用。
Abstract
(I) 6-Mercaptopurine-induced fluorescence quenching of monolayer MoS2 nanodots: applications to glutathione sensing, cellular imaging, and glutathione-stimulated drug delivery

Molybdenum disulfide (MoS2) nanodots (NDs) with sulfur vacancies have been demonstrated to be suitable to conjugate thiolated molecules. However, thiol-induced fluorescence quenching of MoS2 NDs has been rarely explored. In this study, 6-mercaptopurine (6-MP) served as an efficient quencher for monolayer MoS2 (M-MoS2) NDs that were highly fluorescent in an aqueous solution. 6-MP molecules were chemically adsorbed at the sulfur vacancy sites of the M-MoS2 NDs. The formed complexes triggered the efficient fluorescence quenching of the M-MoS2 NDs due to acceptor-excited photoinduced electron transfer. The presence of glutathione (GSH) efficiently triggered the release of 6-MP from the M-MoS2 NDs, thereby switching on the fluorescence of the M-MoS2 NDs. Thus, the 6-MP-M-MoS2 NDs were implemented as a platform for the sensitive and selective detection of GSH in erythrocytes and live cells without the interference of cysteine. Additionally, thiolated doxorubicin (DOX-SH)-loaded M-MoS2 NDs (DOX-SH/M-MoS2 NDs) efficiently liberated DOX-SH in the presence of 5 mM GSH, indicating that the DOX-SH/M-MoS2 NDs served as GSH-responsive nanocarriers for DOX-SH delivery. In vivo studies revealed that the DOX-SH/M-MoS2 NDs exhibited efficient uptake by HeLa cells and greater cytotoxicity than free DOX-SH. Intracellular and in vivo GSH-induced release of DOX-SH from DOX-SH-loaded M-MoS2 NDs was further validated by confocal laser scanning microscopy and IVIS spectrum system, respectively. Given the excitation- dependent fluorescence behavior of the M-MoS2 NDs, the DOX-SH/M-MoS2 NDs could be implemented for simultaneous drug delivery and cellular imaging.

(II) Functionalization of MoS2 nanosheets with aptamer as FRET-based nanoprobe for potassium ions sensing and imaging

The potassium ion plays an important role in many physiological functions such as systemic blood pressure control, homeostasis in the muscle, glucose and insulin metabolism, and hyperpolarization of neurons, and therefore the development of a method to monitor K+ in a cell is extremely important. Here, we combine MoS2 nanosheets (MoS2 NSs) with a aptamer-based Förster resonance energy transfer (FRET) nano-probe (D-Apt-A/cDNA-SH), we designed a novel ratiometric fluorescent nanoprobe, termed as an “D-Apt-A/cDNA-SH-MoS2 NSs”, for sensing and imaging K+ concentration values in human serum and living cells, respectively. The D-Apt-A/cDNA-SH-MoS2 NSs consist of a MoS2 NSs, thiolated single-stranded oligonucleotides (cDNA-SH), and dual-dye-labeled aptamer, while FAM conduct as FRET donor (D) and TAMRA (A) as acceptor (D-Apt-A). The cDNA-SH are designed to bind with the D-Apt-A and immobilized on the MoS2 NSs surface via an ligand conjugation. In the absence of target K+, the D-Apt-A are captured by seized with the cDNA-SH, increasing the distance of FAM and TAMRA, inducing a very low FRET efficiency. In this state, only the fluorescence of FAM can be detected. However, in the presence of target K+, the D-Apt-A are gradually replaced from the cDNA-SH, then forming G-quadruplex structures that induce FAM and TAMRA move into closer position with each other, and result in a high FRET efficiency. In this state, the fluorescence of the TAMRA can be clearly detected. Thus, the intensity of fluorescence ratio of acceptor to donor (IFA/IFD) can be used as a signal for detection of target K+.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
摘要 iii
Abstract v
目錄 ix
圖目錄 xi
表目錄 xiii
壹、巰嘌呤誘導單層二硫化鉬奈米點螢光淬熄:應用於穀胱甘肽感測、細胞成像,與榖胱甘肽觸發藥物傳遞 1
1.1 前言 1
1.2 實驗部分 4
1.2.1 實驗藥品 4
1.2.2 儀器設備 6
1.2.3 合成單層二硫化鉬奈米點 7
1.2.4 合成氧化石墨烯 8
1.2.5 單層二硫化鉬奈米點結合硫醇類藥物分子 8
1.2.6 以巰嘌呤-單層二硫化鉬奈米點作為榖胱甘肽螢光感測器 9
1.2.7 穀胱甘肽誘導巰基化阿黴素/單層二硫化鉬奈米點藥物釋放行為 10
1.2.8 細胞存活率分析 11
1.2.9 細胞培養、標記,與藥物傳遞 11
1.3 結果與討論 14
1.3.1 合成並鑑定單層二硫化鉬奈米點 14
1.3.2 巰嘌呤誘導單層二硫化鉬奈米點螢光淬熄 31
1.3.3 以巰嘌呤修飾單層二硫化鉬奈米點作為穀胱甘肽螢光感測器 39
1.3.4 生物體外及細胞內穀胱甘肽觸發單層二硫化鉬奈米點釋放藥物 47
1.3.5 生物體內穀胱甘肽觸發單層二硫化鉬奈米點釋放藥物 57
1.4 結論 59
1.5 參考資料 60
貳、合成適體功能化二硫化鉬奈米片作為螢光比率探針應用於鉀離子感測與成像 68
2.1 前言 68
2.2 實驗部分 71
2.2.1 實驗藥品 71
2.2.2 儀器設備 72
2.2.4 結合適體螢光探針與二硫化鉬奈米片 74
2.2.5 定量錨定於二硫化鉬奈米片表面的寡核苷酸數量 74
2.2.6 以適體螢光探針-二硫化鉬奈米片感測鉀離子 75
2.2.7 細胞毒性測試 76
2.2.8 以適體螢光探針-二硫化鉬奈米片對細胞內鉀離子成像 77
2.3 結果與討論 79
2.3.1 合成並鑑定二硫化鉬奈米片 79
2.3.2 合成並鑑定適體螢光探針-二硫化鉬奈米片 86
2.3.3 以適體螢光探針-二硫化鉬奈米片利用螢光比率法偵測鉀離子 96
2.3.4 以適體螢光探針-二硫化鉬奈米片對細胞內鉀離子成像 105
2.4 結論 107
2.5 參考資料 108
參考文獻 References
(I) 6-Mercaptopurine-induced fluorescence quenching of monolayer MoS2 nanodots: applications to glutathione sensing, cellular imaging, and glutathione-stimulated drug delivery:

1. Kubota, R.; Hamachi, I., Protein Recognition Using Synthetic Small-Molecular Binders toward Optical Protein Sensing in Vitro and in Live Cells. Chem. Soc. Rev. 2015, 44, 4454-4471.
2. Yuan, L.; Lin, W.; Zheng, K.; He, L.; Huang, W., Far-Red to Near Infrared Analyte-Responsive Fluorescent Probes Based on Organic Fluorophore Platforms for Fluorescence Imaging. Chem. Soc. Rev. 2013, 42, 622-661.
3. Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem. Rev. 2010, 110, 2620-2640.
4. Basaric, N.; Baruah, M.; Qin, W.; Metten, B.; Smet, M.; Dehaen, W.; Boens, N., Synthesis and Spectroscopic Characterisation of Bodipy○R Based Fluorescent Off-On Indicators with Low Affinity for Calcium. Org. Biomol. Chem. 2005, 3, 2755-2761.
5. Wolfbeis, O. S., An Overview of Nanoparticles Commonly Used in Fluorescent Bioimaging. Chem. Soc. Rev. 2015, 44, 4743-4768.
6. Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U., Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angew. Chem. Int. Ed. 2013, 52, 11154-11157.
7. Kobayashi, H.; Hama, Y.; Koyama, Y.; Barrett, T.; Regino, C. A. S.; Urano, Y.; Choyke, P. L., Simultaneous Multicolor Imaging of Five Different Lymphatic Basins Using Nanodots. Nano Lett. 2007, 7, 1711-1716.
8. Liu, H.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chen, C.-P.; Chang, E.-H.; Wu, C.-Y.; Chan, Y.-H., Quinoxaline-Based Polymer Dots with Ultrabright Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J. Am. Chem. Soc. 2015, 137, 10420-10429.
9. Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 2013, 13, 3447-3454.
10. Peimyoo, N.; Shang, J.; Cong, C.; Shen, X.; Wu, X.; Yeow, E. K. L.; Yu, T., Nonblinking, Intense Two-Dimensional Light Emitter: Monolayer WS2 Triangles. ACS Nano 2013, 7, 10985-10994.
11. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F., Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271-1275.
12. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from Chemically Exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.
13. Gopalakrishnan, D.; Damien, D.; Shaijumon, M. M., MoS2 Quantum Dot-Interspersed Exfoliated MoS2 Nanosheets. ACS Nano 2014, 8, 5297-5303.
14. Dong, H.; Tang, S.; Hao, Y.; Yu, H.; Dai, W.; Zhao, G.; Cao, Y.; Lu, H.; Zhang, X.; Ju, H., Fluorescent MoS2 Nanodots: Ultrasonic Preparation, Up-Conversion and Down-Conversion Bioimaging, and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2016, 8, 3107-3114.
15. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y., Luminescent Monolayer MoS2 Nanodots Produced by Multi-Exfoliation Based on Lithium Intercalation. Appl. Surf. Sci. 2015, 359, 130-136.
16. Gopalakrishnan, D.; Damien, D.; Li, B.; Gullappalli, H.; Pillai, V. K.; Ajayan, P. M.; Shaijumon, M. M., Electrochemical Synthesis of Luminescent MoS2 Nanodots. Chem. Commun. 2015, 51, 6293-6296.
17. Li, B. L.; Chen, L. X.; Zou, H. L.; Lei, J. L.; Luo, H. Q.; Li, N. B., Electrochemically Induced Fenton Reaction of Few-Layer MoS2 Nanosheets: Preparation of Luminescent Nanodots via a Transition of Nanoporous Morphology. Nanoscale 2014, 6, 9831-9838.
18. Wang, Y.; Ni, Y., Molybdenum Disulfide Nanodots as a Photoluminescence Sensing Platform for 2,4,6-Trinitrophenol Detection. Anal. Chem. 2014, 86, 7463-7470.
19. Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S., One-Step Hydrothermal Synthesis of Monolayer MoS2 Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 10693-10697.
20. Chen, X.; McDonald, A. R., Functionalization of Two-Dimensional Transition-Metal Dichalcogenides. Adv. Mater.2016, 28, 5738-5746.
21. Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J.; Dravid, V. P., Ligand Conjugation of Chemically Exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584-4587.
22. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z., Drug Delivery with PEGylated MoS2 Nano-Sheets for Combined Photothermal and Chemotherapy of Cancer. Adv. Mater. 2014, 26, 3433-3440.
23. Zhou, L.; He, B.; Yang, Y.; He, Y., Facile Approach to Surface Functionalized MoS2 Nanosheets. RSC Adv. 2014, 4, 32570-32578.
24. Sim, D. M.; Kim, M.; Yim, S.; Choi, M.-J.; Choi, J.; Yoo, S.; Jung, Y. S., Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano 2015, 9, 12115-12123.
25. Russo, A.; DeGraff, W.; Friedman, N.; Mitchell, J. B., Selective Modulation of Glutathione Levels in Human Normal Tumor Cells and Subsequent Differential Response to Chemotherapy Drugs. Cancer Res. 1986, 46, 2845-2848.
26. Zhuang, Y.; Su, Y.; Peng, Y.; Wang, D.; Deng, H.; Xi, X.; Zhu, X.; Lu, Y., Facile Fabrication of Redox-Responsive Thiol-Containing Drug Delivery System via RAFT Polymerization. Biomacromolecules 2014, 15, 1408-1418.
27. Wang, X.; Cai, X.; Hu, J.; Shao, N.; Wang, F.; Zhang, Q.; Xiao, J.; Cheng, Y., Glutathione-Triggered “Off–On” Release of Anticancer Drugs from Dendrimer-Encapsulated Gold Nanoparticles. J. Am. Chem. Soc. 2013, 135, 9805-9810.
28. Xu, Z.; Liu, S.; Kang, Y.; Wang, M., Glutathione-Responsive Polymeric Micelles Formed by a Biodegradable Amphiphilic Triblock Copolymer for Anticancer Drug Delivery and Controlled Release. ACS Biomater. Sci. Eng. 2015, 1, 585-592.
29. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Nanodots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2015, 25, 1127-1136.
30. Gaur, A. P. S.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J. F.; Katiyar, R. S., Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS2. Nano Lett. 2014, 14, 4314-4321.
31. Wang, Y.; Wang, S.; Li, C.; Qian, M.; Bu, J.; Wang, J.; Huang, R., Facile Growth of Well-Dispersed and Ultra-Small MoS2 Nanodots in Ordered Mesoporous Silica Nanoparticles. Chem. Commun. 2016, 52, 10217-10220.
32. Acerce, M.; Voiry, D.; Chhowalla, M., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nano. 2015, 10, 313-318.
33. Rapoport, L.; Fleischer, N.; Tenne, R., Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions. Adv. Mater. 2003, 15, 651-655.
34. Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T., Raman Spectroscopy of the Interlayer Shear Mode in Few-Layer MoS2 Flakes. Applied Physics Letters 2012, 101, 101906.
35. Gu, W.; Yan, Y.; Cao, X.; Zhang, C.; Ding, C.; Xian, Y., A Facile and One-Step Ethanol-Thermal Synthesis of MoS2 Nanodots for Two-Photon Fluorescence Imaging. J. Mater. Chem. B 2016, 4, 27-31.
36. Wilcoxon, J. P.; Newcomer, P. P.; Samara, G. A., Synthesis and Optical Properties of MoS2 and Isomorphous Nanoclusters in the Quantum Confinement Regime. J. Appl. Phys. 1997, 81, 7934-7944.
37. Nguyen, T. P.; Choi, S.; Jeon, J.-M.; Kwon, K. C.; Jang, H. W.; Kim, S. Y., Transition Metal Disulfide Nanosheets Synthesized by Facile Sonication Method for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2016, 120, 3929-3935.
38. Mahmoudian, J.; Hadavi, R.; Jeddi-Tehrani, M.; Mahmoudi, A. R.; Bayat, A. A.; Shaban, E.; Vafakhah, M.; Darzi, M.; Tarahomi, M.; Ghods, R., Comparison of the Photobleaching and Photostability Traits of Alexa Fluor 568- and Fluorescein Isothiocyanate- Conjugated Antibody. Cell. J. 2011, 13, 169-172.
39. Chen, X.; Berner, N. C.; Backes, C.; Duesberg, G. S.; McDonald, A. R., Functionalization of Two-Dimensional MoS2: On the Reaction Between MoS2 and Organic Thiols. Angew. Chem. Int. Ed. 2016, 55, 5803-5808.
40. Dey, S.; Matte, H. S. S. R.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R., Charge-Transfer Interaction between Few-Layer MoS2 and Tetrathiafulvalene. Chem. Asian J. 2013, 8, 1780-1784.
41. Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S., Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer. J. Am. Chem. Soc. 2003, 125, 8666-8671.
42. Daly, B.; Ling, J.; de Silva, A. P., Current Developments in Fluorescent PET (Photoinduced Electron Transfer) Sensors and Switches. Chem. Soc. Rev. 2015, 44, 4203-4211.
43. Fraiji, L. K.; Hayes, D. M.; Werner, T. C., Static and Dynamic Fluorescence Quenching Experiments for the Physical Chemistry Laboratory. J. Chem. Educ. 1992, 69, 424.
44. Ahmad, A.; Kurkina, T.; Kern, K.; Balasubramanian, K., Applications of the Static Quenching of Rhodamine B by Carbon Nanotubes. ChemPhysChem 2009, 10, 2251-2255.
45. Li, S.; Aphale, A. N.; Macwan, I. G.; Patra, P. K.; Gonzalez, W. G.; Miksovska, J.; Leblanc, R. M., Graphene Oxide as a Quencher for Fluorescent Assay of Amino Acids, Peptides, and Proteins. ACS Appl. Mater. Interfaces 2012, 4, 7069-7075.
46. Hu, Y.-J.; Liu, Y.; Zhang, L.-X.; Zhao, R.-M.; Qu, S.-S., Studies of Interaction between Colchicine and Bovine Serum Albumin by Fluorescence Quenching Method. J. Mol. Struct. 2005, 750, 174-178.
47. Xiao, S. J.; Zhao, X. J.; Hu, P. P.; Chu, Z. J.; Huang, C. Z.; Zhang, L., Highly Photoluminescent Molybdenum Oxide Nanodots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination. ACS Appl. Mater. Interfaces 2016, 8, 8184-8191.
48. Kubista, M.; Sjoback, R.; Eriksson, S.; Albinsson, B., Experimental Correction for the Inner-Filter Effect in Fluorescence Spectra. Analyst 1994, 119, 417-419.
49. Wood, D. L.; Tauc, J., Weak Absorption Tails in Amorphous Semiconductors. Phys. Rev. B 1972, 5, 3144-3151.
50. Mukherjee, S.; Maiti, R.; Katiyar, A. K.; Das, S.; Ray, S. K., Novel Colloidal MoS2 Quantum Dot Heterojunctions on Silicon Platforms for Multifunctional Optoelectronic Devices. Sci. Rep. 2016, 6, 29016.
51. Gowda, J. I.; M, M.; Nandibewoor, S. T., CTAB Functionalized Multiwalled Carbon Nanotube Composite Modified Electrode for the Determination of 6-Mercaptopurine. Sens. Biosensing. Res. 2017, 12, 1-7.
52. Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X., Carbon Nanodots as Fluorescence Probes for Rapid, Sensitive, and Label-Free Detection of Hg2+ and Biothiols in Complex Matrices. Chem. Commun. 2012, 48, 1147-1149.
53. Wei, M.; Yin, P.; Shen, Y.; Zhang, L.; Deng, J.; Xue, S.; Li, H.; Guo, B.; Zhang, Y.; Yao, S., A New Turn-On Fluorescent Probe for Selective Detection of Glutathione and Cysteine in Living Cells. Chem. Commun. 2013, 49, 4640-4642.
54. Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919.
55. Zhang, X.-L.; Zheng, C.; Guo, S.-S.; Li, J.; Yang, H.-H.; Chen, G., Turn-On Fluorescence Sensor for Intracellular Imaging of Glutathione Using G-C3N4 Nanosheet–MnO2 Sandwich Nanocomposite. Anal. Chem. 2014, 86, 3426-3434.
56. Deng, R.; Xie, X.; Vendrell, M.; Chang, Y.-T.; Liu, X., Intracellular Glutathione Detection Using MnO2-Nanosheet-Modified Upconversion Nanoparticles. J. Am. Chem. Soc. 2011, 133, 20168-20171.
57. Jiang, X.; Yu, Y.; Chen, J.; Zhao, M.; Chen, H.; Song, X.; Matzuk, A. J.; Carroll, S. L.; Tan, X.; Sizovs, A.; Cheng, N.; Wang, M. C.; Wang, J., Quantitative Imaging of Glutathione in Live Cells Using a Reversible Reaction-Based Ratiometric Fluorescent Probe. ACS Chemical Biology 2015, 10, 864-874.
58. Koo, A. N.; Lee, H. J.; Kim, S. E.; Chang, J. H.; Park, C.; Kim, C.; Park, J. H.; Lee, S. C., Disulfide-Cross-Linked Peg-Poly(Amino Acid)s Copolymer Micelles for Glutathione-Mediated Intracellular Drug Delivery. Chem. Commun. 2008, 6570-6572.
59. Hall, P. A.; Todd, C. B.; Hyland, P. L.; McDade, S. S.; Grabsch, H.; Dattani, M.; Hillan, K. J.; Russell, S. E. H., The Septin-Binding Protein Anillin Is Overexpressed in Diverse Human Tumors. Clin. Cancer Res. 2005, 11, 6780.
60. Chen, L. D.; Xue, Y. A.; Xia, X. Y.; Song, M. F.; Huang, J.; Zhang, H.; Yu, B.; Long, S. H.; Liu, Y. P.; Liu, L.; Huang, S. W.; Yu, F. Q., A Redox Stimuli-Responsive Superparamagnetic Nanogel with Chemically Anchored DOX for Enhanced Anticancer Efficacy and Low Systemic Adverse Effects. J. Mater. Chem. B 2015, 3, 8949-8962.
61. Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y., High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy. ACS Nano 2014, 8, 6922-6933.
62. Dong, K.; Liu, Z.; Li, Z.; Ren, J.; Qu, X., Hydrophobic Anticancer Drug Delivery by a 980 nm Laser-Driven Photothermal Vehicle for Efficient Synergistic Therapy of Cancer Cells In Vivo. Adv. Mater. 2013, 25, 4452-4458.

(II) Functionalization of MoS2 nanosheets with aptamer as FRET-based nanoprobe for potassium ions sensing and imaging:

1. Gennari, F. J., Hypokalemia. N. Engl. J. Med. 1998, 339, 451-458.
2. Joyce, C. H., James, F. C., Hyperkalemia. Am. Fam. Physician 2006, 73, 283-290.
3. Liu, J.; Cao, Z.; Lu, Y., Functional Nucleic Acid Sensors. Chem. Rev. 2009, 109, 1948–1998.
4. Wang, Y.; Li, Z.; Hu, D.; Lin, C. T.; Li, J. H.; Lin, Y., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. J. Am. Chem. Soc. 2010, 132, 9274–9276.
5. Zheng, D.; Seferos, D.; Giljohann, D.; Patel, P.; Mirkin, C., Aptamer Nano-flares for Molecular Detection in Living Cell., Nano Lett., 2009, 9, 3258–3261.
6. Chen, T.; Tian, X.; Liu, C.; Ge, J.; Chu, X.; Li, Y., Fluorescence Activation Imaging of Cytochrome c Released from Mitochondria Using Aptameric Nanosensor., J. Am. Chem. Soc. 2015, 137, 982–989.
7. Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K., Detection of pH Change in Cytoplasm of Live Myocardial Ischemia Cells via the ssDNA-SWCNTs Nanoprobes., Anal. Chem. 2015, 87, 8724–8731.
8. Sim, D. M.; Kim, M.; Yim, S.; Choi, M.-J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. ACS Nano, 2015, 9, 12115−12123.
9. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V., Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials., Science, 2011, 331, 568-571.
10. Makarova, M.; Okawa, Y.; Masakazu, A., Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation. J. Phys. Chem. C, 2012, 116, 22411–22416.
11. Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P., Ligand Conjugation of Chemically Exfoliated MoS2. J. Am. Chem. Soc., 2013, 135, 4584−4587.
12. Anbazhagan, R.; Wang, H. J.; Tsai, H. C.; Jeng, R. J., Highly Concentrated MoS2 Nanosheets in Water Achieved by Thioglycolic Acid as Stabilizer and Used as Biomarkers. RSC Adv., 2014, 4, 42936–42941.
13. Li, B. L.; Setyawati, M. I.; Chen, L.; Xie, J. P.; Ariga, K.; Lim, C. T.; Garaj, S.; Leong, D. T., Directing Assembly and Disassembly of 2D MoS2 Nanosheets with DNA for Drug Delivery. ACS Appl. Mater. Interfaces, 2017, 9, 15286-15296.
14. Kong, R. M.; Ding, L.; Wang, Z. J.; You, J. M.; Qu, F. L., A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal. Bioanal. Chem., 2015, 407, 369–377
15. Jia, L.; Ding, L.; Tian, J. W.; Bao, Lei; Hu, Y. P.; Ju, H. X.; Yu, J. S., Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nanoscale, 2015, 7, 15953-15961.
16. Huang, P.; Li, Z. M.; Lin, J.; Yang, D. P.; Gao, G.; Xu, C.; Bao, L.; Zhang, C. L.; Wang, K.; Song, H.; Hu, H. Y.; Cui, D. X., Biomaterials, 2011, 32, 3447–3458.
17. Wei, Z. T.; Elaine, Lay.; Khim, C.; Zdeněk, S.; Martin, P., Cytotoxicity of Exfoliated Transition-Metal Dichalcogenides (MoS2, WS2, and WSe2) is Lower Than That of Graphene and its Analogues. Chem. Eur. J., 2014, 20, 9627-9632.
18. Halo, T.; McMahon, K.; Angeloni, N; Xu, Y.; Wang, W.; Chinen, A.; Malin, D.; Strekalova, E.; Cryns, V.; Cheng, C.; Mirkin, C.; Thaxton, C., NanoFlares for the Detection, Isolation, and Culture of Live Tumor Cells From Human Blood, Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 17104–17109.
19. Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K., FRET Nanoflares for Intracellular mRNA Detection: Avoiding False Positive Signals and Minimizing Effects of System Fluctuations. J. Am. Chem. Soc., 2015, 137, 8340–8343.
20. Xu, S.; Li, D.; Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Nanodots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater., 2015, 25, 1127–1136.
21. Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G., A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Anal. Chem., 2000, 72, 5535-5541.
22. Gaur, A. P. S.; Sahoo, S.; Ahmadi, M.; Dash, S. P.; Guinel, M. J. F.; Katiyar, R. S., Surface Energy Engineering for Tunable Wettability through Controlled Synthesis of MoS2. Nano Lett. 2014, 14, 4314-4321.
23. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H., Single-Layer MoS2-Based Nanoprobes for Homogeneous Detection of Biomolecules. J. Am. Chem. Soc., 2013, 135, 5998–6001.
24. Yang, Z. P.; Wu, S. Q.; Wen, Y. H.; Zhu, Z. Z., First-principles Calculations on the Optical Properties of Monolayer MoS2., J. Xiamen Univ., 2014, 53, 459-464
25. Xiao, L.; Xu, L.; Gao, C.; Yulin Zhang, Y.; Yao, Q.; Zhang, G. J, A MoS2 Nanosheet-Based Fluorescence Biosensor for Simple and Quantitative Analysis of DNA Methylation., Sensors, 2016, 16, 1561-1571.
26. Acerce, M.; Voiry, D.; Chhowalla, M., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nano. 2015, 10, 313-318.
27. Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S., One-Step Hydrothermal Synthesis of Monolayer MoS2 Nanodots for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 10693-10697.
28. Rapoport, L.; Fleischer, N.; Tenne, R., Fullerene-like WS2 Nanoparticles: Superior Lubricants for Harsh Conditions. Adv. Mater. 2003, 15, 651-655.
29. Plechinger, G.; Heydrich, S.; Eroms, J.; Weiss, D.; Schüller, C.; Korn, T., Raman Spectroscopy of the Interlayer Shear Mode in Few-Layer MoS2 Flakes. Applied Physics Letters 2012, 101, 101906.
30. Gu, W.; Yan, Y.; Cao, X.; Zhang, C.; Ding, C.; Xian, Y., A Facile and One-Step Ethanol-Thermal Synthesis of MoS2 Nanodots for Two-Photon Fluorescence Imaging. J. Mater. Chem. B 2016, 4, 27-31.
31. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y., Luminescent Monolayer MoS2 Nanodots Produced by Multi-Exfoliation Based on Lithium Intercalation., Appl. Surf. Sci., 2015, 359, 130-136.
32. Chikan, V.; Kelley, D. F., Size Dependent Spectroscopy of MoS2 Nanoclusters., J. Phys. Chem. B, 2002, 106, 3794-3804.
33. Wilson, J. A.; Yoffe, A. D., The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties., J. Adv. Phys., 1969, 18, 193-335.
34. Angelika, S.; Bernard, J., Effect of Cholesterol Anchoring Group on the Properties of G-Quadruplex-Based FRET Probes for Potassium Ion., Chemosensors, 2014, 2, 267-286.
35. Berova, N.; Nakanishi, K.; Woody, R. W., Circular Dichroism: Principles and Applications. Wiley-VCH, 2000, 703−718.
36. Garbett, N. C.; Ragazzon, P. A.; Chaires, J. B., Circular dichroism to determine binding mode and affinity of ligand-DNA interactions. Nat. Protoc., 2007, 2, 3166−3172.
37. Baase, W. A.; Johnson, W. C.; Circular Dichroism and DNA Secondary Structure. Nucleic Acids Res., 1979, 6, 797−814.
38. Hossain, M.; Giri, P.; Kumar, G. S.; DNA Intercalation by Quinacrine and Methylene Blue: A Comparative Binding and Thermodynamic Characterization Study. DNA Cell Biol., 2008, 27, 81−90.
39. Maiti, M.; Kumar, G. S., Molecular Aspects on The Interaction of Protoberberine, Benzophenanthridine, and Aristolochia Group of Alkaloids with Nucleic Acid Structures and Biological Perspectives. Med. Res. Rev., 2007, 27. 649−695.
40. Jansa, H.; Huo, Q., Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev., 2012, 41, 2849-2866.
41. Yang, Y. J.; Huang, J.; Yang, X. H.; Quan, K.; Xie, N.; Ou, M.; Tang, J. L.; Wang, K., Aptamer-based FRET nanoflares for imaging potassium ions in living cells. Chem. Commun., 2016, 52, 11386—11389.
42. Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K., Anal. Chem., 2015, 87, 8724–8731.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code