Responsive image
博碩士論文 etd-0320108-113630 詳細資訊
Title page for etd-0320108-113630
論文名稱
Title
活體氫質子磁振頻譜絕對定量之部分體績校正
Partial volume correction for absolute quantification of in vivo proton MRS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-01-11
繳交日期
Date of Submission
2008-03-20
關鍵字
Keywords
部分體積效應、氫質子磁振頻譜、絕對定量
Partial volume effect, proton magnetic resonance spectroscopy, Absolute quantification
統計
Statistics
本論文已被瀏覽 5678 次,被下載 1848
The thesis/dissertation has been browsed 5678 times, has been downloaded 1848 times.
中文摘要
目前磁振頻譜已經廣泛的應用在各方面,並且配合各種的後續處理方法能得
知代謝物的濃度,且代謝物對人體的影響非常大,但由於代謝物的濃度變動甚
微,提供絕對濃度的定量的方法影響也更重要。
本次研究提供了分割方法,例如使用三維區域成長方法能將灰質、白質、和
腦脊髓液加以區分,且提供使用者手動分割來校對的功能。最後利用LCModel
後續處理工具提供的定量方法,利用分割的結果來進行部分體積效應校正與代謝
物濃度分析。結果顯示了此論文提出的工具能進一步的提升代謝物的濃度精確
度。
Abstract
Magnetic resonance spectroscopy is now in widespread use, which with various
tools of spectra analysis can provide concentrations of metabolites. The influence of
metabolites on human physiology is greatly. Due to the tiny variation of the
concentration in various metabolites, the analytic method used in the quantitative
determination of the absolute concentrations of metabolites plays an important role in
this research area.
In this thesis we present an analysis tool for segmentation of white matter, gray
matte and cerebrospinal fluid using region growing with spatial space, and provide
manual interaction for exception handling in this subject. Then we use this tool to
analyze different percentages of white matter and gray matter with the default
parameter by LCModel and correct partial volume effect. The results show that the
proposed tool can improve significantly the accuracy in absolute quantitative analysis
of concentration.
目次 Table of Contents
Abstract 1
Chapter 1. Introduction 4
1.1. BACKGRAOUND OF SEGMENTATION METHODS................................................5
1.2. MOTIVATION ...................................................................................................8
1.3. OUTLINE .........................................................................................................9
Chapter 2. Methods 10
2.1. SEGMENTATION.............................................................................................10
2.1.1. Localization of Skull ............................................................................12
2.1.2. T1 Map.................................................................................................14
2.1.3. Region Growing ...................................................................................17
2.2. LOCALIZATION..............................................................................................18
2.2.1. Pfile......................................................................................................22
2.2.2. DICOM ................................................................................................23
2.3. LCMODEL ....................................................................................................25
2.3.1. Water-Scaling.......................................................................................26
2.4. DATA PROCESSING.........................................................................................28
Chapter 3. Results 29
3.1. SEGMENTATION.............................................................................................29
3.2. PARAMETER OF WATER SCALING ..................................................................29
3.3. MANUAL INTERACTION.................................................................................32
3.3.1. Manual Selection .................................................................................32
3.3.2. Reset the Parameters ...........................................................................35
Chapter 4. Discussion 38
4.1. DEFAULT PARAMETERS OF PROGRAM ...........................................................38
4.1.1. Priority.................................................................................................38
4.1.2. Seed Point Missing...............................................................................40
4.2. CONCENTRATIONS ACCURACY ......................................................................42
4.3. CONCLUSIONS AND FUTURE WORK...............................................................42
References 46
參考文獻 References
[1] Jutta U., Steve R. W., David G. G., and Mark N. (1993). “Proton Nuclear
Magnetic Resonance Spectroscopy Unambiguously Identifies Different Neural
Cell Types” Journal of Neuroscience 13(3): 981-989
[2] Xiaojuan L., Hua J., Ying L., Joonmi O., Susan C. and Sarah J.N. (2004).
“Identification of MRI and 1H MRSI parameters that may predict survival for
patients with malignant gliomas” NMR IN BIOMEDICENCE 17:10-20
[3] Brian R., Stefan B. (2001). “Magnetic resonance spectroscopy of the human
brain” The Anatomical Record 265(2): 54-84
[4] Sarchielli P., Presciutti O., Pelliccioli G. P., Tarducci R., Gobbi G., Chiarini P.,
Alberti A., Vicinanza F. and Gallai V. (1999). “Absolute quantification of brain
metabolites by proton magnetic resonance spectroscopy in normal-appearing
white matter of multiple sclerosis patients.” Brain 122: 513-521
[5] Soher B. J., van Zijl P.C., Duyn J.H., and Barker P. B. (1996). “Quantitative
proton MR spectroscopic imaging of the human brain.” Magn Reson Med 35(3):
356-63
[6] Whittall K. P., MacKay A. L., Graeb D. A., Nugent R. A., Li D. K., and Paty D.
W. (1997). “In vivo measurement of T2 distributions and water contents in
normal human standard.” Magn Reson Med 37(1): 34-43
[7] Christiansen P., Toft P. B., Gideon P., Danielsen E. R., Ring P., and Henriksen O.
(1994). “MR-visible water content in human brain: a proton MRS study” Magn
Reson Imaging 12(8): 1237-44
[8] Pham D. L., Xu C. and Prince J. L. (1998). “A Survey of current methods in
medical image segmentation.” Annual Review of Biomedical Engineering 2:
47
315-337
[9] Massto Y., Mikio H., Tohru I. and Takeshi M. (1996). “Extraction of Brain
Tissues by Non-parametric Region Growing Method” Engineering in Medicine
and Biology Society. 1996. Bridging Disciplines for Biomedicine. Proceedings
of the 18th Annual international Conference of the IEEE 2: 734-735
[10] Uwano I., Masachi K., Matsuda K., Doi A., Inoue T., and Ogawa A. (2004).
“Automatic Brain Segmentation from Head MRI Data using Region Growing
Method with Restricted Processing Area” Biomedical Engineering 417-155
[11] Pohle R, and Toennies K. D. (2001). “Segmentation of medical images using
adaptive region growing.” SPIE 1337-1346
[12] Denise G, Rangaraj M.R, Walter AC, Zuffo J.A and Desautels J.E.L. (1998).
“Segmentation of breast tumors in mammograms by fuzzy region growing”
Engineering in Medicine and Biology Society 2: 1002-1005
[13] Capelle A.S., Alata O., Fernandez C., and Lefebre S. (2000). “Unsupervised
segmentation for automatic detection of brain tumors in MRI.” IEEE
International Conference on Image Processing 1:613-616
[14] Algorri M. E., and Flores-Mangas F. (2004). “Classification of Anatomical
Structures in MR Brain Images Using Fuzzy Parameters.” IEEE Transactions on
Biomedical Engineering 51(9): 1599-1608
[15] Guorong W, Feihu Q and Dinggang S. (2006). “Learning-Based Deformable
Registration of MR Brain Images.” IEEE Transactions on Medical Imaging 25(9):
1145-1157
[16] Terrence C., Thomas S. H. and Zhi-pei L. (2004) “Segmentation of brain MR
images using hidden Markov random field model with weighting neighborhood
system.” Nuclear Science Symposium Conference Record 5:3209-3212
[17] Alirezaie J., Jernigan M. E., and Nahmias C. (1997). “Automatic Segmentation
48
of Cerebral MR images using Artificial Neural Networks.” IEEE Tran And
Nuclear Science 45(4): 2174-2182
[18] Sankupellay M. and Selvanathan N. (2005). “Segmentation of MR images Using
Hybrid Methods.” Journal of Advancing Information and Management Studies
2(1): 21-30
[19] Provencher S. W. (2001). “Automatic quantitation of localized in vivo 1H spectra
with LCModel NMR Biomed.” NMR in Biomedicine 14: 260-264
[20] Otsu N. (1979). “A threshold selection method from gray-level histograms.”
IEEE Transactions on System Man and Cybernetic 9(1): 62-66
[21] Provencher S.W. (2001). “LCModel1 & LCMgui2 User’s Manual.”
http:S-provencher.COM.
[22] Stanford University School of Medicine Radiological Sciences Laboratory
http: sl.stanford.edu/research/software.html.
[23] National National Electrical Manufactures Association, Digital Imaging and
Communications in Medicine (DICOM) Part 5: Data Structures and Encoding
[24] National Electrical Manufactures Association, Digital Imaging and Communications
in Medicine (DICOM) Part 6: Data Dictionary
[25] Herndon R. C., Lancaster J. L., Toga A.W. and Fox P. T. (1996). “Quantification
of white matter and gray matter volumes form T1 parametric images using fuzzy
classifiers.” Journal of Magn Reson Imaging 6: 425-435.
[26] Herndon R. C., Lancaster J. L., Toga A. W. and Fox P. T. (1998). “Quantification
of White Matter and Gray Matter Volumes from Three- Dimensional Magnetic
Resonance Volume Studies Using Fuzzy Classifiers.” Journal of Magn Reson
Imaging 8: 1097-1105
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code