Responsive image
博碩士論文 etd-0318116-102555 詳細資訊
Title page for etd-0318116-102555
論文名稱
Title
3D列印積層製造Ti-6Al-4V合金在模擬體液下之電化學反應與機械性質
Electrochemical responses and mechanical properties of Ti-6Al-4V alloys made by 3D printing SLM additive manufacture
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-10
關鍵字
Keywords
熱處理、電化學性質、機械性質、異向性、積層製造、選擇性燒結、鈦合金
Ti-6Al-4V, Mechanical properties, Additive manufacture, Anisotropy, Heat treatment, Electrochemical responses, Selective laser melting
統計
Statistics
本論文已被瀏覽 5753 次,被下載 229
The thesis/dissertation has been browsed 5753 times, has been downloaded 229 times.
中文摘要
積層製造(Additive Manufacturing, AM)技術經常運用在工業設計、航太工業及生醫材料等高附加價值之產業上,而其中又以生醫材料之標準最為嚴苛。雖然二次加工可能背離積層製造的優勢,快速製造(Rapid Manufacturing, RM),但是在生醫材料領域嚴峻的審核標準下,卻是有其必要的。故本研究將使用現行已被廣泛運用於生醫材料及積層製造之鈦合金,Ti-6Al-4V,做為研究之材料。積層製造後的Ti-6Al-4V試片,在經過熱處理前後做機械性質(硬度和楊氏係數)電化學性質(抗腐蝕能力)的比較。我們所選用的熱處理程序及種類列在表3-1。本研究之熱處理目的在得到較低的楊氏係數(生成相及快速消除針狀組織(´相),以減低應力遮蔽效應發生的可能性,並研究加工後之材料的電化學性質表現,以利積層製造後的材料能更適合地應用於生醫領域上,又不失快速製造之優勢。從實驗中找出最符合上述目的熱處理種類為生溫至800oC退火四小時,其原因為擁有最簡單的過程、耗時最短、升溫最低,及擁有最符合的楊氏係數和良好的抗腐蝕性。再者,已知積層製造後的材料在特定性質上具有異向性,對於電化學性質亦同。對於X-plane、Y-plane和Z-plane而言,Z-plane擁有較差的抗腐蝕性,而X-plane和Y-plane之抗腐蝕性則差異不大。這是因為Z-plane較其他兩者在之字形雷射掃描下,更容易產生細微孔洞,此孔洞對於抗腐蝕性是有害的。
Abstract
There is no doubt that additive manufacturing (AM) has been widely applied in industries with high additional values, like industrial design, medicine and aerospace industry. Among of these three applications, medicine industry has the harshest standard. As AM technique, through the secondary processes is a kind of disadvantage to it, it is still necessary to get the proper properties for the harsh standard of biomaterial. This study contains two parts. For the first study part, it is intended to let the as-fabricated SLM (selective laser melting) samples be more suitable for human bio-material field by subsequent heat treatment. The aim of the first study is to reduce the Young’s modulus for avoiding the shielding stress effect. Secondly, we studied the electrochemical performance of the SLM processed samples with or without subsequent heat treatment. Based on our experimental results, the annealing heat treatment at 800oC for 4 hours appears to be the best heating process. This particular process is considered to be the simplest procedure, a treatment at the lower temperature and for the shorter time. The more important aspect is that it can result in better mechanical properties and corrosion resistance ability. For the second study part, it is intended to investigate whether the electrochemical response is anisotropy of the SLM sample orientation or not. The answer is yes. We can find that the Z plane has the worst corrosion resistance as compared with the X and Y planes. It is because that the Z plane contains more holes induced during the SLM process with zigzag path strategy.
目次 Table of Contents
摘要+i
Abstract+ii
Content+iii
List of Tables+vi
List of Figures+vii
Chapter 1 Introduction+1
1-1 Additive manufacturing+1
1-1-1 The categories of additive manufacture+1
1-1-2 The advantage and disadvantage of AM+3
1-2 Category of biomaterials and their applications+4
1-2-1 Bio-polymer materials+6
1-2-2 Bio-ceramic materials+6
1-2-3 Metals and their alloys for biomaterials+7
1-3 Motivation+9
Chapter 2 Background and literature review+10
2-1 Introduction of titanium and it alloys+10
2-1-1 Introduction of titanium alloys+11
2-1-2 Phase transformation of alloys+13
2-2 The development of titanium alloys in bio-material field+16
2-2-1 -type titanium alloys+17
2-2-2 -type titanium alloys+17
2-2-3 -type titanium alloys+18
2-2-4 The future of titanium alloys in bio-material field+19
2-3 Introduction of corrosion+19
2-3-1 Corrosion behaviors+19
2-4 Electrochemical response+21
2-4-1 Cyclic voltammetry (CV)+22
2-4-2 Amperometry+23
2-4-3 Polarization measurement (Tafel)+23
2-4-4 Electrochemical impedance spectroscopy (EIS)+25
2-5 Biocompatibility+26
2-5-1 The biocompatibility of titanium and its alloys+27
2-6 Heat treatment+27
2-6-1 Annealing+28
2-6-2 Quenching+29
2-6-3 Tempering +29
2-6-4 Aging+30
2-7 Selective laser melting technique+30
2-7-1 The structure of SLM products+31
2-7-2 Anisotropic properties+31
Chapter 3 Experimental procedures+33
3-1 Materials+33
3-1-1 The raw materials of AM powders+34
3-2 The preparation of sample+34
3-2-1 Rolled commercial Ti-6Al-4V+34
3-2-2 Additive manufacture+34
3-2-3 Heat treatment+35
3-3 Property measurements and analyses+35
3-3-1 X-ray diffraction+35
3-3-2 Optical microscopy (OM) observations+36
3-3-3 Scanning electron microscope (SEM) observations+36
3-3-4 Qualitative and quantitative composition analyses+36
3-4 Nanoindentation tests+37
3-5 Electrochemical (EC) analysis+37
Chapter 4 Results and discussions+40
4-1 The basic measurements of AM samples+40
4-2 The alloys compositions (EDS)+40
4-3 XRD analyses+41
4-4 The microstructure observations+42
4-5 Mechanical property tests+43
4-6 Electrochemical analyses+45
4-6-1 Open circuit potential (OCP)+45
4-6-2 Polarization curve (Tafel)+46
4-6-3 A.C. impedance (Electrochemical impedance spectroscopy, EIS)+47
4-7 Summary+48
Chapter 5 Conclusions+50
References+52
Tables+57
Figures+71
參考文獻 References
[1] http://www.techbang.com/posts/18161-3d-printer-technology-talk
[2] 林敬智,雷射積層製造技術於塑膠射出模具產業之應用,機械工業雜誌359期,工
研院, 2013。
[3] 莊傳勝,雷射積層製造之發展趨勢,機械工業雜誌359期,工研院,2013。
[4] J. C. M. Li, Microstructure and properties of materials, World Scientific Publishing Co., Pte. Ltd., (2000), vol. 2.
[5] 劉士榮,高宜娟,生醫材料,滄海書局,2010。
[6] P. Majumdar, Micron, 43 (2012) 876.
[7] 黃世偉,高分子材料與醫療材料,科學發展月刊455期,2010,第14頁。
[8] 蘇明德,生物陶瓷及透明陶瓷,科學發展月刊455期,2010,第64頁。
[9] 蘇明德,鈦的自述,科學發展月刊426期,2008,第66頁。
[10] M. Diba, O. Goudiuri, Curr. Opin. Solid State Mater. Sci., 18 (2014) 147.
[11] I. J. Polmear, Light alloys: Metallurgy of the Light Metals, WILEY, (1995), vol. 3.
[12] Charle R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys,
American society for metals, (1982).
[13] E. W. Collings, Physical Metallurgy of Titanium Alloys, ASM International, (1984).
[14] G. Liitjering, J. G. Williams, Titanium Engineering Materials and Processes, Springer, (2007).
[15] J. Klompmaker, H. W. B. Jansen, R. P. H. Veth, H. K. L. Nielsen, J. H. Degroot, A. J. Pennings, Biomaterials, 13 (1992) 625.
[16] K. Yamanaka, M. Mori, A. Chiba, Mater. Sci. Eng. C, 29 (2014) 417.
[17] A. Buford, T. Goswami, Mater. Des., 25 (2004) 385.
[18] E. Denkhaus, K. Salnikow, Oncology/Hematology, 42 (2002) 1.
[19] Y. Luo, L. Yang, M. Tian, Biomaterials and Medical Tribology, (2013) 181.
[20] 戴起勛,金屬材料學,化學工業出版社,2005。
[21] Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, Y. J. Furuki, Mater. Trans., JIM, 9 (1998) 1053.
[22] M. F. Semlitsch, H. Weber, R. M. Streicher, R. Schon, Biomaterials, 13 (1992) 781.
[23] A. Molineri, G. Straffelini, B. Tesi, T. Baccai, Wear, 208 (1997) 105.
[24] K. G. Budinski, Wear, 151 (1991) 203.
[25] H. Liang, B. Shi, A. Fairchild, T. Cale, Vacuum, 73 (2004) 317.
[26] W. E. Frazier, Metal Additive Manufacturing: A Review, Jour. Mater. Eng. Perf., 23 (2014) 1917.
[27] C. N. Elias, M. A. Meyers, R. Z. Valiev, S. N. Monteiro, J. Mater. Res. Technol., 2
(2013) 340.
[28] http://www.azom.com/article.aspx?ArticleID=915
[29] 許益彰,趙志燁,鈦-4.5鋁-3釩-2目-2鐵合金性質之研究,國立屏東科技大學, 2002。
[30] M. Niinomi, Biomaterials, 24 (2003) 2673.
[31] M. Niinomi, J. Mech. Behav. Biomed. Mater., 1 (2008) 30.
[32] D. Raabe, B. Sander, M. Frak, D. Ma, J. Neugebauer, Acta Mater., 55 (2007) 4475.
[33] F. Q. Hou, S. J. Li, Y. L. Hao, R. Yang, Scr. Mater., 63 (2010) 54.
[34] C. M. Lee, C. P. Ju, J. H. C. Lin, Journal of Oral Rehabilitation, 29 (2002) 314.
[35] W. F. Ho, C. P. Ju, C. Lin, J. H., Biomaterials, 20 (1999) 2115.
[36] C. R. M. Afonso, G. T. Aleixo, A. J. Ramirez, R. Caram, Mater. Sci. Eng. C, 27 (2007) 908.
[37] M. Kikuchi, M. Takahashi, O. Okuno, Dent. Mater. J., 22 (2003) 328.
[38] Y. L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng. A, 371 (2004) 283.
[39] W. F. Ho, J. Med. Biol. Eng., 28 (2008) 47.
[40] S. G. Kang, T. Kobayashi, Designing, Processing and Properties of Advanced Engineering Materials, Trans Tech Publications INC., (2004), vol. 2.
[41] R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, (2007), vol. 4.
[42] S. Nag, R. Banerjee, Fundamentals of medical implant materials, ASM handbook,
(2012), vol. 23.
[43] M. Niinomi, M. Nakai, International Journal of Biomaterials, 10 (2011) 1.
[44] M. A. H. Gepreel, M. Niinomi, J. Mech. Behav. Biomed. Mater., 20 (2013) 407.
[45] D. Mareci, R. Chelariu, D. M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomater., 5 (2009) 3625.
[46] D. H. Kohn, Curr. Opin. Solid State Mater. Sci., 3 (1998) 309.
[47] I. Gotman. Journal of Endourology, 6 (1997) 383.
[48] M. Niinomi, Biomaterials, 24 (2003) 2673.
[49] W. H. Peter, R. A. Buchanan, C. T. Liu, P. K. Liaw, M. L. Morrison, J. A. Horton, C. A. Carmichael Jr., J. L. Wright, Intermetallics, 10 (2002) 1157.
[50] 柯賢文,腐蝕及其防制,全華科技圖書股份有限公司,2006。
[51] A. Heiskanen, M. Dufva, J. Emn us, Chip based electroanalytical systems for monitoring cellular dynamics, Microfluidics Based Microsystems: Fundamentals and
Applications. (2010).
[52] S. Y. Hong, S. Park, J. Electrochem. Soc., 150 (2003) E360.
[53] M. P. Pujad , Carbon Nanotubes as Platforms for Biosensors with electrochemical and Electronic Transduction, Springer, (2012).
[54] P. T. Kissinger, W. R. Heineman, J. Chem. Educ., 60 (1983) 702.
[55] 胡啟章,電化學原理與方法,五南書局,2002 。
[56] Y. Tan, R. W. Revie, Heterogeneous Electrode Processes and Localized Corrosion, WILEY, (2012).
[57] B. R. Barnard, P. K. Liaw, R. A. Buchanan1, O. N. Senkov, D. B. Miracle, Mater. Trans., 48 (2007) 1870.
[58] S. M. Park, J. S. Yoo, Anal. Chem., 75 (2003) 455A.
[59] D. F. Williams, The Williams Dictionary of Biomaterials, University of Liverpool Press, (1999).
[60] W. A. Newman Dorland, Dorland’s Medical Dictionary, Elsevier, (2014), vol. 32.
[61] S. I. Landau, E. L. Becker, A. Manuila, International Dictionary of Medicine and Biology, Wiley medical publication, (1986), vol. 105.
[62] U. K. Mudali, T.M. Sridhar, B. Raj, Sadhana-Acad P Eng. S, 28 (2003) 601.
[63] S. Guo, X. Qu, X. He, T. Zhou, B. Duan, J. Mater. Process. Technol., 173 (2006) 310.
[64] A. T. Sidambe, I. A. Figueroa, H. G. C. Hamilton, I. Todd, J. Mater. Process. Technol., 212 (2012) 1591.
[65] R. K. Quinn, N. R. Armstrong, J. Electrochem. Soc., 125 (1978) 1790.
[66] N. Schiff, B. Grosgogeat, M. Lissac, F. Dalard, Biomaterials, 23 (2002) 1995.
[67] C. N. Elias, J. H. C. Lima, R. Valiev, M. A. Meyers, JOM, 60 (2008) 46.
[68] P. Tengvall, I. Lundström, Clin. Mater., 9 (1992) 115.
[69] E. I. Paschalis, J. Chodosh, S. Spurr-Michaud, A. Cruzat, A. Tauber, I. Behlau, I. Gipson, C. H. Dohlman, Investig. Ophthalmol. Vis. Sci., 54 (2013) 3863.
[70] R. Adell, U. Lekholm, B. Rockler, P. I. Brånemark, Int. J. Oral Maxillof., 10 (1981) 387.
[71] A. T. Sidambe, Materials, 7 (2014) 8168.
[72] Van Vlack, L. H., Elements of Materials Science and Engineering, Addison-Wesley, (1985).
[73] Verhoeven, J.D., Fundamentals of Physical Metallurgy, Wiley, (1975).
[74] Dossett, Jon L.; Boyer, Howard E. (2006). Practical heat treating. ASM International.
pp. 2-25.
[75] Mackenzie, Scot, Advanced Materials & Processes, (2009), vol. 9.
[76] John D. Verhoeven, Steel metallurgy for the non-metallurgist, ASM International, ( 2007).
[77] W.D. Callister. Fundamentals of Materials Science and Engineering, 2nd ed. Wiley & Sons. pp. 252.
[78] L. Facchini, A. Molinari, S. Ho¨ges, K. Wissenbach, R. P. J., 6 (2010) 450.
[79] L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, J. P. Kruth, Acta Mater., 58 (2010) 3303.
[80] C. Qiu, N. J. E. Adkins, M. M. Attallah, Mater. Sci. & Eng. A, 578 (2013) 230.
[81] N. T. Aboulkhair, A. Stephens, I. Maskery, C. Tuck, I. Ashcroft, MECHANICAL PROPERTIES OF SELECTIVE LASER MELTED AlSi10Mg: NANO, MICRO, AND MACRO PROPERTIES, (2015) 1026.
[82] K. Kempen, L. Thijs, J. Van Humbeeck, JP. Kruth, Physics Procedia, 39 (2012) 439.
[83] S. L. R. da Silva, L. O. Kerber, L. Amaral, C. A. dos Santos, Surf. Coat. Technol., 16
(1999) 342.
[84] M. T. Jovanovic´, S. Tadic´, S. Zec, Z. Misˇkovic´, I. Bobic´, Mater. Des., 27 (2006) 192.
[85] S. Malinov, W. Sha, Z. Guo, C. C. Tang, A. E. Long, Mater. Charact., 48 (2002) 279.
[86] B. Vrancken, L. Thijs, J. P. Kruth, J. V. Humbeeck, Journal of Alloys and compounds, 541 (2012) 177.
[87] K. H. Frosch, K. M. Sturmer, Eur. J. Trauma, 32 (2006) 149.
[88] J. A. Disegi, Injury, 31 (2000) D14.
[89] EOS Titanium Ti64 Material data sheet, EOS Co., Ltd.
[90] W. D. Callister, D. G. Rethwisch, Materials Science and Engineering, WILEY, (2014).
[91] K. Nakagawa1, Carbon Nanotubes - From Research to Applications, InTech, (2011).
[92] J. C. Bernede, J. Chil. Chem. Soc., 53 (2008) 1549.
[93] Laser sintering system EOSINT M 280 for the production of tooling inserts, prototype
parts and end products directly in metal, EOS Co., Ltd.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code