Responsive image
博碩士論文 etd-0326111-012021 詳細資訊
Title page for etd-0326111-012021
論文名稱
Title
利用摩擦攪拌製程及原位反應製造鋁基奈米複合材料
Aluminium matrix nanocomposites produced in situ by friction stir processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
163
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-03-18
繳交日期
Date of Submission
2011-03-26
關鍵字
Keywords
Al-Fe2O3系統、鋁-鐵系統、鋁-鉬系統、原位(in situ)反應、鋁基複合材料、摩擦攪拌
Al-Fe, Al-Mo, Al-Fe2O3, in-situ reaction, FSP
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
在本研究中利用摩擦攪拌製程已成功製造原位(in situ) 鋁基複合材料。製程
中,先藉著粉末冶金方式將鋁-鐵、鋁-鉬及鋁-氧化鐵粉末均勻混合後,再利用傳
統冷壓與燒結方式製成試棒。之後再利用多道次摩擦攪拌所提供的高溫與大量的
塑性應變來製造原位金屬基複合材料。而此概念是結合製程的摩擦熱與鋁跟過渡
金屬(TM)或鋁跟金屬氧化物(MO)之間反應放熱來製造大量的奈米強化項在鋁基
材中。
在鋁-鐵系統中,經由摩擦攪拌製程可引發鋁、鐵粉末之間原位(in situ)反應,
且生成Al-Al13Fe4化合物。而此強化項Al13Fe4顆粒大小約100奈米。在鋁-鉬系統中,
生成的介金屬化合物可均勻的散佈在基材中,而此介金屬強化項顆粒主要為
Al12Mo與少量的Al5Mo,且放熱反應會在界面產生局部Al熔融而加快反應形成。也
因摩擦攪拌所產生大量的塑性變形,可將在界面產生的介金屬顆粒有效的移走且
均勻散佈在鋁基材中。
在Al-Fe2O3 系統中, 藉由摩擦攪拌所引發的熱機反應(thermite reaction,
Al+Fe2O3→Al2O3+Al13Fe4)與反應所還原出來的鐵會與多餘的鋁再進而反應產生
Al13Fe4化合物。所以在試棒中有兩種強化項Al13Fe4與Al2O3,且Al2O3顆粒約10奈米
大小且團聚成約100-200奈米之顆粒。在試棒中也因Fe2O3含量的多寡同時存在兩種
Al2O3相。在Al-2Fe2O3合金中是γ相的氧化鋁而在高含量Al-4Fe2O3合金中則是α相
的氧化鋁。而此不同則是因為不同反應熱釋放的關係,與Al-4Fe2O3系統做比較,
在Al-2Fe2O3中有較低的反應熱而在Al-4Fe2O3中則有較多釋放的反應熱。
同時,在Al-Al13Fe4/Al2O3化合物中則具有高強度且較佳的延展性。而此高強
度推測主要是由於裡面含有較小的Al2O3顆粒所造成。且其高溫的強度在五百度時
還可維持在100 MPa,因此,此化合物的高溫穩定性極佳。而高溫強度佳則是由於
小的顆粒所貢獻,尤其是氧化鋁顆粒。因氧化鋁顆粒在高溫相當穩定。
在計算摩擦攪拌溫度的演化方面,須考慮摩擦攪拌所生成的摩擦熱,再加上 反應所釋放的生成熱。而所得之最高溫度Tp與反應完的Fe或Fe2O3的比例做圖可知
Tp為反應比例的函數。由計算結果顯示最高溫度Tp可容易的到達鋁熔融溫度,尤其在Al-Fe2O3系統中。而在摩擦攪拌中的反應機制與微結構的演化也會在文章中做詳
細討論
Abstract
Friction stir processing (FSP) was applied to produce aluminum based in situ
composites from powder mixtures of Al-Fe, Al-Mo, and Al-Fe2O3. Billet of powder
mixtures was prepared by the use of conventional pressing and sintering route. The
sintered billet was then subjected to multiple passages of FSP. During FSP, the material
has experienced both high temperature and very large plastic strain. The basic idea for
fabricating the composites is to combine the hot working nature of friction stir
processing (FSP) and the exothermic reaction between aluminum and transition metals
(Al-Fe, Al-Mo) or metal oxides (Al-Fe2O3).
In the Al-Fe alloy, in situ Al–Fe reaction can be induced during FSP and form
Al-Al13Fe4 composite. The size of reinforcing particles formed by the in-situ reaction is
~100 nm. In Al-Mo alloys, fine Al-Mo intermetallic particles with an average size of
~200 nm were formed and uniformly dispersed in the aluminum matrix by FSP. The
Al-Mo intermetallic particles were identified mainly as Al12Mo with minor amount of
Al5Mo. The exothermic reaction could result in local melting of Al at the Al/TM
interface, and the liquid Al may accelerate the reaction. In addition, it is suggested that
the critical mechanism responsible for the rapid reaction and the formation of nanometer
sized particles in FSP is the effective removal of the Al-TM intermetallic phase from
the Al-TM interface, maintaining an intimate contact between TM and Al.
In the Al-Fe2O3 system, the reactions taking place during FSP includes the thermite
reaction (2Al +Fe2O3 → Al2O3 + 2Fe), and the reaction between the reduced Fe and Al
to form Al13Fe4. In the FSPed Al-Fe2O3 specimens, there are two types of second phase
particles, Al13Fe4 and Al2O3. The Al2O3 particles (about 10 nm in size) usually appear
as a cluster of 100-200 nm in diameter. There are two types of Al2O3 phases existed in
the Al matrix after FSP passes, depending on the content of Fe2O3. One is γ-Al2O3 in Al-2Fe2O3 specimens, and the other is α-Al2O3 in Al-4Fe2O3 specimens. It is suggested
that the formation of different type of Al2O3 particles in the Al-Fe2O3 composites may
be attributed to different heat release in each system. The lower heat release in
Al-2Fe2O3 sample favors the formation of the while the higher heat release in
Al-4Fe2O3 sample results in the α-Al2O3.
The Al-Al13Fe4/Al2O3 composite produced by FSP exhibits both high strength and
good tensile ductility. The higher strength in Al-Fe2O3 specimen may be due to the
presence of fine Al2O3 particles. The flow stress of the Al-4Fe2O3 composite can
maintain at 100 MPa even at 773 K. The good thermal stability and high temperature
strength of Al-Al13Fe4/Al2O3 composites could be attributed to the fine dispersion of
second phase particles in the aluminum matrix, especially the nanometric Al2O3
particles. These Al2O3 particles are very stable at elevated temperatures, even after long
time exposure at 873 K.
The temperature excursion in FSP is determined by both the FSP parameters and
the exothermic reaction involved. The peak temperature in Al-Fe or Al-Fe2O3
system during FSP was calculated as a function of the fraction of Fe or Fe2O3 reacted.
Based on calculated results, it is noted that with the in situ reaction, the value of
can easily reach the melting point of Al, especially for the Al-Fe2O3 system. The
reaction mechanism and microstructure evolution during FSP are discussed.
目次 Table of Contents
論文審定書................................................................................................................................ I
誌謝............................................................................................................................................ II
中文摘要.................................................................................................................................... IV
Abstract....................................................................................................................................... VI
CONTENTS ...............................................................................................................................VIII
List of Table................................................................................................................................ XI
List of Figure Captions................................................................................................................XII
Chapter 1 Introduction.............................................................................................................. 1
Chapter 2 Literature review...................................................................................................... 5
2-1 Metal matrix composites ............................................................................................ 5
2-1-1 In-situ metal matrix composites...................................................................... 5
2-1-2 Fabrication of metal matrix composites via powder metallurgy route ........... 8
2-1-3 The strengthening mechanisms in metal matrix composites .......................... 9
2-2 Friction stir processing............................................................................................... 12
2-2-1 Fundamental principles................................................................................... 12
2-2-2 Thermal history............................................................................................... 13
2-2-3 Tool tilt angle.................................................................................................. 14
2-2-4 Defect formation ............................................................................................. 15
2-2-5 Applications .................................................................................................... 16
2-3 Al-TM systems........................................................................................................... 17
2-3-1 Al-Fe alloys..................................................................................................... 17
2-3-2 Al-Mo alloys ................................................................................................... 19
2-4 Al-Fe2O3 systems ....................................................................................................... 21
2-4-1 Al-Fe-O phase diagram................................................................................... 21
2-4-2 Al/Fe2O3 reaction and applications................................................................. 21
2-4-3 Al2O3 ............................................................................................................... 24
2-5 Alloys for high temperature applications ................................................................... 24
Chapter 3 Experimental procedures and materials ................................................................... 26
3-1 Materials..................................................................................................................... 26
3-2 Fabrication of billets for friction stir processing........................................................ 26
3-2-1 Powder mixing................................................................................................ 26
3-2-2 Cold compaction ............................................................................................. 27
3-3 Friction stir processing (FSP)..................................................................................... 27
3-4 Microstructure Analysis ............................................................................................. 27
3-4-1 Microscopic observation................................................................................. 27
3-4-2 X-ray diffraction (XRD) ................................................................................. 28
3-4-3 Differential scanning calorimetry (DSC) analysis.......................................... 28
3-4-4 Transmission electron microscopy (TEM) ..................................................... 28
3-5 Mechanical properties ................................................................................................ 28
3-5-1 Microhardness measurement .......................................................................... 28
3-5-2 Tensile and compressive tests at ambient temperature ................................... 29
3-5-3 Elevated temperature compressive tests ......................................................... 29
Chapter 4 Results...................................................................................................................... 30
4-1 Al-Fe system .............................................................................................................. 30
4-1-1 Microstructure evolution................................................................................. 30
4-1-2 Mechanical properties of Al-Al13Fe4 composites ........................................... 34
4.2 Al-Mo system............................................................................................................. 35
4-2-1 Microstructure of the Al-Mo specimens ......................................................... 35
4-2-2 Influence of tool traversing speed and post-FSP heat treatment..................... 36
4-2-3 Mechanism of Al-Mo reaction during FSP..................................................... 38
4-2-4 Mechanical properties..................................................................................... 39
4-3 Al-Fe2O3 alloys .......................................................................................................... 40
4-3-1 Microstructure of Al-2Fe2O3 alloy processed by FSP .................................... 41
4-3-2 Microstructure of Al-4Fe2O3 alloy processed by FSP .................................... 43
4-3-3 Mechanical properties..................................................................................... 45
4-3-4 Strength at elevated temperature..................................................................... 46
Chapter 5 Discussions .............................................................................................................. 48
5-1 The temperature excursion with in situ reaction during FSP..................................... 48
5-2 Reactions and microstructure development during FSP ............................................ 53
5-2-1 Reactions in Al-TM systems during FSP........................................................ 53
5-2-2 Reactions in Al-Fe2O3 systems during FSP.................................................... 55
5-3 The Al13Fe4 particles formed in Al-Fe and Al-Fe2O3 systems................................... 57
5-4 The strengthening due to Al2O3 nanoparticles ........................................................... 58
5-5 Young’s modulus of Al-10Fe and Al-Fe2O3 composites produced by FSP............... 59
Chapter 6 Conclusions.............................................................................................................. 62
Tables.......................................................................................................................................... 65
Figures ........................................................................................................................................ 71
Reference .................................................................................................................................... 132
參考文獻 References
1. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara and A. K. Mukherjee,”
High strain rate superplasticity in a friction stir processed 7075 Al alloy,” Scripta
Materialia 42 (2000)163-168.
2. W. M. Thomas, E. D. Nicoholas, J. C. Needham, M. G. Church, P. Templesmith and
C. J. Dawes,” Friction Stir Butt Welding,” G.B. Patent Application No. 9125978.8,
December 1991; US Patent No. 5460317, October 1995.
3. K. Colligan,“ Material flow behavior during friction stir welding of aluminum,”
Weld Journal 78 (1999) 229s- 237s.
4. T. U. Seidel and A. P. Reynolds,” Visualization of the material flow in AA2195
friction-stir welds using a marker insert technique,” Materials Science and
Engineering A 32 (2001) 2879-2884.
5. P. Heurtier, C. Desrayaud and F. Montheillet,“ Mechanical and microstructural
response of AA7075 plates joined by friction stir welding,” Materials Science
Forum 396-402 (2002) 1537-1542.
6. C. J. Hsu, C. Y. Chang, P. W. Kao, N. J. Ho and C. P. Chang,” Al–Al3Ti
nanocomposites produced in situ by friction stir processing,” Acta Materialia 54
(2006) 5241-5249.
7. C. J. Hsu, P. W. Kao and N. J. Ho,“ Ultrafine-grained Al–Al2Cu composite
produced in situ by friction stir processing,” Scripta Materialia 53 (2005) 341–345.
8. C. J. Hsu, P. W. Kao and N. J. Ho,“ Intermetallic-reinforced aluminum matrix
composites produced in situ by friction stir processing,” Materials Letters 61 (2007)
1315–1318.
9. I. S. Lee, P. W. Kao and N. J. Ho,” Microstructure and mechanical properties of
133
Al–Fe in situ nanocomposite produced by friction stir processing,” Intermetallics 16
(2008) 1104-1108.
10. C. F. Chen, P. W. Kao, L. Chang and N. J. Ho,” The effect of processing parameters
on microstructure and mechanical properties of an Al-Al11Ce3-Al2O3 in situ
composite produced by friction stir processing,” Metallurgical and materials
transactions. A 41 (2010) 513-522.
11. C. F. Chen, P. W. Kao, L. C. and N. J. Ho,” Mechanical properties of nanometric
Al2O3 particulate-reinforced,” Materials Transactions 51 (2010) 933-938.
12. C. Y. Yu, P. W. Kao and C. P. Chang,” Transition of tensile deformation behaviors
in ultrafine-grained aluminum,” Acta Materialia 53 (2005) 4019-4028.
13. J. W. Martin,“ Micromechanisms in Particle Hardened Alloys,” Cambidge
University Press, (1980)
14. W. F. Gale and T. C. Totemeier: Smithells Metals Reference Book, 8th ed. (Elsevier,
Oxford, 2004).
15. N. Chawla and K. K. Chawla,“ METAL MATRIX COMPOSITES,” Book (Springer,
2006).
16. A. Kelly,“ Composites in Context,” Composites Science and Technology 23 (1985)
171-199.
17. M. J. Tan and X. Zhang,“ Powder metal matrix composites: selection and
processing,” Materials Science and Engineering A 244 (1998) 80–85.
18. D. B. Miracle,“ Metal matrix composites – From science to technological
significance,” Composites Science and Technology 65 (2005) 2526-2540.
19. J. W. Kaczmar,” The production and application of metal matrix composite
materials,” Journal of Materials Processing Technology 106 (2000) 58–67.
20. J. T. Blucher, U. Narusawa, M. Katsumata and A. Nemeth,” Continuous
manufacturing of fiber-reinforced metal matrix composite wires-technology and
134
product characteristics,” Composites A 32 (2001) 1759–1766.
21. J. M. Torralba, C. E. Costa and F. Velasco,” P/M aluminum matrix composites: an
overview,” Journal of Materials Processing Technology 133 (2003) 203–206.
22. Z. Zhang and D. L. Chen,“ Consideration of Orowan strengthening effect in
particulate-reinforced metal matrix nanocomposites: A model for predicting their
yield strength,” Scripta Materialia 54 (2006) 1321–1326.
23. F. Tang, I. E. Anderson, T. G. Herold and H. Prask,” Pure Al matrix composites
produced by vacuum hot pressing: tensile properties and strengthening
mechanisms,” Materials Science and Engineering A 383 (2004) 362–373.
24. Z. Y. Ma, J. H. Li, M. Luo, X.G. Ning, Y. X. Lu, J. Bi and Y. Z. Zhang,” In-situ
formed Al2O3 and TiB2 particulates mixture-reinforced aluminum composite,”
Scripta Metallurgica et Materialia 31 (1994) 635-639.
25. C. Biselli, D.G. Morris and N. Randall,” Mechanical alloying of high-strength
copper alloys containing TiB2 and Al2O3 dispersoid particles,” Scripta Metallurgica
et Materialia 30 (1994) 1327-1332.
26. C. Raghunath, M. S. Brat and P. K. Rohatgi,” In situ technique for synthesizing
Fe-TiC composites,” Scripta Metallurgica et Materialia 32 (1995) 577-582.
27. S. C. Tjong and Z. Y. Ma,” Microstructural and mechanical characteristics of in situ
metal matrix composites,” Materials Science and Engineering A 29 (2000) 49–113.
28. T. Yamamoto, A. Otsuki, K. Ishihara and P. H. Shingu,” Synthesis of near net shape
high density TiB: Ti composite,” Materials Science and Engineering A 239–240
(1997) 647–651.
29. Z. Y. Ma, J. H. Li, M. Luo, X. G. Ning, Y. X. Lu, J. Bi and Y. Z. Zhang,” In-situ
formed Al2O3 and TiB2 particulates mixture-reinforced aluminum composite,”
Scripta Metallurgica et Materialia 31 (1994) 635-639.
30. J. M. Wu and Z. Z. Li,” Nanostructured composite obtained by mechanically driven
135
reduction reaction of CuO and Al powder mixture,” Journal of Alloys and
Compounds 299 (2000) 9–16.
31. A. M. Zuhair and A. T. Umberto,“ Self-propagating exothermic reactions: The
synthesis of high temperature materials by combustion,” Materials Science Reports
3 (1989) 277-365.
32. C. P. Kashinath, T. A. Singanahally and E. Sambandan,“ Combustion synthesis,”
Solid State & Materials Science 2 (1997) 156-l65.
33. J. Moore and H. J. Feng,“ Combustion synthesis of advanced materials: PART II.
Classification, applications and modelling,” Progress in Materids Science 39 (1995)
275-316.
34. J. Moore and H. J. Feng,“ Combustion synthesis of advanced materials: PART I.
Reaction parameters,” Progress in Moterids Science 39 (1995) 243-273.
35. A. K. Kuruvilla, K. S. Prasad, V. V. Bhanuprasad and Y. R.
Mahajan,“ Microstructure-property correlation in Al/TiB2 (XD) composites,”
Scripta metallurgica et materialia 24 (1990) 873-878.
36. C. Suryanarayana,“ Mechanical alloying and milling” Progress in Materials Science
46 (2001) 1-184.
37. K. Wolski, F. Thevenot and J. Lecoze,” Effect of nanometric oxide dispersion on
creep resistance of ODS-FeAl prepared by mechanical alloying,” Intermetallics 4
(1996) 299-307.
38. D. J. Lloyd,” Particulate reinforced aluminum and magnesium matrix composites,”
Intl Mater Rev 39 (1994) 1-23.
39. W. S. Miller and J. F. Humphreys,” Strengthening mechanisms in particulate metal
matrix composites,” Scripta Materialia 25 (1991) 33-38.
40. Z. Zhang and D. L. Chen,“ Consideration of Orowan strengthening effect in
particulate-reinforced metal matrix nanocomposites: A model for predicting their
136
yield strength ,” Scripta Materialia 54 (2006) 1321–1326.
41. S. F. Hassan and M. Gupta,” Development of high performance magnesium
nano-composites using nano-Al2O3 as reinforcement,” Materials Science and
Engineering A 392 (2005) 163–168.
42. H. Fujita and T. Tabata,” The effect of grain size and deformation sub-structure on
mechanical properties of polycrystalline aluminum,” Acta metallurgica 21 (1973)
355-365.
43. B. Q. Han and D. C. Dunand,” Microstructure and mechanical properties of
magnesium containing high volume fractions of yttria dispersoids,” Materials
Science and Engineering A 277 (2000) 297–304.
44. D. C. Dunand and A. Mortensen,” On plastic relaxation of thermal stresses in
reinforced metals,” Acta Metallurgica et Materialia 39 (1991) 127–139.
45. .H. Sekine and R. Chent,” A combined microstructure strengthening analysis of
SiCp/Al metal matrix composites,” Composites 26 (1995) 183-188.
46. K. Kumar and S.V. Kailas,“ The role of friction stir welding tool on material flow
and weld formation,” Materials Science and Engineering A 485 (2008) 367–374.
47. T. U. Seidel and A. P. Reynolds,” Visualization of the material flow in AA2195
friction-stir welds using a marker insert technique,” Metallurgical andMaterials
Transactions. A 32 (2001) 2879-2884.
48. G. Buffa, J. Hua, R. Shivpuri and L. Fratini,” Design of the friction stir welding tool
using the continuum based FEM model,” Materials Science and Engineering A 419
(2006) 381–388.
49. H. B. Schmidt and J. H. Hattel,“ Thermal modelling of friction stir welding,” Scripta
Materialia 58 (2008) 332–337.
50. V. Soundararajan, S. Zekovic and R. Kovacevic,“ Thermo-mechanical model with
adaptive boundary conditions for friction stir welding of Al 6061,” International
137
Journal of Machine Tools & Manufacture 45 (2005) 1577–1587.
51. R. Nandan, G. G. Roy, T. J. Lienert and T. Debroy,“ Three-dimensional heat and
material flow during friction stir welding of mild steel,” Acta Materialia 55 (2007)
883–895.
52. W. J. Arbegast,” Modeling friction stir joining as a metalworking process,” Hot
Deformation of Aluminum Alloys III. ed. by Jin Z et al., (TMS, 2003) pp. 313-327.
53. M. Song and R. Kovacevic,“ Thermal modeling of friction stir welding in a moving
coordinatesystem and its validation,” International Journal of Machine Tools &
Manufacture 43 (2003) 605–615.
54. O. Frigaad, O. Grong and O. T. Midling,” A process model for friction stir welding
of age hardening aluminum alloys,” Metallurgical Transactions. A 32 (2001)
1189-1200.
55. P. Heurtier, M. J. Jones, C. Desrayaud, J. H. Driver, F. Montheillet and D.
Allehaux,“ Mechanical and thermal modelling of Friction Stir Welding,” Journal of
Materials Processing Technology 171 (2006) 348–357.
56. W. Xu, J. Liu, G. Luan and C. Dong,“ Temperature evolution, microstructure and
mechanical properties of friction stir welded thick 2219-O aluminum alloy joints,”
Materials and Design 30 (2009) 1886–1893.
57. Y. M. Hwang, Z. W. Kang, Y. C. Chiou and H. H. Hsu,“ Experimental study on
temperature distributions within the workpiece during friction stir welding of
aluminum alloys,” International Journal of Machine Tools & Manufacture 48 (2008)
778–787.
58. G. Buffa, J. Hua, R. Shivpuri and L. Fratini,” Design of the friction stir welding tool
using the continuum based FEM model,” Materials Science and Engineering A 419
(2006) 381–388.
59. Y. G. Kim, H. Fujii, T. Tsumura, T. Komazaki and K. Nakata,” Three defect types
138
in friction stir welding of aluminum die casting alloy,” Materials Science and
Engineering A 415 (2006) 250–254.
60. K. Elangovan and V. Balasubramanian,” Influences of pin profile and rotational
speed of the tool on the formation of friction stir processing zone in AA2219
aluminium alloy,” Materials Science and Engineering A 459 (2007) 7–18.
61. W. J. Arbegast, Friction Stir Welding and Processing, ASM International, Materials
Park, OH, 2007, ISBN-13 978-0-87170-840-3, (Chapter 13).
62. W. J. Arbegast,“ A flow-partitioned deformation zone model for defect formation
during friction stir welding,” Scripta Materialia 58 (2008) 372–376.
63. R. S. Mishra, M. W. Mahoney, S. X. McFadden, N. A. Mara and A. K. Mukherjee,”
High strain rate superplasticity in a friction stir processed 7075 Al talloy,” Scripta
Materialia 42 (2000) 163-168.
64. Z. Y. Ma, R. S. Mishra and M. W. Mahoney,” Superplastic deformation behaviour
of friction stir processed 7075Al alloy,” Acta Materialia 50 (2002) 4419-4430.
65. Z. Y. Ma and R. S. Mishra,” Cavitation in superplastic 7075Al alloys prepared via
friction stir processing,” Acta Materialia 51 (2003) 3551-3569.
66. I. Charit and R. S. Mishra,” High strain rate superplasticity in a commercial 2024 Al
alloy via friction stir processing,” Materials Science and Engineering A 359 (2003)
290-296.
67. H. J. Liu, H. Fujii, M. Maeda and K. Nogi,“ Tensile properties and fracture
locations of friction-stir-welded joints of 2017-T351 aluminum alloy,” Journal of
Materials Processing Technology 142 (2003) 692–696.
68. C. G. Rhodes, M. W. Mahoney, W. H. Bingel, R. A. Spurling and C. C.
Bampton,“ Effects of friction stir welding on microstructure of 7075 aluminum,”
Scripta Materialia 36 (1997) 69-75.
69. G. Liu, L. E. Murr, C. S. Niou, J. C. McClure and F. R. Vega,” Microstructural
139
aspects of the friction-stir welding of 6061-T6 aluminum,” Scripta Materialia 37
(1997) 355-361.
70. O. V. Flores, C. Kennedy, L. E. Murr, D. Brown, S. Pappu and B. M.
Nowak,“ Microstructural issues in a friction-stir-welded aluminum alloy,” Scripta
Materialia 38 (1998) 703-708.
71. L. E. Murr,“ A review of FSW research on dissimilar metal and alloy systems,”
Journal of Materials Engineering and Performance 19 (2010) 1071-1089.
72. D. J. Shindo, A. R. Rivera and L. E. Murr,” Shape optimization for tool wear in the
friction-stir welding of Cast Al 358-20% SiC,” Journal of Materials Science 37
(2002) 4999–5005.
73. R. A. Prado, L. E. Murr, K.F. Soto and J. C. McClure,” Self optimization in tool
wear for friction-stir welding of Al 6061 + 20% Al2O3 MMC,” Materials Science
and Engineering A 349 (2003) 156–165.
74. M. Amirizad, A. H. Kokabi, M. A. Gharacheh, R. Sarrafi, B. Shalshi and M.
Azizieh,” Evaluation of microstructure and mechanical properties in friction stir
welded A356 + 15% SiC cast composite,” Materials Letters 60 (2006) 565–568.
75. Y. J. Kwon, I. Shigematsu and N. Saito,” Mechanical properties of fine-grained
aluminum alloy produced by friction stir process,” Scripta Materialia 49 (2003)
785-789.
76. C. I. Chang, C. J. Lee and J. C. Huang,“ Relationship between grain size and
Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys,”
Scripta Materialia 51 (2004) 509-514.
77. Z. Y. Ma,” Friction stir processing technology: A review,” Metallurgical and
Materials Transactions. A 39 (2008) 642–658.
78. R. S. Mishra and Z.Y. Ma,“ Friction stir welding and processing,” Materials Science
and Engineering R 50 (2005) 1–78.
140
79. R. A. Prado, L. E. Murr, K. F. Soto and J. C. McClure,“ Self-optimization in tool
wear for friction-stir welding of Al 6061/20% Al2O3 MMC,” Materials Science and
Engineering A 349 (2003) 156-165.
80. P. Cavaliere,“ Mechanical properties of Friction Stir Processed 2618/Al2O3/20p
metal matrix composite,” Composites: Part A 36 (2005) 1657–1665.
81. Y. W. Kim, in: Y.W. Kim, W. M. Griffith (Eds.),“ Dispersion Strengthened
Aluminum Alloys,” The Metallurgical Society, Warrendale, PA, 1988. (Book).
82. H. Jones,“ Observations on a structural transition in aluminium alloys hardened by
rapid solidification,” Materials Science and Engineering 5 (1969/70) 1-18.
83. T. T. Sasaki, T. Ohkubo and K. Hono,“ Microstructure and mechanical properties of
bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark
plasma sintering,” Acta Materialia 57 (2009) 3529–3538.
84. B. Huang, K. N. Ishihara and P. H. Shingu,“ Metastable phases of Al-Fe system by
mechanical alloying,” Materials Science and Engineering A 231 (1997) 72-79.
85. F. H. Froes, C. Suryanarayana, K. Russell and C. G. Li,” Synthesis of intermetallics
by mechanical alloying,” Materials Science and Engineering A 192/193 (1995)
612-623.
86. F. H. Froes, O. N. Senkov and E. G. Baburaj,“ Synthesis of nanocrystalline
materials- an overview,” Materials Science and Engineering A 301 (2001) 44–53.
87. O. N. Senkov, F. H. Froes, V. V. Stolyarov, R. Z. Valiec and J. Liu,” Microstructure
and microhardness of an Al-Fe alloy subjected to severe plastic deformation and
aging,” Nanostructured Materials 10 (1998) 691-698.
88. C. M. Allena, K. A. Q. O'Reilly, B. Cantor and P. V. Evans,“ Intermetallic phase
selection in 1xxx Al alloys,” Progress in Materials Science 43 (1998) 89-170.
89. R. M. K. Young and T. W. Clyne,“ An Al-Fe intermetallic phase formed during
controlled solidification,” Scripta metallurgica 15 (1981) 1211-1216.
141
90. J. M. Lee, S. B. Kang, T. Sato, H. Tezuka and A. Kamio,” Evolution of iron
aluminide in Al/Fe in situ composites fabricated by plasma synthesis method,”
Materials Science and Engineering A 362 (2003) 257-263.
91. W. T. Kim and B. Cantor,” An adsorption model of the heterogeneous nucleation of
solidification,” Acta metallurgica 42 (1994) 3115-3127.
92. N. Yoneyama, K. Mizoguchi, S. Kumai, A. Sato and M. Kiritani,” Plastic
deformation of Al13Fe4 particles in Al/Al13Fe4 by high-speed compression,”
Materials Science and Engineering A 350 (2003) 117-124.
93. P. J. Black,“ The structure of FeAl3Ι,” Acta Crystallographica 8 (1955) 43-45.
94. K. K. Fung, X. D. Zou and C. Y. Yang, Philos. Mag. Lett. 55 (1987) 27-32.
95. E. A. Guest, C. P. Chang, J. N. Pratt and M. H. Loretto,“ The development of
equilibrium phases in rapidly solidified Al-11at% Mo,” International Journal of
Rapid Solidification 2 (1986) 83-92.
96. W. C. Rodriguesa, F. R. M. Espinoza, L. Schaeffera and G. Knornschild,“ A study
of Al-Mo powder processing as a possible way to corrosion resistent
aluminum-Alloys,” Materials Research 12 (2009) 211-218.
97. C. Ophus, E. J. Luber, M. Edelen, Z. Lee, L. M. Fischer, S. Evoy, D. Lewis, U.
Dahmen, V. Radmilovic and D. Mitlin,“ Nanocrystalline–amorphous transitions in
Al–Mo thin films,” Acta Materialia 57 (2009) 4296–4303.
98. Z. Lee, C. Ophus, L. M. F. Ischer, N. N. Fitzpatrick, K. L. Westra, S. Evoy, V.
Radmilovic, U. Dahmen and D. Mitlin,“ Metallic NEMS components
fabricatedfrom nanocomposite Al–Mo films,” Nanotechnology 17 (2006)
3063–3070.
99. C. P. Chang and M. H. Loretto,” The annealing behaviour of rapid solidification
processed Al-Mo alloys,” Materials Science and Engineering 98 (1988) 185-189.
100. C. P. Chang and M. H. Loretto,“ Diffusion-induced dislocations in RSP Al-Mo,”
142
Acta Metallurgica 36 (1988) 805-810.
101. M. Zdujic, K. F. Kobayashi and P. H. Shingu,” Mechanical alloy of Al-3at%Mo
powders,” Z. Metalkd. 81 (1990) 380-385.
102. S. Enzo, R. Frattini, P. Canton, M. Monagheddu and F. Delogu,” Neutron
diffraction study of mechanically alloyed and in situ annealed Al75Mo25 powders,”
Journal of Applied Physiology 87 (2000) 2753-2759.
103. M. Zdujic, D. Poleti, L. Karanovic, K. F. Kobayashi and P. H. Shingu,”
Intermetallic phases produced by the heat treatment of mechanically alloyed Al-Mo
powder,” Materials Science and Engineering A 185 (1994) 77-86.
104. D. Chen, J. Cai, J. Fang, and Z. Chen,” Preparation of Al–Mo intermetallic
powders by solid–liquid reaction ball milling,” Journal of Alloys and Compounds
485 (2009) L9-L11.
105. J. Adam and J. B. Rice,“ The crystal structure of WAl12, MoAl12 and (Mn,
Cr)Al12,” Acta Crystallographica 7 (1954) 813-816.
106. K. Ortrud, S. F. Raine, R. Lazar, C. Lesley and F. Olga,“ Aluminium – Iron –
Oxygen,” Edited by Gunter Effenberg and Svitlana Ilyenko: in Landolt-Bornstein -
Group IV Physical Chemistry, Volume 11D1. iron systems: phase diagrams,
crystallographic and thermodynamic data, MSIT, Springer 2008
(DOI10.1007/978-3-540-69761-9_9).
107. J. Mei, R. D. Halldearn and P. Xiao,” Mechanisms of the aluminium-iron oxide
thermite reaction,” Scripta Materialia 41 (1999) 541-548.
108. V. G. Miagkov, K. P. Polyakova, G. N. Bondarenko and V. V.
Polyakova,“ Granular Fe–Al2O3 films prepared by self-propagating high
temperature synthesis,” Journal of Magnetism and Magnetic Materials 258–259
(2003) 358–360.
109. G. Chen, G. X. Sun and Z. G. Zhu,“ Study on reaction-processed Al–Cu:α-Al2O3 (p)
143
composite,” Materials Science and Engineering A 265 (1999) 197–201.
110. L. Duraes, B. F. O. Costa, R. Santos, A. Correia, J. Campos and A.
Portugal,“ Fe2O3/aluminum thermite reaction intermediate and final product
characterization,” Materials Science and Engineering A 465 (2007) 199–210.
111. X. Krokidis, P. Raybaud, A. E. Gobichon, B. Rebours, P. Euzen and H. Toulhoat,”
Theoretical study of the dehydration process of boehmite to γ-Alumina,” The
journal of physical chemistry. B 105 (2001) 5121-5130.
112. M. A. Mun, C. G. Oca and D. G. Morris,“ An analysis of strengthening
mechanisms in a mechanically alloyed, oxide dispersion strengthened iron
aluminide intermetallic,” Acta Materialia 50 (2002) 2825–2836.
113. P. C. Maity, P. N. Chakraborty and S. C. Panigrahi,” Preparation of
Al-MgAl2O4-MgO in situ particle-composites by addition of MnO2 particles to
molten Al-2 wt% Mg alloys,” Journal of Materials Science Letters 16 (1997)
1224-1226.
114. G. Chen and G. X. Sun,” Study on in situ reaction-processed Al–Zn/α-Al2O3(p)
composites,” Materials Science and Engineering A 244 (1998) 291–295.
115. R. Subramanian, C. G. Mckamey, J. H. Schneeibel, L. R. Buck and P. A.
Menchhofer,” Iron aluminide–Al2O3 composites by in situ displacement reactions:
processing and mechanical properties,” Materials Science and Engineering A 254
(1998) 119–128.
116. C. F. Feng and L. Froyen,” In-situ synthesis of Al2O3 and TiB2 particulate mixture
reinforced aluminium matrix composites,” Scripta Materialia. 36 (1997) 467–473.
117. C. C. Laborde, L. C. Damonte and L. M. Zelis,“ Theoretical treatment of a
self-sustained, ball milling induced, mechanochemical reaction in the Fe2O3/Al
system,” Materials Science and Engineering A 355 (2003) 106-113.
118. L. Duraes, P. Brito, J. Campos and A. Portugal,“ Modelling and Simulation of
144
Fe2O3/Aluminum Thermite Combustion: Experimental Validation,” 16th European
Symposium on Computer Aided Process Engineering and 9th International
Symposium on Process Systems Engineering, 2006 pp365-370.
119. R. Subramanian , C. G. McKamey, L. R. Buck and J. H. Schneibel,“ Synthesis of
iron aluminide–Al2O3 Composites by in-situ displacement reactions,” Materials
Science and Engineering A 239–240 (1997) 640–646.
120. C. Pan, S. Y. Chen and P. Shen,“ Laser ablation condensation, coalescence, and
phase change of dense γ-Al2O3 Particles,” Journal of physical chemistry B 110
(2006) 24340 24345.
121. J. M. McHale, A. Auroux, A. J. Perrotta and A. Navrotsky,“ Surface energies and
thermodynamic phase stability in nanocrystalline aluminas,” Science 277 (1997)
788-791.
122. T. S. Srivatsan, T. S. Sudarshant and E. J. Laverniaj,“ Processing of
discontinuously-reinforced metal matrix composites by rapid solidification,”
Processing of Metal Matrix Composites 39 (1995) 317-409.
123. E. Arzt and P. Grahle,“ High temperature creep behavior of oxide dispersion
strengthened NiAl intermetallics,” Acta materialia 46 (1998) 2717-2727.
124. A. H. Clauer and N. Hansen,“ High temperature strength of oxide dispersion
strengthened aluminium,” Acta metallurgica 32 (1984) 269-278.
125. P. Bhattacharya, K. N. Ishihara and K. Chattopadhyay,” FeAl multilayers by
sputtering: heat treatment and the phase evolution,” Materials Science and
Engineering A 304–306 (2001) 250–254.
126. K. Bouche, F. Barbier and A. Coulet,” Intermetallic compound layer growth
between solid iron and molten aluminium,” Materials Science and Engineering A
249 (1998) 167–75.
127. H. R. Shahverdi, M. R. Ghomashchi, S. Shabeatari and J. Hejazi,” Kinetics of
145
interfacial reaction between solid iron and molten aluminium,” Journal of Materials
Science 37 (2002) 1061–1066.
128. J. M. Lee, S. B. Kang, T. Sato, H. Tezuka and A. Kamio,” Evolution of iron
aluminide in Al/Fe in situ composites fabricated by plasma synthesis method,”
Materials Science and Engineering A 362 (2003) 257–263.
129. C. M. Adam and L. M. Hogan,” Crystallography of the Al-Al3 Fe eutectic,” Acta
metallurgica 23 (1975) 345–354.
130. J. C. Schuster and H. Ipser,” The Al–Al8Mo3 Section of the Binary System
Aluminium–Molybdenum,” Metallurgical transactions A 22 (1991) 1729–1736.
131. L. Brewer, R. H. Lamoreaux, R. Ferro and R. Marazza,” The Al-Mo System
(Aluminum-Molybdenum),” Journal of Phase Equilibria 1 (1980) 71-75.
132. 李珊慧,” 以摩擦攪拌製程合成氧化鋁及鋁鐵化合物強化鋁基椱材,” Thesis,
2007.
133. B. Nestler and A. A. Wheeler,“ A multi-phase-field model of eutectic and peritectic
alloys: numerical simulation of growth structures,” Physica D 138 (2000) 114–133.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.141.8.247
論文開放下載的時間是 校外不公開

Your IP address is 3.141.8.247
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code