Responsive image
博碩士論文 etd-0324105-112349 詳細資訊
Title page for etd-0324105-112349
論文名稱
Title
資源再利用粉狀活性碳吸附氣相氯化汞之研究
Investigation on Adsorption of Vapor-phase Mercury Chloride on Powdered Activated Carbon Derived from Recycled Waste
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
226
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-03-08
繳交日期
Date of Submission
2005-03-24
關鍵字
Keywords
加硫改質、熱裂解、動力模式、氯化汞、恆溫吸附、廢輪胎
kinetic modeling, waste tire, mercury chloride, adsorption isotherm, pyrolysis, sulfur impregnation
統計
Statistics
本論文已被瀏覽 5729 次,被下載 7100
The thesis/dissertation has been browsed 5729 times, has been downloaded 7100 times.
中文摘要
本研究以廢輪胎熱裂解產物碳黑製備粉狀活性碳,並藉管柱吸附及熱重分析等兩種恆溫吸附系統,進行氯化汞氣體之吸附實驗,探討自製粉狀活性碳對氯化汞氣體之吸附容量,再藉由恆溫吸附模式及吸附動力模式,模擬自製活性碳對氯化汞之吸附行為。此外,本研究亦研發新的加硫改質技術,得以同步提高自製粉狀活性碳之比表面積及含硫量,藉以製備高效能粉狀活性碳。
本研究以廢輪胎熱裂解產物碳黑為主要研究對象,利用自行組裝之熱裂解活化高溫爐,在不同操作條件下將其活化製備成高性能之粉狀活性碳。實驗結果顯示隨著活化溫度、活化時間與注水速率之增加,自製粉狀活性碳之產率呈現遞減趨勢,然而比表面積與孔隙體積則呈現增加趨勢。而實驗結果亦顯示,在相同的活化條件下,活化時間對自製活性碳比表面積之影響程度較注水速率為高。本研究實驗結果顯示,自製粉狀活性碳之最佳活化條件如下:(1)活化溫度為900℃,(2)活化時間為180 min,(3)注水速率為0.5 mLH2O/gC-sec,(4)注水時機為活化後17.5 min。
在碳表面官能結構分析方面,粉狀碳黑(PCB)之碳成份約佔89.5%,表面鍵結包含49.8%的C-C、38.9%的C-O、10.5%的C=O或O-C-O;自製粉狀活性碳(CBPAC)則約有87.6%的碳成分,表面鍵結包含57.5%的C-C、26.8%的C-O、8.1%的C=O或O-C-O、7.6%的O-C=O;而商用粉狀活性碳(CPAC)碳成分約佔88.0%,表面上則有42.6%的C-C、41.8%的C-O、15.6%的O-C=O。另外,PCB與CBPAC之含硫量均約為0.5%,其中,PCB表面硫可能以硫化鋅(ZnS)及雙鍵鍵結於碳上(S=C=S)之型式存在,所佔百分比率分別為58.9%及41.1%;而CBPAC表面硫則可能僅以雙鍵鍵結於碳上(S=C=S)。
在活性碳加硫改質方面,傳統含浸法改質後之活性碳含硫量雖明顯提升,但比表面積卻有驟降約20%之缺點。而本研究新發展的合成含浸法可將活性碳之含硫量由0.94%增加至2.41%,而且比表面積亦同時由461 m2/g提升至757 m2/g。此結果顯示合成含浸法硫化改質是一種具高效率、省時間及省能源之含硫粉狀活性碳製備技術。
由氯化汞管柱吸附實驗結果得知,活性碳吸附層厚度對於CBPAC吸附氯化汞之吸附容量並無明顯影響,僅改變氯化汞飽和吸附時間,此結果可證實都市垃圾焚化爐排放廢氣中噴注之粉狀活性碳,在經袋式集塵器收集後,仍對於煙道廢氣中含汞污染物具有去除之效能。而隨著氯化汞進流濃度之增加,CBPAC對氯化汞氣體吸附容量有增加趨勢,然而飽和吸附時間卻會縮短。此外,CBPAC在25℃與150℃兩種吸附溫度及溼度下,其對氯化汞吸附容量均較CPAC略低,分析其結果可能與活性碳比表面積及含硫量有關。
在恆溫吸附模式及吸附動力模式分析方面,CBPAC對氯化汞吸附容量隨進流氯化汞濃度增加而有升高之趨勢,但卻隨吸附溫度之升高而遞減。在不同吸附溫度條件下,CBPAC對氯化汞之吸附反應較偏向Freundlich Isotherm,且n值均小於1。擬一階吸附動力模式模擬值與實驗值之誤差較擬二階吸附動力模式為低,且其相關係數r值(r=0.9745~0.9977)亦較擬二階吸附動力模式(r=0.9217~0.9780)為高;因此,以擬一階吸附動力模式模擬CBPAC吸附氯化汞較擬二階吸附動力模式為佳。此外,CBPAC對氯化汞氣體吸附容量及初始吸附速率均隨氯化汞氣體濃度增加而增加,然隨吸附溫度增加而降低。
Abstract
This study investigated the production of powdered activated carbon derived from carbon black of pyrolyzed waste tires, and their adsorptive capacity on vapor-phase mercury chloride (HgCl2) using both adsorption column and thermogravimetric adsorption systems. The adsorption isotherms and kinetic models were further simulated in the study. In addition, an innovative compositive impregnation process was developed to increase the sulfur content of powdered activated carbon derived from waste tires.
The activation of carbon black to form powdered activated carbon was performed in a tubular oven. The operating parameters including activation temperatures, activation time, and water feed rates were investigated in this study. Experimental results indicated that the yield of carbon-black derived powdered activated carbon (CBPAC) decreased with the increase of activation temperature, activation time, and water feed rate, while the BET surface area and pore volume decreased. In the comparison of activation time and water feed rate in the activation process, activation time had an important impact on the production of specific surface area than water feed rate. The optimal operating parameters included activation temperature of 900℃, activation time of 180min, water feed rate of 0.5 mLH2O/gC-sec, and water injection behind activation process of 17.5 min.
From the analysis of carbon surface, the carbon contents of powdered carbon black (PCB), CBPAC, commercial powdered activated carbon (CPAC) were 89.5%, 87.6%, and 88%, respectively. The C (1s) peak region of PCB consisted of 49.8% C-C, 38.9% C-O, 10.5% C=O or O-C-O. Similar analysis results showed that the total area of the C (1s) peak region of CBPAC consisted of 57.5% C-C, 26.8% C-O, 8.1% C=O or O-C-O, and 7.6% O-C=O. Similar to CPAC, the C (1s) peak region consisted of 42.6% C-C, 41.8% C-O, and 15.6% O-C=O. Furthermore, the sulfur contents of PCB and CBPAC were both 0.5%. The S (2p) peak region of PCB consisted of 58.9% ZnS (zinc sulfide) and 41.1% S=C=S. For CBPAC, the S (2p) peak region solely contained S=C=S.
The comparison of two sulfur impregnation processes revealed that the innovative compositive impregnation process could simultaneously increased the sulfur content and the BET surface area of powdered activated carbon (PAC), however, the direct impregnation process increased the sulfur content while the BET surface area of PAC decreased linearly. Without the disadvantages of time and energy consumption associated with direct impregnation, the compositive impregnation is an efficient and energy-saving process for producing sulfurized PAC with a high BET surface area and high sulfur content.
Experimental results obtained from the adsorption column tests indicated that the influence of the adsorption depth on the adsorptive capacity of CBPAC did not vary much, while the adsorptive capacity of CBPAC increased with HgCl2 concentration. Furthermore, the adsorptive capacity of CBPAC on vapor-phase HgCl2 was less than that of CPAC at the adsorption temperatures of 25~150℃ and high humidity of 12.3 wt %. The difference of adsorptive capacity for CBPAC and CPAC correlated closely with BET surface area and sulfur content.
Results form the thermogravimetric adsorption analysis indicated that the adsorptive capacity of CBPAC and initial adsorption rate on vapor-phase HgCl2 increased with HgCl2 concentration and decreased with adsorption temperature. In the kinetic modeling, the deviation of experimental and simulated values simulated by the pseudo-first-order model was lower than those of pseudo-second-order models. Furthermore, the r (correlation coefficient) of pseudo-first-order and pseudo-second-order models were 0.9745~0.9977 and 0.9217~0.9780, respectively. It suggested that the pseudo-first-order model could simulate the adsorption of HgCl2 onto CBPAC better than pseudo-second-order model.
目次 Table of Contents
目 錄
中文摘要………………………………………………………….…. I
英文摘要………………………………………………………….…. III
目錄……………………………………………………………….…. VI
表目錄…………………………………………………………….…. XI
圖目錄……………………………………………………………….. XIV
第一章 前言………………………………………………………… 1-1
1-1研究緣起……………….………………….………………... 1-1
1-2研究目的………………………………….……….………... 1-4
1-3研究流程………………………………….…….…………... 1-4
第二章 文獻回顧…………………………………………………… 2-1
2-1汞對環境及人類健康之影響……………………..………... 2-1
2-2汞之污染來源………………………..……………………... 2-2
2-3汞之傳輸途徑………………………...…………..………… 2-13
2-4汞及其化合物之控制技術……..………………..…………. 2-16
2-5活性碳之特性與吸附指標………………………..………... 2-18
2-5-1活性碳之特性………………………………………... 2-18
2-5-2活性碳吸附容量指標………………………………... 2-21
2-6恆溫吸附模式………………………………………..……... 2-23
2-6-1 Langmuir Isotherm…………………………………... 2-26
2-6-2 Freundlich Isotherm……………………...…………... 2-31
2-6-3 Redlich and Peterson Isotherm…………..…………... 2-34
2-6-4 Toth Isotherm…………………...………..…………... 2-35
2-6-5 Brunauer-Emmett-Teller Isotherm………………….... 2-36
2-7吸附動力模式………………………………………..……... 2-37
2-7-1一階可逆反應模式…………………………………... 2-37
2-7-2擬一階吸附動力模式………………………………... 2-39
2-7-3擬二階吸附動力模式………………………………... 2-39
2-8熱重分析之應用………………..…………………………... 2-40
2-9廢輪胎之環境問題與處理技術……………………………. 2-41
2-9-1廢輪胎之環境問題....……………..………………… 2-42
2-9-2廢輪胎之處理技術………………..…………………. 2-42
2-9-3廢輪胎熱裂解產物碳黑之應用.…………………….. 2-47
第三章 研究方法…………………………………………………… 3-1
3-1實驗設計………………………………………………….... 3-1
3-2實驗製備…………………………………………….……... 3-3
3-2-1活性碳製備系統……………………………………... 3-3
3-2-2粉狀活性碳硫化改質系統…………………………... 3-5
3-2-3管柱吸附系統………………………………………... 3-6
3-2-4熱重分析系統………………………………………... 3-7
3-2-5儀器分析系統………………………………………... 3-9
3-3實驗方法…….…………………………………………..…. 3-11
3-3-1活性碳製備系統…………………….….…….……… 3-11
3-3-1-1粉狀活性碳最佳活化製備條件之探討………... 3-11
3-3-1-2吸附指標之量測與探討……………..…………. 3-14
3-3-1-3表面官能特性之分析………………..…………. 3-15
3-3-2粉狀活性碳硫化改質系統………………………….. 3-17
3-3-2-1直接含浸法……………………………………... 3-17
3-3-2-2合成含浸法…………………………..…………. 3-18
3-3-3氯化汞氣體管柱吸附系統………………..….……… 3-18
3-3-4氯化汞氣體熱重分析系統……………….….……… 3-21
3-3-5儀器分析方法……………………………..….……… 3-22
3-4品保與品管…….…………………………….……………. 3-30
3-4-1品管執行方式………………………………………... 3-30
3-4-2品保執行方法………………………………………... 3-31
第四章 資源化活性碳之製備……………………………………… 4-1
4-1操作參數對自製粉狀活性碳物理性質之影響……………. 4-1
4-1-1活化溫度對自製粉狀活性碳物理性質之影響……... 4-1
4-1-2活化時間對自製粉狀活性碳物理性質之影響……... 4-2
4-1-3注水速率對自製粉狀活性碳物理性質之影響……... 4-6
4-2碳黑厚度對自製粉狀活性碳物理特性之影響…………… 4-9
4-2-1活化時間對不同碳黑厚度製備之粉狀活性碳物理性質之影響…………………………………………..
4-11
4-2-2注水速率對不同碳黑厚度製備之粉狀活性碳物理性質之影響….…….…………………………….…...
4-13
4-2-3不同深度碳黑所製備之粉狀活性碳物理性質之變化趨勢….…….………………………………….…...
4-17
4-3碳黑製備粉狀活性碳之活化操作條件評估……………… 4-18
4-3-1注水時機對粉狀活性碳物理性質之影響………...… 4-21
4-3-2活化時間與注水速率對粉狀活性碳物理性質之影響……………………………………………………..
4-25
4-4粉狀活性碳之物化性質……………………….……….….. 4-28
4-4-1元素分析…………………………………………...… 4-28
4-4-2 ESCA官能特性分析…..…………………………….. 4-30
4-4-3 SEM碳表面影像分析..…………………………….. 4-40
4-5粉狀活性碳之吸附指標………………….………….…….. 4-42
4-5-1活性碳吸附指標-碘值之量測…………….……….. 4-42
4-5-2活性碳吸附容量指標-苯吸附容量之量測……….. 4-45
4-6活性碳之加硫改質…….….….………………………...….. 4-48
4-6-1直接含浸法加硫改質………………….…………….. 4-50
4-6-2合成含浸法加硫改質……………….……………….. 4-52
4-6-3硫化改質程序之比較……………….……………….. 4-57
第五章 氯化汞氣體吸附容量之量測……………………………… 5-1
5-1氯化汞氣體管柱吸附測試………………….………….….. 5-1
5-1-1自製與商用粉狀活性碳物化特性之比較………….. 5-1
5-1-2吸附層厚度對活性碳吸附容量之影響…………….. 5-2
5-1-3氯化汞氣體進流濃度對活性碳吸附容量之影響.…. 5-4
5-1-4活性碳種類對氯化汞氣體吸附容量之影響............... 5-7
5-1-5濕度對活性碳吸附容量之影響……………………... 5-11
5-2氯化汞氣體熱重吸附測試………………………………… 5-13
5-2-1自製粉狀活性碳之特性………………….………….. 5-13
5-2-2氯化汞氣體熱重分析結果…………….…………….. 5-16
第六章 氯化汞氣體吸附模式之建立……………………………… 6-1
6-1氯化汞氣體之恆溫吸附模式………………….……….….. 6-1
6-2氯化汞氣體之吸附動力分析……………………………… 6-8
第七章 結論與建議………………………………………………… 7-1
7-1結論………………………….………………….………….. 7-1
7-2建議……………………………………….….…………….. 7-5
參考文獻………..…………………….………………….………….. R-1
附錄A 蠕動幫浦流量校正曲線………………………………….... A-1
附錄B 分析檢量線…………...……………..………………….... B-1
附錄C 化學分析電子光譜儀分析結果…………………………. C-1
附錄D 實驗數據一覽表………………………………………….... D-1
表目錄
表2-2.1 汞及其化合物之物理和化學特性……………………... 2-4
表2-2.2 各國汞排放量分佈比較表……..………………………. 2-7
表2-2.3 燃煤組成份一覽表…………………………………..…. 2-8
表2-2.4 美國都市垃圾中金屬成份一覽表….………………….. 2-10
表2-2.5 美國都市垃圾中含汞污染物的污染來源……………... 2-13
表2-3.1 元素汞的物理及化學特性……………………………... 2-15
表2-3.2 常見含汞化合物之氣-液平衡反應………………...…... 2-15
表2-3.3 常見含汞化合物之固-液平衡反應…………………...... 2-16
表2-3.4 液相二價汞的平衡反應………………………………... 2-16
表2-5.1 活性碳之孔隙分佈……………………………………... 2-20
表2-5.2 台灣南部垃圾資源回收(焚化)廠粉狀活性碳採購規格………………………………………………………...
2-24
表2-6.1 常見之恆溫吸附模式……………………….……...…... 2-28
表2-9.1 世界先進國家廢輪胎現行處理方式及未來規劃方向... 2-48
表2-9.2 熱裂解模式彙整表………………………………….….. 2-50
表2-9.3 廢輪胎碳黑活化後活性碳之孔隙與表面特性彙整表... 2-52
表3-3.1 碳黑活化反應之操作條件及範圍……………………... 3-12
表3-3.2 廢輪胎製備粉狀活性碳之操作條件…........................... 3-19
表3-3.3 廢輪胎製備含硫粉狀活性碳之操作條件……...……… 3-19
表3-3.4 三種粉狀活性碳之特性比較…………………………... 3-20
表3-3.5 管柱吸附實驗之操作條件……………………………... 3-21
表3-3.6 微孔隙分析儀之操作條件一覽表……………………... 3-23
表3-3.7 元素分析儀操作條件一覽表…………………………... 3-26
表4-2.1 不同深度碳黑所製備之粉狀活性碳物理性質一覽表... 4-19
表4-4.1 粉狀活性碳含硫量分析結果一覽表……………........... 4-29
表4-4.2 粉狀碳黑(PCB)之ESCA量測結果………………… 4-31
表4-4.3 自製粉狀活性碳(CBPAC)之ESCA量測結果……….. 4-31
表4-4.4 商用粉狀活性碳(CPAC)之ESCA量測結果………... 4-31
表4-4.5 PCB、CBPAC及CPAC之C (1s)表面官能特性分析….. 4-33
表4-4.6 不同碳黑之C (1s)表面官能成份比較……….………... 4-35
表4-4.7 PCB、CBPAC及CPAC之O (1s)表面官能特性分析… 4-36
表4-5.1 自製與商用粉狀活性碳在30℃下吸附水溶液中苯之Langmuir和Freundlich兩種恆溫吸附模式之參數值與誤差值………………………………………………...…

4-48
表4-6.1 直接含浸法製備之含硫WPAC物化特性變化趨勢….. 4-51
表4-6.2 合成含浸法製備含硫WPAC之物化特性變化趨勢….. 4-54
表5-1.1 自製與商用粉狀活性碳之特性比較…………………... 5-3
表5-2.1 微孔隙分析儀量測CBPAC之物理性質彙整表……..... 5-15
表5-2.2 CBPAC在不同氯化汞氣體濃度之飽和吸附量……….. 5-17
表6-1.1 CBPAC吸附氯化汞氣體在不同吸附溫度下之恆溫吸附模式參數值與誤差值彙整表………………………...
6-3
表6-2.1 擬一階吸附動力模式模擬CBPAC吸附氯化汞之參數值及相關係數……………………………………….......
6-12
表6-2.2 擬二階吸附動力模式模擬CBPAC吸附氯化汞之參數值及相關係數………………………………………...
6-13
表D-1 活性碳之微孔隙性質隨活化條件變化結果一覽表....... D-1
表D-2 粉狀碳黑之微孔隙性質隨熱裂解時間變化結果一覽表.......................................................................................
D-1
表D-3 CBPAC對苯吸附容量之量測.......................................... D-2
表D-4 CPAC對苯吸附容量之量測............................................. D-2
表D-5 粉狀活性碳吸附氯化汞氣體之轉化率實驗結果一覽表…………………………………………………….......
D-3
表D-6 粉狀活性碳吸附氯化汞氣體之吸附容量實驗結果一覽表...................................................................................
D-12
表D-7 熱重分析實驗活性碳吸附氯化汞氣體吸附容量一覽表(30℃)...........................................................................
D-22
表D-8 熱重分析實驗活性碳吸附氯化汞氣體吸附容量一覽表(70℃)...........................................................................
D-25
表D-9 熱重分析實驗活性碳吸附氯化汞氣體吸附容量一覽表(150℃)……….............................................................
D-27


圖目錄
圖1-3.1 研究流程圖……………………………………………... 1-6
圖2-2.1 汞在自然環境之排放源與移動路徑示意圖…………... 2-3
圖2-2.2 美國人為汞排放源分佈圖……………………………... 2-5
圖2-2.3 加拿大安大略省人為汞排放源分佈圖………………... 2-5
圖2-2.4 汞在燃煤過程可能進行之反應與物種型態…………... 2-9
圖2-5.1 常見之酸性表面含氧官能基結構示意圖…………...... 2-22
圖2-5.2 含氮官能基……………………………………………... 2-23
圖2-6.1 活性碳對吸附質之吸附-脫附示意圖……...…………... 2-25
圖3-1.1 實驗設計流程圖………………………………………... 3-2
圖3-2.1 碳黑熱裂解、活化及加硫改質實驗裝置圖…..……..… 3-5
圖3-2.2 管柱吸附實驗裝置圖…………………………………... 3-8
圖3-2.3 熱重分析吸附實驗設備示意圖…..………………….… 3-10
圖3-3.1 活性碳製備及其物化特性分析流程圖………………... 3-13
圖3-3.2 ESCA量測系統示意圖……………………..…………... 3-17
圖3-3.3 活性碳孔隙物理性質分析流程圖……………………... 3-24
圖3-3.4 苯在波長200~300 nm之間的吸收情形………………. 3-27
圖3-3.5 重覆樣品分析品質管制圖……………………………... 3-35
圖3-3.6 查核樣品分析品質管制圖……………………………... 3-35
圖4-1.1 活性碳比表面積隨活化溫度變化之趨勢圖…………... 4-3
圖4-1.2 活性碳產率隨活化溫度變化之趨勢圖………………... 4-3
圖4-1.3 不同形態碳黑製備之粉狀活性碳物理性質隨活化時間變化趨勢圖…………………………………………...
4-4
圖4-1.4 不同形態碳黑製備之粉狀活性碳物理性質隨注水速率變化趨勢圖………………………………...…………
4-8
圖4-2.1 粉狀碳黑在活化前後之厚度變化情形………………... 4-10
圖4-2.2 不同碳黑厚度製備之粉狀活性碳物理性質隨活化時間變化趨勢圖……………………………………….…..
4-12
圖4-2.3 不同碳黑厚度製備之粉狀活性碳物理性質隨注水速率………………………………………….......................
4-14
圖4-2.4 不同深度碳黑製備之粉狀活性碳物理性質變化趨勢圖………………………………………………………...
4-20
圖4-3.1 碳黑比表面積隨殘餘熱裂解時間之變化趨勢圖……... 4-23
圖4-3.2 不同注水時間製備粉狀活性碳比表面積隨活化時間之變化趨勢圖…………………………………...............
4-23
圖4-3.3 不同注水速率製備粉狀活性碳比表面積隨活化時間變化之趨勢圖…………………………………………...
4-24
圖4-3.4 不同注水速率製備粉狀活性碳產率隨活化時間變化之趨勢圖………………………………………………...
4-24
圖4-3.5 單位重量水蒸氣對自製粉狀活性碳比表面積增加量之影響趨勢圖…………………………………………...
4-27
圖4-4.1 由PCB之C (1s) ESCA光譜解析之碳表面官能基…... 4-34
圖4-4.2 由CBPAC之C (1s) ESCA光譜解析之碳表面官能基... 4-34
圖4-4.3 由CPAC之C (1s) ESCA光譜解析之碳表面官能基… 4-35
圖4-4.4 由PCB之O (1s) ESCA光譜解析之碳表面官能基… 4-37
圖4-4.5 由CBPAC之O (1s) ESCA光譜解析之碳表面官能基 4-37
圖4-4.6 由CPAC之O (1s) ESCA光譜解析之碳表面官能基… 4-38
圖4-4.7 由PCB之S (2p) ESCA光譜解析碳表面官能基………. 4-39
圖4-4.8 由CBPAC之S (2p) ESCA光譜解析碳表面官能基….. 4-40
圖4-4.9 廢輪胎熱裂解產物碳黑活化製備之粉狀活性碳(CBPAC)外表結構…………………………………....
4-41
圖4-4.10 不同碳材製備之活性碳外表結構……………………... 4-42
圖4-5.1 粉狀碳黑製備之粉狀活性碳碘值吸附曲線…………... 4-44
圖4-5.2 商用粉狀活性碳之碘值吸附曲線……………………... 4-44
圖4-5.3 自製與商用粉狀活性碳對苯吸附容量之比較(以Langmuir恆溫方程式進行模擬)…………………….....
4-47
圖4-5.4 自製與商用粉狀活性碳對苯吸附能力之比較(以Freundlich恆溫方程式進行模擬)……………………....
4-47
圖4-6.1 直接含浸法改質過程中活性碳比表面積及含硫量隨著注硫速率之變化趨勢……...........................................
4-52
圖4-6.2 合成含浸法硫化改質過程中活性碳比表面積與含硫量隨注硫速率之變化趨勢圖….......................................
4-54
圖4-6.3 合成含浸法硫化改質過程中活性碳比表面積與含硫量隨活化時間之變化趨勢圖……….…………………..
4-55
圖4-6.4 合成含浸法硫化改質過程中活性碳比表面積與含硫量隨溶液注入速率之變化趨勢圖…...............................
4-56
圖5-1.1 不同吸附層厚度對自製粉狀活性碳吸附氯化汞氣體之吸附曲線圖……………………..…….........................
5-5
圖5-1.2 不同吸附層厚度對自製粉狀活性碳吸附氯化汞氣體吸附容量隨時間變化之趨勢圖…………………….…..
5-5
圖5-1.3 不同氯化汞進流濃度對自製粉狀活性碳吸附氯化汞氣體之吸附曲線圖……………………………….……..
5-6
圖5-1.4 不同氯化汞進流濃度對自製粉狀活性碳吸附氯化汞氣體吸附容量隨時間變化之趨勢圖…………………...
5-6
圖5-1.5 自製與商用粉狀活性碳吸附氯化汞氣體之吸附曲線圖(25℃)………………………….……………..…….....
5-8
圖5-1.6 自製與商用粉狀活性碳吸附氯化汞氣體吸附容量隨時間變化之趨勢圖(150℃)……………………...……....
5-8
圖5-1.7 自製與商用粉狀活性碳吸附氯化汞氣體之吸附曲線圖(150℃)……..................................................................
5-10
圖5-1.8 自製與商用粉狀活性碳吸附氯化汞氣體吸附量隨時間變化之趨勢圖(150℃)……….......................................
5-10
圖5-1.9 濕度對活性碳吸附氯化汞氣體吸附容量之影響趨勢圖………………………………………………………...
5-12
圖5-2.1 CBPAC之氮氣吸脫附曲線………………….................. 5-14
圖5-2.2 CBPAC之孔洞分佈(BJH方法)..……………….….. 5-15
圖5-2.3 CBPAC在不同溫度及氯化汞氣體濃度下對氯化汞累積吸附容量隨吸附時間之變化趨勢圖…………….…..
5-18
圖6-1.1 CBPAC於不同吸附溫度對氯化汞氣體之恆溫吸附曲線………………………………………………………...
6-4
圖6-1.2 與 之線性關係圖(30℃)…………..
6-7
圖6-1.3 與 之線性關係圖(70℃)…………..
6-7
圖6-1.4 與 之線性關係圖(150℃)…………..
6-8
圖6-2.1 擬一階及擬二階吸附動力模式模擬值與CBPAC吸附氯化汞氣體實驗值之比較(30℃)……..………….…..
6-9
圖6-2.2 擬一階及擬二階吸附動力模式模擬值與CBPAC吸附氯化汞氣體實驗值之比較(70℃)……………………..
6-10
圖6-2.3 擬一階及擬二階吸附動力模式模擬值與CBPAC吸附氯化汞氣體實驗值之比較(150℃)..………....…….…..
6-10
圖6-2.4 不同吸附溫度下,CBPAC對氯化汞氣體吸附容量隨氯化汞氣體濃度之變化趨勢………………………….…..
6-14
圖6-2.5 不同吸附溫度下,擬一階吸附動力模式之初始吸附速率隨氯化汞氣體濃度之變化趨勢………………….…..
6-14
圖6-2.6 不同吸附溫度下,擬二階吸附動力模式之初始吸附速率隨氯化汞氣體濃度之變化趨勢……..……..…….…..
6-15
圖6-2.7 以擬一階吸附動力模式模擬CBPAC吸附氯化汞氣體之動力實驗(30℃)……………………………….…..
6-16
圖6-2.8 以擬一階吸附動力模式模擬CBPAC吸附氯化汞氣體之動力實驗(70℃)………………………………..…..
6-16
圖6-2.9 以擬一階吸附動力模式模擬CBPAC吸附氯化汞氣體之動力實驗(150℃)..……………..……..………….…..
6-16
圖A-1 蠕動幫浦流量校正曲線………………………………... A-1
圖B-1 氯化汞之檢量線………………………………………... B-1
圖B-2 苯之檢量線……………………………………………... B-1
圖C-1 利用ESCA分析粉狀碳黑表面光譜圖………………... C-1
圖C-2 利用ESCA分析粉狀碳黑表面碳(C)元素之光譜圖…. C-1
圖C-3 利用ESCA分析粉狀碳黑表面氮(N)元素之光譜圖 C-2
圖C-4 利用ESCA分析粉狀碳黑表面氧(O)元素之光譜圖………………………………………………………...
C-2
圖C-5 利用ESCA分析粉狀碳黑表面硫(S)元素之光譜圖 C-3
圖C-6 利用ESCA分析自製粉狀活性碳表面光譜圖.………... C-3
圖C-7 利用ESCA分析自製粉狀活性碳表面碳(C)元素之光譜圖…………………………………………………...
C-4
圖C-8 利用ESCA分析自製粉狀活性碳表面氧(O)元素之光譜圖…………………………………………………...
C-4
圖C-9 利用ESCA分析自製粉狀活性碳表面硫(S)元素之光譜圖…………………………………………………...
C-5
圖C-10 利用ESCA分析商用粉狀活性碳表面光譜圖………... C-5
圖C-11 利用ESCA分析商用粉狀活性碳表面碳(C)元素之光譜圖…………………………………………………...
C-6
圖C-12 利用ESCA分析商用粉狀活性碳表面氧(O)元素之光譜圖…………………………………………………...
C-6
圖C-13 利用ESCA分析商用粉狀活性碳表面硫(S)元素之光譜圖…………………………………………………...
C-7
參考文獻 References
參考文獻
Allen, J.L., Gatz, J.L., Eklund, P.C. Application for activated carbons from used tires: butane working capacity. Carbon, 37, 1485-1489, 1999.
Allen, S.J., Gan, Q., Matthews, R., Johnson, P.A. Comparison of optimized isotherm models for basic dye adsorption by kudzu. Biores. Technol. 88, 143-152, 2003.
Ames, M., Gullu, G. Olmez, I. Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York. 32(5), 865-872, 1998.
Ariyadejwanich, P., Tanthapanichakoon, W., Nakagawa, K., Mukai, S.R., Tamon, H. Preparation and characterization of mesoporous activated carbon from waste tires. Carbon, 41, 157-164, 2003.
Azizian, S. Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276, 47-52, 2004.
Bai, R., Yang, R.T. A thermodynamically consistent Langmuir model for mixed gas adsorption. J. Colloid Interface Sci. 239, 296-302, 2001.
Bansal, R.C., Active Carbon; Marcel-Dekker: New York and Basel, 1988.
Barbooti, M.M., Hassen, E.B., Issa, N.A. Thermogravemetric and pyrolytic investigation of scrap tires. J. Petro. Res. 8, 229-242, 1989
Benefield, L. D., Judkins, J.F., Weand, B.L. Removal of soluble organic materials from wastewater by carbon adsorption. Prentice-Hall, Inc., Englewood Cliffs, N.J., 365-402, 1982.
Biswas, P., Wu, C.Y. Control of toxic metal emissions from combustors using sorbents: a review. J. Air Waste Manage. Assoc. 48, 113-127, 1998.
Broholm, M.M., Broholm K., Arvin, E. Sorption of heterocyclic compounds from a complex mixture of coal-tar compounds on natural clayey till. J. Contam. Hydrol. 39, 201-226, 1999.
Brown, T.D., Smith, D.N., Hargis, R.A., Jr., and O’Dowd, W.J. Mercury measurement and its control: what we know, have learned, and need to further investigate. J. Air Waste Manage. Assoc. 49, 628-640, 1999.
Brady,T.A., Rostam-Abadi, M., Rood, M.J. Applications for activated carbons from waste tires: natural gas storage and air pollution control. Gas. Sep. Purif. 10, 97-102, 1996.
Cannon, F. S., Dusenbury, J. S., Paulsen, J., Sigh, D. W., Maurer, D. J. Advanced oxidant regeneration of granular activated carbon for controlling air-phase VOCs. Ozone Sci. Eng. 18(5) ,417-441, 1996.
Carey, T.R., Hargrove, O.W., Jr., Richardson, C.F. Factors affecting mercury control in utility flue gas using activated carbon. J. Air Waste Manage. Assoc. 48, 1166-1174, 1998.
Chang, Y.M. On pyrolysis of waste tires: degradation rate and product yields. Res. Conserv. Recy. 17, 125-139, 1996.
Chen, J., Yiacoumi, S., Blaydes, T.G. Equilibrium and kinetic studies of copper adsorption by activated carbon. Sep. Technol. 6, 133-146, 1996.
Chen, K.S., Yeh, R.Z., Chang, Y.R. Kinetics of thermal decomposition of styrene-butadiene rubber at low heating rates in nitrogen and oxygen. Combust. Flame, 108, 408-418, 1997.
Chen, J.H., Chen, K.S., Tong, L.Y. On the pyrolysis kinetics of scrap automatic tires. J. Hazard. Mater. B84, 43-55, 2001.
Chen, J.P., Lin, M. Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Wat. Res. 35(10), 2385-2394, 2001.
Choy, K.K.H., McKay, G., Porter, J.F. Sorption of acid dyes from effluents using activated carbon. Resour. Conserv. Recycl. 27, 57-71, 1999.
Clarkson, C.R., Bustin, R.M. Binary gas adsorption/desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. Int. J. Coal Geol. 42, 241-271, 2000.
Conesa, J.A., Font, R., Fullana, A., Caballero, J.A. Kinetic model for the combustion of tyre wastes. Fuel, 77(13), 1469-1475, 1998.
Cunliffe, A.M., Williams, P.T. Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tyres. Energy Fuels, 13(1), 166-175, 1999.
Darmstadt, H., Pantea, D., Summchen, L., Roland, U., Kaliaguine, S., Roy, C. Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark: influence of feedstock moisture content. J. Anal. Appl. Pyrolysis, 52, 1-17, 2000.
Dastgheib, S.A., Rockstraw, D.A. A model for the adsorption of single metal ion solutes in aqueous onto activated carbon produced from pecan shells. Carbon, 40, 1843-1851, 2002.
Fan, M. Brown, R.C. Comparison of the loss-on-ignition and thermogravimetric analysis techniques in measuring unburned carbon in coal fly ash. Energy Fuel, 15, 1414-1417, 2001.
Fettig, S.F.; Zimmer, H.H. Activated carbon for water treatment. first edition, DVGW-Fors-Chungsstelle, 1988.
Flora, J.R.V., Vidic, R.D., Liu, W., Thurnau, R.C. Modeling powdered activated carbon injection for the uptake of elemental mercury vapors. J. Air Waste Manage. Assoc. 48, 1051-1059, 1998.
Galbreath, K.C., Zygarlicke, C.J. Mercury transformations in coal combustion flue gas. Fuel Process. Technol. 65-66, 289-310, 2000.
Gibb, W.H., Clarke, F., Mehta, A.K. The fate of coal mercury during combustion. Fuel Process. Technol. 65-66, 365-377, 2000.
Gomez-Serrano, A., Macias-Garcia, A., Espinosa-Mansilla, A., Valenzuela-Calahorro, C. Adsorption of mercury, cadmium and lead from aqueous-solution on heat-treated and sulphurized activated carbon. Water Research, 32, 1-4, 1998.
Gregg, S.J., Sing, K.S.W. Adsorption, surface area and porosity. Academic press, second edition, London, 1982.
Gritti, F., Gotmar, G., Stanley, B.J., Guiochon, G. Determination of single component isotherms and affinity energy distribution by chromatography. J. Chromatogr. A, 988, 185-203, 2003.
Hamadi, N.K., Chen, X.D., Farid, M.M., Lu, M.G.Q. Adsorption kinetics for the removal of chromium (VI) form aqueous solution by adsorbents derived from used tyres and sawdust. Chem. Eng. J. 84, 95-105, 2001.
Hamadi, N.K., Swaminathan, S., Chen, X.D. Adsorption of paraquat dichloride from aqueous solution by activated carbon derived from used tires. J. Hazard. Mater. B112, 133-141, 2004.
Hartenstein, H.U., Horvay, M. Overview of municipal waste incineration industry in west Europe (based on the German experience). J. Hazard. Mater. 47 (1-3), 19-30, 1996.
Hassler, J.W. Activated carbon. Leonard Hill, London, 1967.
Hasselriis, F., Licata, A. Analysis of heavy metal emission data from municipal waste combustion. J. Hazard. Mater. 47 (1-3), 77-102, 1996.
Helleur, R., Popovic, N., Ikura, M., Stanciulescu, M., Liu, D. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires. J Anal. Appl. Pyrolysis, 58-59, 813-824, 2001.
Hladíková, V., Petrík, J., Jursa, S., Ursínyová, M., Kočan, A. Atmospheric mercury levels in the Slovak Republic. Chemosphere, 45, 801-806, 2001.
Hlawiczka, S., Kubica, K., Zielonka, U. Partitioning factor of mercury during coal combustion in low capacity domestic heating units. Environ. Sci. Technol. 312, 261-265, 2003.
Ho, Y.S., Huang, C.T., Huang, H.W. Equilibrium sorption isotherm for metals ions on tree fern. Process Biochem. 37, 1421-1430, 2002.
Homenauth, O.P., McBride, M.B. Adsorption of aniline on layer silicate clays and an organic soil. Soil Sci. Soc. Am. J. 58, 347-354, 1994.
Hu, H., Trejo, M., Nicho, M.E., Saniger, J.M., García-Valenzuela, A. Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline films. Sens. Actuator. B-chem. 82, 14-23, 2002.
Hunsicker, M.D., Crockett, T.R., Labode, B. M.A. An overview of the municipal waste incineration industry in Asia and the former Soviet Union. J. Hazard. Mater. 47(1-3), 31-42, 1996.
Hutchins, R.A. Economic factors in granular carbon thermal regeneration. Chem. Eng. Prog. 69(11), 48-55, 1973.
Innanen, S. The ratio of anthropogenic to natural mercury release in Ontario: three emission scenarios. Sci. Total Environ. 213, 25-32, 1998.
Jasinski, S.M. The materials flow of mercury in the United States. Res. Conserv. Recycl. 15 (3-4), 145-179, 1995.
Karatza, D., Lancia, A., Musmarra, D., Pepe, F., Volpicelli, G. Kinetics of adsorption of mercuric chloride vapors on sulfur impregnated activated carbon. Combust. Sci. and Tech. 112, 163-174, 1996.
Kadirvelu, K., Namasivayam, C. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 7, 471-478, 2003.
Khan, A.R., Al-Bahri, T.A., Al-Haddad, A. Adsorption of phenol based organic pollutants on activated carbon from multi-component dilute aqueous solutions. Wat. Res. 31, 2102-2112, 1997.
Kilgroe, J.D. Control of dioxin, furan, and mercury emissions from municipal waste combustors. J. Hazard. Mater. 47, 163-184, 1996.
Kim, S., Park, J.K., Hee-Dong C. Pyrolysis kinetics of scrap tire rubbers. I: using DTG and TGA. J. Environ. Eng. 507-514, 1995.
Korpiel, J.A., Vidic, R.D. Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. Environ. Sci. Technol. 31, 2319-2325, 1997.
Krishnan, K.A., Anirudhan, T.S. Removal of mercury (II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbon prepared from bagasse pith: kinetics and equilibrium studies. J. Hazard. Mater. B92, 161-183, 2002.
Krivanek, C.S. Mercury control technologies for MWC’s: the unanswered questions. J. Hazard. Mater. 47 (1-3), 119-136, 1996.
Lahaye, J. The chemistry of carbon surfaces. Fuel, 77(6), 543-547, 1998.
Lee, D.S., Dollard, G.J., Pepler, S. Gas-phase mercury in the atmosphere of the United Kingdom. Atmos. Environ. 32(5), 855-864, 1998.
Lee, W.H., Kim, J.Y., Ko, Y.K., Reucroft, P.J., Zondlo, J.W. Surface analysis of carbon black waste materials from tire residues. Appl. Surf. Sci. 141, 107-113, 1999.
Lehmann, C.M.B., Rostam-Abadi, M., Rood, M.J. Sun, J. Reprocessing and reuse of waste tire rubber to solve air-quality related problems. Energy Fuels, 13, 1095-1099, 1998.
Lehmann, C.M.B., Rostam-Abadi, M., Rood, M.J. Hsi, H.C. Activated carbon adsorbents from waste tires for air quality control. In Proceedings of A&WMA 92nd Annual Meeting & Exhibition, St. Louis, Missouri, June 20-24, 1999.
Leung, D.Y.C., Wang. C.L. Kinetic study of scrap tyre pyrolysis and combustion. J. Anal. Appl. Pyrol. 45, 153-169, 1998.
Leung, D.Y.C., Wang. C.L. Kinetic modeling of scrap tire pyrolysis. Energy Fuels, 13, 421-427, 1999.
Lin, J.P., Chang, C.Y., Wu, C.H. Pyrolytic treatment of rubber waste: pyrolysis kinetics of styrene-butadiene rubber. J. Chem. Technol. Biotechnol. 66, 7-14, 1996.
Lin, C.J., Pehkonen, S.O. The chemistry of atmospheric mercury: a review. Atmos. Environ. 33(13), 2067-2079, 1999.
Lin, Y.R., Teng, H. Mesoporous carbons from waste tires char and their application in wastewater discoloration. Micropor. Mesopor. Mater. 54, 167-174, 2002.
Liu, W., Vidic, R.D., Brown, T.D. Optimization of sulfur impregnation protocal for fixed-bed application of activated carbon-based sorbents for gas-phase mercury removal. Environ. Sci. Technol. 32, 531-538, 1998.
Lorenzen, L., van Deventer, J.S.J., Landi, W.M. Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner. Eng. 8(4/5), 557-569, 1995.
Lowell S., Shields, J.E. Powder surface area and porosity. third edition, Chapman & Hall, London, England, 11-13, 1991.
Merchant, A.A., Petrich, M.A. Preparation and characterization of activated carbons from scrap tires, Almond shells and Illinois coal. Chem. Eng. Commun, 118, 251-263, 1992.
Merchant, A.A., Petrich, M.A. Pyrolysis of scrap tires and conversion of chars to activated carbon. AIChE J. 39, 1370-1376, 1993.
Miguel, G.S., Fowler,G.D., Sollars, C.J. Pyrolysis of tire rubber: porosity and adsorption characteristics of the pyrolytic chars. Ind. Eng. Chem. Res., 37, 2430-2435, 1998.
Mohan, D., Gupta, V.K., Srivastava, S.K., Chander, S. Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A: Physicochem. Eng. Aspects, 177, 169-181, 2001.
Mui, E.L.K., Ko, D.C.K., McKay, G. Production of active carbons from waste tires-a review. Carbon, 42, 2789-2805, 2004.
Nakagana, R. Studies on the levels in atmospheric concentrations of mercury in Japan. Chemsophere, 32, 2669-2676, 1995.
Namasivayam, C., Senthilkumar, S. Recycling of industrial solid waste for the removal of mercury (II) by adsorption process. Chemosphere, 34, 357-375, 1997.
Namasivayam, C.N., Kadirvelu, K. Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon, 37, 79-84, 1999.
Ng, J.C.Y., Cheung, W.H., McKay, G. Equilibrium studies for the sorption of lead from effuents using chitosan. Chemosphere, 52, 1021-1030, 2003.
Ogasawara, S., Kuroda, M., Wakao, N. Preparation of activated carbon by thermal decomposition of used automotive tires. Ind. Eng. Chem. Res. 26, 2552-2555, 1987.
Ollero, P., Serrera, A., Arjona, R., Alcantarilla, S. Diffusional effects in TGA gasification experiments for kinetic determination. Fuel, 81, 1989-2000, 2002.
Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal D.L., Benson, S.A. Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82, 89-165, 2003.
Sainz-Diaz, C.I., Griffiths, A.J. Activated carbon from solid wastes using a pilot-scale batch flaming pyrolyser. Fuel, 79, 1863-1871, 2000.
Sakata, M., Marumoto, K. Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmos. Environ. 36(2), 239-246, 2002.
San M.G., Fowler, G.D., Dall’Orso, M., Sollars, C.J. Porosity and surface characteristic of activated carbon produced form waste tyre rubber. J. Chem. Technol. Biotechnol. 77,1-8, 2001.
Schroeder, W.H., Munthe, J. Atmospheric mercury- an overview. Atmos. Environ. 32(5), 809-822, 1998.
Senior, C., Chen, Z., Sarofim, A. Mercury oxidation in coal-fired utility boilers: validation of gas-phase kinetic models. In Proceedings of A&WMA 95th Annual Meeting & Exhibition, Baltimore, MD, June 23-27, 2002; A&WMA: Pittsburgh, PA, 2002.
Senneca, O., Salatino, P., Chirone, R. A fast heating-rate thermo-
gravimetric study of the pyrolysis of scrap tyres. Fuel, 78, 1575-1581, 1999.
Shaub, W.M. Mercury emission from MSW incinerator: an assessment of the current situation in the United States and forecast of future emissions. Res. Conserv. Recycl. 9 (1-2), 31-59, 1993.
Shu, H.T., Li, D., Scala, A.A., Ma, Y.H. Adsorption of small organic pollutants from aqueous streams by aluminosilicate-based microporous materials. Sep. Puri. Technol. 11, 27-36, 1997.
Silva Da Rocha, M., Iha, K., Cândido Faleiros, A., José Corat, E., Encarnación Vázquez Suárez-Iha, M. Freundlich’s isotherm extended by statistical mechanics. J. Colloid Interface Sci. 185, 493-496, 1997.
Sinha, P.K., Walker, P.L. Removal of mercury by sulfurized carbon. Carbon, 10, 754-756, 1972.
Sjostrom, S., Ebner, T., Slye, R. MerCAP: a novel approach for vapor-phase mercury capture. In Proceedings of A&WMA 95th Annual Meeting & Exhibition, Baltimore, MD, June 23-27, 2002; A&WMA: Pittsburgh, PA, 2002.
Stenzel, M.H. Removal of organics by activated carbon adsorption. Chem. Eng. Prog. April, pp. 36-43, 1993.
Streat, M., Patrick, J.W., Camporro Perez, M.J. Sorption of phenol and para-chlorophenol from water using conventional and novel activated carbons. Water Res. 29(2), 467-472, 1995.
Sun, J., Brady, T.A., Rood, M.J., Lemann, C.M. Rostam-Abadi, M., Lizzio, A.A. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires. Energy Fuels, 11, 316-322, 1997.
Teng, H., Serio, M.A., Wojtowicz, M.A., Bassilakis, R., Solomon, P.R. Reprocessing of used tires into activated carbon and other products. Ind. Eng. Chem. Res. 34, 3102-3111, 1995.
Teng, H., Lin, Y.U., Hsu, L.Y. Producing of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide. J. Air Waste Manage. Assoc.50, 1940-1946, 2000.
Unger, D.R., Lam, T.T., Schaefer, C.E., Kosson, D.S. Predicting the effect of moisture on vapour-phase sorption of volatile organic compounds to soils. Environ. Sci. Technol. 30, 1081-1091, 1996.
Vidic, R.D., McLaughlin, J.B. Uptake of elemental mercury vapors by activated carbons. J. Air Waste Manage. Assoc. 46, 241-250, 1996.
Vidic, R.D., Chang, M.T., Thurnau, R.C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbon. J. Air Waste Manage. Assoc. 48, 247-255, 1998.
Wängberg, I., Munthe, J., Pirrone, N., Iverfeldt, A., Bahlman, E., Costa, P., Ebinghaus, R., Feng, X., Ferrara, R., Gårdfedlt, K., Kock, H., Lanzillotta, E., Mamane, Y., Mas, F., Melamed, E., Osnat, Y., Prestbo, E., Sommar, J., Schmolke, S., Spain, G., Sprovieri, F., Tuncel, G. Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos. Environ. 35(17), 3019-3025, 2001.
Williams,P.T., Besler, S., Taylor, D.T. The pyrolysis of automotive tyres: the influence of temperature and heating rate on product composition. Fuel, 69, 1474, 1990.
Williams, P.T., Besler, S., Taylor, D.T. The batch pyrolysis of tyre waste-fuel properties of the derived pyrolytic oil and overall plant economics. Proc. Instn. Mech. Eng. 207, 55-63, 1993.
Williams, P.T., Besler, S. Pyrolysis-thermogravemetric analysis of tyres components, Fuel, 74(9), 1277-1283, 1995.
Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G. Adsorption of acid dyes on chitosan-equilibrium isotherm analyses. Process Biochem. 39, 693-702, 2004.
Xiong, Y., Jiang, T., Zou, X. Automatic proximate analyzer of coal based on isothermal thermogravimetric analysis (TGA) with twin-furnace. Thermochim. Acta, 408, 97-101, 2003.
Yang, J., Kaliaguine, S., Roy, C. Improved quantitative determination of elastomers in tire rubber by kinetic simulation of DTG curves. Rubber Chem. Technol. 66, 213-229, 1993.
Yoshio, O., Hitoshi, E., Chikao, K., Ichiro, U., Hiroshi, N. Removal of mercury vapor from air with sulfur-impregnated adsorbents. Environ. Sci. Technol. 22, 708-711, 1988.
Yu, X., Houtman, C., Atalla, R.H. The complex of amylose and iodine. Carbohydr. Res. 1996, 292, 129-141.
Yu, Y., Koljonen, K., Paulapuro, H. Surface chemical composition of some non-wood pulps. Ind. Crop. Prod. 15, 123-130, 2002.
呂理成,以廢輪胎橡膠拌製石膠泥瀝青混凝土之研究,中華大學土木工程研究所碩士論文,2002。
行政院環境保護署網頁,http://recycle.epa.gov.tw/main.asp,2003(a)。
行政院環境保護署網頁,http://w3.epa.gov.tw/epalaw/index.htm,2003(b)。
吳俊欣,都市垃圾焚化爐排氣中含汞污染物之採樣與分析暨廢輪胎熱裂解製備粉狀活性碳對氯化汞蒸氣之吸附效能測試,國立中山大學環境工程研究所碩士論文,2000。
林裕雄,以電動力法處理受三氯乙烯及單氯酚污染黏質土壤之研究,國立中興大學環境工程研究所碩士論文,2000。
唐力原,廢輪胎於氮+氧中熱分解反應動力參數之探討,國立中山大學環境工程研究所碩士論文,1996。
袁中新、洪崇軒,以廢輪胎熱裂解產物碳黑製備活性碳應用於都市垃圾焚化爐排放廢氣中汞蒸氣去除之研究,國科會/環保署科技合作研究報告,2000。
袁中新,廢輪胎熱裂解產物碳黑應用技術研發計畫-實廠測試,國科會研究報告,2003。
郝龍斌,聯合報,http://pei.cjjh.tc.edu.tw/chem_20_3.htm,1999。
張木彬,垃圾焚化爐排氣中重金屬量測及處理效率評估,行政院環境保護署研究報告,1997。
陳威錦,熱重分析法探討球狀活性碳吸附氣相氯化汞之吸附動力研究,國立中山大學環境工程研究所碩士論文,2004。
楊金鐘,論台灣地區廢輪胎的處理,工業污染防治,第30期,1989。
楊英傑,以球狀活性碳吸附水溶液中甲苯及其脫附方法之研究,國立成功大學化學工程研究所碩士論文,1992。
顧惕人、朱瑶、李外郎、馬季銘、戴樂蓉、程虎民,表面化學,科學出版社(中國),2001。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code