Responsive image
博碩士論文 etd-0325118-180935 詳細資訊
Title page for etd-0325118-180935
論文名稱
Title
生醫植入用鈦-鉭-鈮合金之配製與特性分析
Fabrication and characterization of Ti-Ta-Nb alloys for bio-implant purposes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-03-17
繳交日期
Date of Submission
2018-04-25
關鍵字
Keywords
生物相容性、力學性能、顯微組織、耐腐蝕性、鈦合金
microstructure, corrosion, resistance, biocompatibility, mechanical, properties, Ti alloys
統計
Statistics
本論文已被瀏覽 5670 次,被下載 3
The thesis/dissertation has been browsed 5670 times, has been downloaded 3 times.
中文摘要
生物醫學材料除了要好的生物相容性以外,還需要有良好的抗蝕性與低楊氏係數。鈦與鈦合金有著良好的抗蝕性與生物相容性,目前有許多學者積極的研究鈦合金在生物醫學方面的應用。近年來,鈦合金被廣泛的研究與應用因為它有著低的楊氏係數,過程中添加了鉭與鈮元素等穩定元素,鉭和與鈮都有著良好的生物相容性。本研究Ti-30Ta-10Nb合金基本顯微組織為(α+α')基地與β+ω+α'相析出物,使得合金具有最低的楊氏係數;此外,Ti-30Ta-10Nb合金抗腐蝕能力略低於純鈦,惟在電壓2eV以下,並無觀察到點蝕(pitting)的特徵。
由Gibson和Ashby所提出的理論,預測Ti-30Ta-10Nb合金的多孔材料的楊氏模數和強度,可推論Ti-30Ta-10Nb具60%多孔結構時,其楊氏模數和強度與正常人骨特性相當。
Abstract
Ideal bio-implant biomaterials should possess good biocompatibility, high corrosion resistance and low Young’s modulus simultaneously. Materials with low Young’s modulus can prevent shielding effect taking place. Generally, Ti and Ti alloys exhibit not only high corrosion resistance but good biocompatibility as well. Many researches focus on Ti and Ti-alloys potential for bio-implant applications. Via adding Ta and Nb, beta stable elements, the Young’s modulus of Ti-alloys can decrease close to nature bone. Besides, Ta and Nb are considered as bio-friendly elements which exhibit no cytotoxicity. In this study, compared with other Ti-Ta-Nb alloys, Ti-30Ta-10Nb owns lower Young’s modulus but lower corrosion resistance. Nevertheless, no obvious pitting reaction occurs under the potential of 2 V. Also, according to Gibson and Ashby equation, the Young’s modulus of Ti-30Ta-Nb alloys with porosity about 60% can as low as nature bones and the strength of Ti-30Ta-Nb alloys can be higher than nature bone. Consequently, Ti-30Ta-Nb alloys demonstrate high potential for bio-implant applications.
目次 Table of Contents
目錄
目錄 1
表目錄 4
圖目錄 5
摘要 ii
Abstract iii
第一章 前言 9
第二章 文獻回顧 13
2-1 生醫材料 13
2-2 生醫材料的種類與應用 14
2-2-1 高分子生醫材料 15
2-2-2 陶瓷生醫材料 15
2-2-3 金屬與合金生醫材料 16
2-2-3 金屬玻璃生醫材料 17
2-3 生醫金屬電化學腐蝕 18
2-4 電化學測試 20
2-4-1 Tafel 極化 21
2-4-2 電化學阻抗 (EIS) 21
2-5 鈦與鈦合金之簡介 22
2-5-1 鈦合金之簡介 23
2-5-2 鈦合金之相變化 24
2-6 醫用鈦合金之發展 26
2-6-1 α型鈦合金 26
2-6-2 α+β型鈦合金 27
2-6-3 β型鈦合金 28
2-6-1 鈦-鉬 (Ti-Mo)合金系列 29
2-6-2 鈦-鈮 (Ti-Nb) 合金系列 30
2-6-3 鈦-鉭 (Ti-Ta) 合金系列 31
2-6-4 醫用鈦合金近年來重點發展 32
第三章 實驗步驟 33
3-1 材料的製備 33
3-1-1 合金熔煉 33
3-1-2 合金鍛造 34
3-1-3 合金熱處理 34
3-2 材料之相與微組織觀察與分析 34
3-2-1 XRD分析(X-ray diffraction) 34
3-2-2 SEM觀察 (Scanning electron microscopy) 35
3-2-3 TEM觀察 (Transmission electron microscopy) 36
3-3 各相體積百分率 (Vf) 之量測 36
3-4 奈米壓痕分析 (Nano-indentation) 36
3-5 生物電化學分析 38
第四章 實驗結果 40
4-1 合金製程 40
4-2 XRD分析結果 40
4-3 SEM顯微結構觀察分析 44
4-4 TEM觀察分析 45
4-5 機械性質量測 47
4-6 生物電化學分析 48
4-6-1 開路電位 (OCP) 49
4-6-2 極化曲線 49
第五章 討論 52
5-1 Ta元素之角色與影響 52
5-2 各相演變與機性之關聯 52
5-3 以Ti-30Ta-10Nb擬製生醫多孔材料之性質 54
5-4 不同合金成分電化學關係 55
第六章 結論 56
參考文獻 58
表格 64
圖 71
參考文獻 References
[1] M. Niinomi, STAM 4 (2003) 445-454.
[2] M. Niinomi, M. Nakai, J. Hieda. Acta Biomater. 8 (2012) 3888-3903.
[3] H.Y. Cheung, K.T. Lau, T.P. Lu, D. Hui, Compos. Part B-Eng. 38 (2007) 291-300.
[4] W.P. Cao, L.L. Hench, Ceram. Int. 22 (1996) 493-507.
[5] L.L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487-1510.
[6] U.K. Mudali, T.M. Sridhar, B. Raj, Sadhana 28 (2003) 601-637.
[7] S.R. Paital, N.B. Dahotre, Mater. Sci. Eng., R 66 (2009) 1-70.
[8] A. Inoue, Acta Mater. 48 (2000) 279-306.
[9] B. Zberg, P.J. Uggowitzer, J.F. Loffler, Nat. Mater. 8 (2009) 887-891.
[10] J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res. 22 (2007) 302-313.
[11] H. Garbacza, M. Pisareka, K.J. Kurzydłowskia. Biomol. Eng. 24 (2007) 559-563.
[12] H.S. Kima, S.J. Yoo, J.W. Ahn, D.H. Kim, W.J. Kim, Mater. Sci. Eng., A 528 (2011) 8479-8485.
[13] X.Y. Zhang, Corrosion Protection and Control Using Nanomaterials (2012) 34-58.
[14] K. Gu, J. Wang, Y. Zhou, J. Mech. Behav. Biomed. Mater. 30 (2014) 131-139.
[15] Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, Y. Furuki, Mater. Trans. JIM 39 (1998) 1053-1062.
[16] M.F. Semlitsch, H. Weber, R.M. Streicher, R. Schon, Biomaterials 13 (1992) 781-788.
[17] X. Zhao, M. Niinomi, M. Nakai, J. Hieda, T. Ishimotoc, T. Nakano, Acta Biomater. 8 (2012) 2392-2400.
[18] Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, H. Toda, Mater. Sci. Eng., A 398 (2005) 28-36.
[19] V.Brailovski, S.Prokoshkin, M.Gauthier, K.Inaekyan, S.Dubinskiy, M.Petrzhik, M.Filonov. Mater. Sci. Eng., C 31 (2011) 643-657.
[20] M. Niinomi, J. Mech. Behav. Biomed. Mater. 1 (2008) 30-42.
[21] T. Naganawa, Y. Ishihara, T. Iwata, A. Koide, M. Ohguchi, Y. Ohguchi, Y. Murase, H. Kamei, N. Sato, M. Mizuno, T. Noguchi, J. Periodontol. 75 (2004) 1701-1707.
[22] W.F. Ho, J. Med. Biol. Eng. 28 (2008) 47-51.
[23] N. Sakaguchi, N. Mitsuo, T. Akahori, T. Saito, T. Furuta, Mater. Sci. Forum 449-452 (2004) 1269-1272.
[24] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397-425.
[25] P. Wang, L. Wu, Y. Feng, J. Bai, B. Zhang, J. Song, S. Guan. Mater. Sci. Eng., C 72 (2017) 536-542
[26] 劉士榮, 高宜娟, 生醫材料, 滄海書局, 台中, 2010.
[27] P. Majumdar, Micron 43 (2012) 876-886.
[28] 黃世偉, 高分子材料與醫療器材, 科學發展月刊, 455 (2010) 14-19.
[29] 蘇明德, 生物陶瓷及透明陶瓷, 科學發展月刊. 455 (2010) 64-69.
[30] 蘇明德, 鈦的自述, 科學發展月刊, 426 (2008) 66-71.
[31] M. Diba, O.-Menti Goudouri, F. Tapla, A.R. Boccaccono, Curr. Opin. Solid State Mater. Sci. 18 (2014) 147-167.
[32] I.J. Polmear, Light alloys: Metallurgyof the light metals, London 1981.
[33] C.R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys, USA 1982.
[34] E.W. Collings, Physical Metalurgy of Titanium Alloys, ASM International USA 1984.
[35] G. Lutjering, J.C. Williams, Titanium, USA 2007.
[36] J. Klompmaker, H.W.B. Jansen, R.P.H. Veth, H.K.L. Nielsen, J.H. de Groot, A.J. Pennings, Biomaterials, 13 (1992) 625-634.
[37] K. Yamanaka, M. Mori, A. Chiba, J. Mech. Behav. Biomed. Mater. 29 (2014) 417-426.
[38] A. Buford, T. Goswami, Mater. Des. 25 (2004) 385-393.
[39] E. Denkhaus, K. Salnikow, Crit. Rev. Oncol. Hematol. 42 (2002) 35-36.
[40] Y. Luo, L.Yang, M. Tian, Biomater. Medical Tribology (2013) 181-216.
[41] 戴起勛, 金屬材料學, 化學工業出版社, 北京, (2005) 215-225.
[42] Y. Okazaki, S. Rao, S. Asao, T. Tateishi, S. Katsuda, Y. Furuki, Mater. Trans. JIM 60 (1996) 890-896.
[43] L.M.Elias, S.G.Schneider, R.M. Streicher, S.Schneider, H.M.Silva, F.Malvisi Mater. Sci. Eng., A 432 (2006) 1-788
[44] A. Molineri, G. Straffelini, B. Tesi, T. Baccai, Wear, 208 (1997) 105-112.
[45] K.G. Budinski, Wear, 151 (1991) 203-217.
[46] H. Liang, B. Shi, A. Fairchild, T. Cale, Vacuum, 73 (2004) 317-326.
[47] R. Zwicker, K. Buehler, E. Mueller, Proceeding of the Fourth International Conference on Titanium, Kyoto, Japan, 1980.
[48] M. Niinomi, Biomaterials 24 (2003) 2673-2683.
[49] C.N. Elias, M.A. Meyers, R.Z. Valiev, S.N. Monteiro, J. Mater. Res. Technol. 2 (2013) 340-350.
[50] J.C.M. Li, Microstructure and Properties of Materials, 2 (2000) 49-55.
[51] 許益彰, 鈦-4.5鋁-3釩-2鉬-2鐵合金性質研究, 碩士論文, 國立屏東科技大學, 屏東, 2002.
[51] R. Boyer, G. Welsch, E.W. Collings, Materials Properties Handbook: Titanium Alloys, ASM International, 4 (2007).
[53] S. Nag, R. Banerjee, Fundamentals of medical implant materials, ASM handbook, 23 (2012), 6-16.
[54] M. Niinomi, M. Nakai, Int. J. Biomater. 2011 (2011) 836587.
[55] M.F. Semlitsch, H. Weber, R.M. Streicher, R. Schon, Biomaterials 13 (1992) 781-788.
[56] R.P.Siqueira, H.R.Z.Sandim, A.O.F.Hayama, V.A.R.Henriques. J. Alloys Compd. 476 (2009) 130-137
[57] M. Semlitsch, F. Staub, H. Webber, Biomed. Tech. 30 (1985) 334-339.
[58] M. Semlitsch, H.G. Willert, Med. Biol. Eng. Comput. 18 (1980) 511-520.
[59] D. Mareci, R. Chelariu, D.M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomater. 5 (2009) 3625-3639.
[60] Y.D.Shi, L.N.Wang, S.X. Liang, Q. Zheng. Mater. Sci. Eng., A 674 (2016) 696-700.
[61] D. Raabe, B. Sander, M. Frak, D. Ma, J. Neugebauer, Acta Mater. 55 (2007) 4475-4487.
[62] F.Q. Hou, S.J. Li, Y.L. Hao, R. Yang, Scr. Mater. 63 (2010) 54.
[63] C.M. Lee, C.P. Ju, J.H. Chern Lin, J. Oral Rehabil. 29 (2002) 314-322.
[64] W.F. Ho, C.P. Ju, J.H. Chern Lin, Biomaterials 20 (1999) 2115-2122.
[65] C.R.M Afonso, G.T. Aleixo, A.J. Ramirez, R. Caram, Mater. Sci. Eng., C 27 (2007) 908-913.
[66] M. Kikuchi, M. Takahashi, O. Okuno, Dent. Mater. J. 22 (2003) 328-342.
[67] X. Zhao, M. Niinomi, M. Nakai, J. Hieda, T. Ishimoto, T. Nakano. Acta Biomater., 8 (2012) 2392+2400.
[68] W.F. Ho, J. Med. Biol. Eng. 28 (2008) 47-51.
[69] N. Sakaguchi, N. Mitsuo, T. Akahori, T. Saito, T. Furuta, Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 and 2, Trans Tech Publications Ltd, Zurich-Uetikon, (2004) 1269-1272.
[70] I.A. Bagariatskii, G.I. Nosova, T.V. Tagunova, Sov. Phys. Dokl. 3 (1959) 1014-1018.
[71] W.F. Ho, J. Alloy Compd. 464 (2008) 580-583.
[72] J.L Murry, Phase diagram of binary titanium alloys, Metals Park, Ohio: ASM International, 1987.
[73] R. Davis, H.M. Flower, D.R.F. West, J. Mater. Sci. 14 (1979) 712-722 .
[74] T. Furuhara, T. Makino, Y. Idei, H. Ishigaki, A. Takada, T. Maki, Mater. Trans. JIM 39 (1998) 31-39.
[75] Y.Y. Chen, L.J. Xu, Z.G. Liu, F.T. Kong, Z.Y. Chen, Trans. Nonferrous Met. Soc. 16 (2006) 824-828.
[76] A. Almeida, D. Gupta, C. Loable, R. Vilar, Mater. Sci. Eng., C 32 (2012) 1190-1195.
[77] W.M. Haschek, C.G. Rousseaux, M.A. Wallig, B. Bolon, R. Ochoa, Handbook and Rousseaux’s Handbook of Toxicologic Pathology (Third Edition), (2013) 783-806.
[78] D.M. Gordin, T. Gloriant, Gh. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, D. Ansel, Mater. Lett. 59 (2005) 2959-2964.
[79] S.B. Gabriel, J.V.P Panaino, I.D. Santos, L.S. Araujo, P.R. Mei, L.H. de Almeida, C.A. Nunes, J. Alloys Compd. 536 (2012) 208-210.
[80] L.H. de Almeida, I.N. Bastos, I.D. Santos, A.J.B. Dutra, C.A. Nunes, S.B. Gabriel, J. Alloys Compd. 615 (2014) 666-669.
[81] D. Mareci, R. Chelariu, G. Bolat, A. Cailean, V. Grancea, D. Sutiman, Trans. Nonferrous Met. Soc. 23 (2013) 3829-3836.
[82] C.M. Lee, W.F. Ho, C.P. Ju, J.H. Chern Lin, J. Mater. Sci. Mater. Med. 13 (2002) 695-700.
[83] Y.L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y.L. Zhou, K. Fukunaga, A. Suzuki, Metall. Trans. A 33 (2002) 3137-3144.
[84] M. de Graef, J.P.A. Löfvander, C. McCullough, C.G. Levi, Acta Metall. Mater. 40 (1992) 3395-3406.
[85] Y. Song, D.S. Xu, R. Yang, D. Li, W.T. Wu, Z.X. Guo, Mater. Sci. Eng., A 260 (1999) 269-274.
[86] Y.L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng., A 371 (2004) 283-290.
[87] Y.L. Zhou, M. Niinomi, Mater. Sci. Eng., C 29 (2009) 1061-1065.
[88] D. H. Kohn, Curr. Opin. Solid State Mater. Sci. 3 (1998) 309-316.
[89] I. Gotman, J. Endourol. 6 (1997) 383-389.
[90] M. Calin, A. Gebert, A.C. Ghinea, P.F. Gostin, S. Abdi, C. Mickel, J. Eckert, Mater. Sci. Eng., C 33 (2013) 875-883.
[91] F. L. Nie, Y. F. Zheng, Y. Wang, J. T. Wang, Journal of Biomedical Materials Research B, 102 (2014) 221-230
[92] L.J. Gibson, M.F. Ashby, Cellular Solid: Structure and Properties, 1999.
[93] J.L. Ke, C.H. Huang, Y.H. Chen, W.Y. Tsai, T.Y. Wei, J.C. Huang. Appl. Surf. Sci., 322 (2014) 41-46
[94] C.H. Huang, J.J. Lai, T.Y. Wei, Y.H. Chen, X. Wang, S.Y. Kuan, J.C. Huang . Mater. Sci. Eng., C 52 (2015) 144-150.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code