Responsive image
博碩士論文 etd-0328117-112151 詳細資訊
Title page for etd-0328117-112151
論文名稱
Title
電泳沉積還原氧化石墨烯
Reduced Graphene Oxide Deposition by Electrophoresis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-04-29
繳交日期
Date of Submission
2017-04-28
關鍵字
Keywords
氫氧化鉀、電泳沉積、還原氧化石墨烯
potassium hydroxide, electrophoresis, reduced graphene oxide
統計
Statistics
本論文已被瀏覽 5748 次,被下載 76
The thesis/dissertation has been browsed 5748 times, has been downloaded 76 times.
中文摘要
因石墨烯其材料具備許多特性,其中包括:高導熱係數、低電阻率、高電子遷移率…等。自其發現以及證明可以單獨存在後,其相關研究便得到許多研究者與學者的關注與研究。也因其物理性質與材料性質使石墨烯成為下世代之最有潛力之奈米材料。而近期石墨烯被廣泛運用於光電元件、奈米複合材料、太陽能電池、感測器上…等。
本研究主軸為利用不同製備條件下,利用電泳方式沉積石墨烯薄膜於ITO基板上,接著對於所製作石墨烯材料其特性分析與探討。
本實驗以原生石墨為材料,利用電泳方式製備還原氧化石墨烯。透過調整嵌入電壓、提升溫度、提高濃度與參雜,以求石墨烯品質之優化。完成製備後之石墨烯產物再以光學顯微鏡、掃描式電子顯微鏡觀察其表面結構堆疊,X-ray光繞射儀與X-ray電子能譜儀與拉曼光譜儀對其碳材料分析純度、材料缺陷、晶格結構,進一步確認其成分與製備石墨烯品質好壞。
透過電子顯微鏡可觀測薄膜表面沉積型態,發現電泳沉積有明顯奈米結構與平坦堆疊方式。在高溫與參雜氫氧化鉀下,在拉曼光譜儀量測其缺陷值Id/Ig值可以降至0.6以下。最終發現以高濃度、高溫、參雜下可得品質較佳之石墨烯薄膜。
Abstract
Graphene is immensely attractive to the scientific community. As the candidate for its electrical and mechanical properties, including high thermal conductivity, low resistivity and high electron mobility make it a candidate for next electrical materials.
Since it discovered and proved exist alone, the relevant research is made and gets a lot of scholar’s concern. Because of its physical and material properties make is become the next generation of nano-materials. Graphene is widely used in photovoltaic components, electronic components, nano-composite materials, solar cells, and sensors recently.
The research is mainly on using different preparation conditions by electrophoresis deposition to grow graphene film on the ITO substrate. And then make analysis and discussion to the production of graphene properties.
In this research, the pristine graphite was used as the material to grow graphene by electrophoresis. By adjusting the embedded voltage, enhancing the temperature, increasing the concentration, and doping insure to optimize the quality of graphene. The graphene production will be observed by optical microscope and scanning electron microscope for graphene surface structure. The purity, material defects and lattice structure were analyzed by XRD and Raman spectroscopy to confirm the composition and preparation of graphene quality.
The surface morphology of films was observed by electron microscopy, and was found that the electrophoretic deposition had obvious nanostructure and flat stacking. In the higher temperature and doping potassium hydroxide, the Raman spectrum measurement of its defects (Id/Ig) could be reduced to 0.6 below. And found in high concentrations, higher temperature, doping could get great graphene film.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第1章 緒論 1
1.1 文獻回顧 1
1.1.1石墨烯介紹 1
1.1.2 石墨烯配置方法 3
第2章 原理 16
2.1 石墨烯之物理特性 16
2.1.1 石墨烯基本理論 16
2.1.2 傳輸電子特性 18
2.1.3 石墨烯光學特性 18
2.1.4 多層石墨烯結構 20
2.2 儀器原理 22
2.2.1 量測儀器 22
第3章 實驗流程 33
3.1 電泳製備石墨烯與石墨烯氧化物 34
3.1.1 ITO基板清洗 34
3.1.2 電泳沉積氧化石墨烯 34
第4章 實驗結果 38
4.1 材料分析與量測 38
4.1.1 光學顯微鏡之分析(OM) 38
4.1.2 掃描式電子顯微鏡之分析(SEM) 39
4.1.3 X-ray 繞射儀分析(XRD) 41
4.1.4 X-ray電子能譜儀分析(XPS) 43
4.1.5 拉曼光譜儀量測分析(Raman spectrum) 45
結論 52
參考文獻 53
Published 61
參考文獻 References
[1]Alexander A. Balandin, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao and Chun Ning Lau, "Superior thermal conductivity of single-layer graphene," Nano Lett, vol. 8, pp. 902-907, Feb 2008.
[2] A. K. Geim , K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666 - 669, Jul. 2004.
[4] H. P. Boehm, A. Clauss, G. O. Fischer and U. Hofmann, "Das Adsorptionsverhalten sehr dünner Kohlenstoff-Folien," Zeitschrift für anorganische und allgemeine Chemie, vol. 316, pp. 119-127, Jul. 1962.
[5] T. Nishimura, K. Kita and A. Toriumi K. Nagashio, "Contact resistivity and current flow path at metal/graphene contact," Appl. Phys. Lett, vol. 97, p. 143514, Oct. 2010.
[6] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, vol. 320, p. 1308, Apr. 2008.
[7] K. I. Bolotin, K. J. Sikes, Z. Jianga, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, p. 351–355, Jun. 2008.
[8] Wonbong Choi, Indranil Lahiri, Raghunandan Seelaboyina, Yong Soo Kang, "Synthesis of Graphene and Its Applications: A Review," Critical Reviews in Solid State and Materials Sciences, vol. 35, pp. 52-71, Feb. 2010.
[9] T. Nishimura, K. Kita and A. Toriumi K. Nagashio, "Contact resistivity and current flow path at metal/graphene contact," Appl. Phys. Lett, vol. 97, p. 143514, Oct. 2010.
[10] Yuanbo Zhang, Joshua P. Small, William V. Pontius, and Philip Kim, "Fabrication and electric-field-dependent transport measurements of," Appl. Phys. Lett., vol. 86, p. 073104, Feb. 2005.
[11] Guoxiu Wang, , Bei Wang, Jinsoo Park, Ying Wang, Bing Sun, Jane Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation," Carbon, vol. 47, p. 3242–3246, Nov. 2009.
[12] Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N. Khlobystov, Lain-Jong Li, "High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation," ACS NANO, vol. 5, pp. 2332-2339, Nov. 2011.
[13] C.T.J. Low, F.C. Walsh, M.H. Chakrabarti, M.A. Hashim, M.A. Hussain, "Electrochemical approaches to the production of graphene flakes and their potential applications," CARBON, vol. 54, p. 1–21, Apr. 2013.
[14] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, Kevin M. Kohlhaas, Eric J. Zimney,Eric A. Stach, Richard D. Piner, SonBinh T. Nguyen, Rodney S. Ruoff, "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, Jul. 2006.
[15] Sungjin Park, Rodney S. Ruoff, "Chemical methods for the production of graphenes," nature nanotechnology, vol. 4, pp. 217 - 224, Mar. 2009.
[16] Prakash R. Somani, Savita P. Somani, Masayoshi Umeno, "Planer nano-graphenes from camphor by CVD," Chemical Physics Letters, vol. 430, pp. 56-59, Jun. 2006.
[17] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, p. 2017–2021, Jun. 2007.
[18] Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen and Shin-Shem Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Appl. Phys. Lett., vol. 93, p. 113103, Sep. 2008.
[19] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi and Byung Hee Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 5, pp. 706-710, Feb. 2009.
[20] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 5, pp. 1312-1314, May 2009.
[21] Sukang Bae, Hyeongkeun Kim, Youngbin Lee, Xiangfan Xu, Jae-Sung Park, Yi Zheng, "Roll-to-roll production of 30-inch graphene films for transparent electrodes," NATURE NANOTECHNOLOGY, vol. 5, pp. 574-578, Jun. 2010.
[22] Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li, "Epitaxial Graphene on SiC(0001): More than Just Honeycombs," Phys. Rev. Lett, vol. 105, p. 085502, Aug. 2010.
[23] B. C. Brodie, "On the atomic weight of graphite," Phil. Trans. R. Soc. Lond., vol. 149, pp. 249-259, Jan. 1859.
[24] William S. HummersJr., Richard E. Offeman, "Preparation of graphitic oxide," J. Am. Chem. Soc., p. 1339, Mar. 1958.
[25] Sung Jin An, Yanwu Zhu, Sun Hwa Lee, Meryl D. Stoller, Tryggvi Emilsson, Sungjin Park, Aruna Velamakanni, Jinho An, and Rodney S. Ruoff," Thin Film Fabrication and Simultaneous Anodic Reduction of Deposited Graphene Oxide Platelets by Electrophoretic Deposition," J. Phys. Chem. Lett.,2010, pp 1259–1263
[26] Chenggang Tao, Liying Jiao, Oleg V. Yazyev,Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang,Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, Hongjie Dai and Michael F. Crommie, "Spatially resolving edge states of chiral graphene nanoribbons," Nature Physics, vol. 7, pp. 616-620, May 2011.

[27] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The electronic properties of graphene," REVIEWS OF MODERN PHYSICS, vol. 81, pp. 109-162, Jan. 2009.
[28] L. G. Cançado, A. Reina,J. Kong and M. S. Dresselhaus, "Geometrical approach for the study of G'band in the Raman spectrum of monolayer graphene,bilayer graphene, and bulk graphite," PHYSICAL REVIEW B, vol. 77, p. 245408, Jun. 2008.
[29] J. N. Fuchs and M. O. Goerbig, "Introduction to the physical properties of graphene," Topics Nanophysics, 2008.
[30] N. Peres, "The electronic properties of graphene and its bilayer," Vacuum, vol. 83, pp. 1248-1252, Jun. 2009.
[31] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, vol. 4, pp. 611-622, Aug. 2010.
[32] Sylvain Latil and Luc Henrard, "Charge carriers in few-layer graphene films," PRL, vol. 97, p. 036803, Jul. 2006.
[33] Mauricio Terrones, Andrés R. Botello-Méndez, Jessica Campos-Delgado, Florentino López-Urías, Yadira I. Vega-Cantú, Fernando J. Rodríguez-Macías, Ana Laura Elías, Emilio Mu˜noz-Sandoval, Abraham G. Cano-Márquez, Jean-Christophe Charlier, Humberto Terrones, "Graphene and graphite nanoribbons: Morphology,properties, synthesis, defects and applications," Nano Today, vol. 5, pp. 351-372, Aug. 2010.
[34] 蕭宏, 半導體製程技術導論, 歐亞書局, 2001.
[35] Edbertho Leal-Quir´os, "Plasma processing of municipal solidwaste," Brazilian Journal of Physics, vol. 34, pp. 1587-1593, Dec. 2004.
[36] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. Lond. A, vol. 119, pp. 173-181, May 1928.
[37] an R.Lewis, Howell G.M. Edwards, Handbook of Raman Spectroscopy, Taylor & Francis, 2001.
[38] A. C. Ferrari,” Raman Spectrum of Graphene and Graphene Layers,” PHYSICAL REVIEW LETTERS, PRL 97, 2006.
[39] Mohd Zamri Yusop, Golap Kalita, Yazid Yaakob, Chisato Takahashi and Masaki Tanemura, "Field emission properties of chemical vapor deposited individual graphene," Applied Physics Letters, vol. 104, p. 093501, Mar. 2014.
[40] Alexander Malesevic, Raymond Kemps, Annick Vanhulsel, Manish Pal Chowdhury, Alexander Volodin et al., "Field emission from vertically aligned few-layer graphene," J. Appl. Phys., vol. 104, p. 084301, Oct. 2008.
[41] Navneet Soin, Susanta Sinha Roy, Soumyendu Roy, Kiran Shankar Hazra, Devi S. Misra, Teck H. Lim, Crispin J. Hetherington and James A. McLaughlin, "Enhanced and Stable Field Emission from in Situ Nitrogen-Doped Few-Layered Graphene Nanoflakes," J. Phys. Chem. C, vol. 115, pp. 5366-5372, Mar. 2011.
[42] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, Apr. 2009.
[43] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 45-57, Apr. 2007.
[44] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, Apr. 2009.
[45] L. G. Cançado, A. Reina,J. Kong and M. S. Dresselhaus, "Geometrical approach for the study of G'band in the Raman spectrum of monolayer graphene,bilayer graphene, and bulk graphite," PHYSICAL REVIEW B, vol. 77, p. 245408, Jun. 2008.
[46] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, Apr. 2009.
[47] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., vol. 97, p. 187401, Oct. 2006.
[48] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, "Raman spectroscopy in graphene," Physics Reports, vol. 473, pp. 51-87, Apr. 2009.
[49] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., vol. 97, p. 187401, Oct. 2006.
[50] Michael Dunlap, J. E. Adaskaveg, "Introduction to the scanning electron microscope," Theory, Practice, & Procedures, 1997.
[51] B. Fultz, J. Howe, "Diffraction and the X-Ray powder diffractometer," Transmission Electron Microscopy and Diffractometry of Materials, 2013.
[52] Mark Engelhard, "X-Ray photoelectron spectroscopy, XPS," [Online]. Available: http://www.emsl.pnnl.gov/emslweb/sites/default/files/engelhard_xps.pdf. [Accessed 4 2016]
[53] Richard E. Offeman William S. Hummers Jr., “Preparation of Graphitic Oxide,” J. Am. Chem. Soc, vol. 80, p. 1339, Mar. 1958.
[54] Yanzhong Hong, Zhiyong Wang, and Xianbo Jin, "Sulfuric acid intercalated graphite oxide for graphene preparation," Scientific Reports, vol. 3, p. 3439 , 12 2013.
[55] Zhen Hua Ni, Hao Min Wang, Yun Ma, Johnson Kasim, Yi Hong Wu and Ze Xiang Shen, “Tunable stress and controlled thickness modification in graphene by annealing,” ACS Nano, vol. 2, pp. 1033–1039, May. 2008.
[56] Hui-Lin Guo, Xian-Fei Wang, Qing-Yun Qian, Feng-Bin Wang and Xing-Hua Xia, “A Green Approach to the Synthesis of Graphene Nanosheets,” ACS Nano, vol. 3, pp. 2653–2659, Aug. 2009.
[57] Ariel Ismach, Clara Druzgalski, Samuel Penwell, Adam Schwartzberg, Maxwell Zheng, Ali Javey, Jeffrey Bokor and Yuegang Zhang, “Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces,” Nano Lett, vol. 10, pp. 1542–1548, Apr. 2010.
[58] Chengyuan Hu, Rong Zhou, Chuanjie Fan, Xiaodong Zhou, "Influence of reducing reagent combination in graphene oxide reduction," Micro & Nano Letter, vol. 11, pp. 215-220, 2016.
[59] Hui-Lin Guo, Xian-Fei Wang, Qing-Yun Qian, Feng-Bin Wang and Xing-Hua Xia, “A Green Approach to the Synthesis of Graphene Nanosheets,” ACS Nano, vol. 3, pp. 2653–2659, Aug. 2009
[60] Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 2006,16(2),155–8.
[61] C.D.Wagner, W.M.Riggs, L.E.Davis, J.F.Moulder, and G.E.Mullenberg, Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie, Minnesota: Perkin-Elmer Corp., 1979.
[62] Selvakumar Palanisamy, Balamurugan Thirumalraj, Shen-Ming Chen, Yi-Ting Wang,Vijayalakshmi Velusamy, and Sayee Kannan Ramaraj, A Facile ElectrochemicalPreparation of Reduced GrapheneOxide@Polydopamine Composite:
A Novel Electrochemical Sensing Platform for Amperometric Detection of Chlorpromazine,Scientific reports, DOI: 10.1038/srep33599,2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code