Responsive image
博碩士論文 etd-0330111-210323 詳細資訊
Title page for etd-0330111-210323
論文名稱
Title
鋯基金屬玻璃薄膜複材與微米柱之強化韌化與微奈米機械性質分析
Strengthening and Toughening of Zr-Based Thin Film Metallic Glasses and Composites under Nanoindentation and Micropillar Compression
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
201
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-03-18
繳交日期
Date of Submission
2011-03-30
關鍵字
Keywords
磁控濺鍍、機械性質、複合材料、金屬玻璃、奈米壓痕
shear band, thin film metallic glass, nanoindentation, composite, sputter
統計
Statistics
本論文已被瀏覽 5642 次,被下載 16
The thesis/dissertation has been browsed 5642 times, has been downloaded 16 times.
中文摘要
在1960年,自從第一個非晶質合金被製備出來後,許說研究學者發現非晶質合金在機械行為,光學性質,電磁應用,及超導現象具有許\多獨特優點。隨著時間的演進,許多成熟的製程,如液態急冷,磁控濺鍍,蒸鍍,脈衝雷射鍍膜等技術,已經被開發出來。由於非晶質合金不具有長程有序的晶體結構,因此非晶質合金較相同成分的合金材料具有更高的彈性極限及降伏強度。

許多學者們發現,在常溫下非晶質合金的塑性變形行為為剪切變形帶(shear band)所主導。更進一步來說,此種行為會進一步誘發加工軟化(work softening)之現象。對於結構材來說,此種不均勻之便型特性會使非晶質合金的應用受到限制。近年來,針對這個問題,許多由非晶質合金及不同強化相所組成的非晶質合金複合材料被大量的開發及研究。其目的是希望節由強化相來分散期集中在滑移面上的剪應力,並且藉由強化相來吸收剪切變形帶之能量,進而阻止剪切變形帶之前進。

在本論文中,吾人利用三種不同的策略來料了解剪切變形帶並進而控制剪切變形帶之發展。第一種為利用結構鬆弛來觀察非晶質合金的機械性質變化及行為。利用sub-Tg 退火,在製程中所生成的過量之自由體積藉由結構鬆弛而消滅,導致硬度大幅度提升。在Zr52Cu29Ti19非晶質合金中,其硬度的提升從5.2 GPa至6.9 GPa (~30%的提升)。但從奈米壓痕的數據中發現,其pop-in 事件的增多,為來自於過量之自由體積在結構鬆弛中被消滅並在非晶質母材中產生中程有序團簇。

第二種為添加合金元素,使添加元素以溶質存在於非晶質母材之中。所選用的母合金系統為ZrCu;添加元素為Ti及Ta。由於鈦的各方面性質與鋯極為相似,硬度提升的效果並不明顯,而若添加Ta,其硬度隨著鉭含量上升而上升,最高可達到10.0 GPa,為近乎100%的提升,利用高解析電子顯微鏡之技術發現,在原子影像下,可發現高密度之奈米團簇存在於非晶質母材之中。推測其生成之原因為Ta含量的上升,產生大量的Ta-Ta鍵結,因而生成其奈米團簇。

在奈米壓痕及微米壓縮之測試中,由於高含量Ta的添加使非晶質母材中形成大量奈米金屬團簇,進而影響剪切變形帶的前進,進而產生大量剪切變形帶。第三中為導入高強度奈米金屬層,所選用之材料為鉭,利用高強度奈米鉭做為吸收剪切變形帶動能的吸收層。由於導入的高強度Ta層,所量測到之硬度有約60%的上升。更進一步在微米壓縮測試的結果中發現,利用多層結構除了提昇強度之外,在剪切變形帶發展的初期,能夠藉由奈米晶Ta吸收剪切變形帶之動能,展現出延展性。
Abstract
Since the first discovery of amorphous alloys in 1960, researchers have explored many unique mechanical, magnetic, and optical characteristics of such materials for potential applications. Up to now, well-developed processes, such as rapid quenching, sputtering, evaporation, pulse laser deposition, etc, have been applied for different applications in micro-electro-mechanical systems (MEMS). Due to the lack of ordered structure, amorphous alloys can bear a high stress in the elastic region. Their plastic deformation stability is also of interest and has been widely studied. The shear-band characteristic, a kind of inhomogeneous deformation mechanism, dominates the deformation after yielding at room temperature. While a shear band nucleate, its propagation usually cannot be arrested or stopped. In other words, the occurrence of matured shear bands needs to be prevented. There are two major approaches in this aspect. The first is to increase the material yield strength so as to delay the shear band nucleation. Another is to incorporate intrinsic or extrinsic particles so as to absorb the kinetic energy of shear bands in the amorphous matrix.

In this study, we utilize three strategies to control the propagation of shear bands in thin film metallic glasses (TFMGs): sub-Tg annealing, the addition of strong element in solute form, and the introduction of strong nanocrystalline layers. For sub-Tg annealing, the base alloy system is Zr69Cu31, with a base film hardness of 5.1 GPa measured by nanoindentation. After annealing, the hardness exhibits ~30% increase. Without the occurrence of the phase transformation, as confirmed by X-ray diffraction, the possible reaction during sub-Tg annealing is attributed to structural relaxation, not crystallization. The full width at half maximum of the X-ray peak exhibits a decreasing trend in the using X-ray and transmission electron microscopy diffraction, meaning the excess free volumes forming during vapor-to-solid deposition process would be annihilated by localized atomic re-arrangement. Moreover, the formation of medium-ordering-range clusters was confirmed utilizing high-resolution transmission electronic microscopy. The denser amorphous structure leads to the increment of hardness.

For the addition of Ta in Zr55Cu31Ti14, sputtering provides a wide glass forming range with solubility of Ta approaching ~75 at%. With increasing Ta content, the elastic modulus and hardness increase slowly. A steep rise occurs at ~50 at% of Ta. Up to 75 at% of Ta, the elastic modulus and hardness approaches 140 GPa and 10.0 GPa, respectively (100% increment). Up to now, Ta-rich TFMGs exhibit the highest elastic modulus and hardness among all amorphous alloys fabricated using vapor deposition techniques. The irregular increase is attributed to the formation of Ta-Ta bonding. A large quantity of Ta bonds would lead to the formation of Ta-rich nanoclusters, drastically decreasing the strain rate while shear band propagates under nanoindentation and microcompression tests. The introduction of nanocrystalline Ta layers can not only effectively enhance the yield strength but also serve as the absorber for the kinetic energy of shear bands, revealing ductility in the microcompression test.
目次 Table of Contents
Content.......................................................................................................................................i
List of Tables.............................................................................................................................v
List of Figures..........................................................................................................................vi
Abstract................................................................................................................................xvii
中文摘要...............................................................................................................................xix
Chapter 1 Introduction ............................................................................................................. 1
1-1 Amorphous metallic alloys ...................................................................................... 1
1-2 Characteristics of bulk metallic glasses (BMGs) and thin film metallic glasses
(TFMGs) .................................................................................................................. 2
1-3 Mechanical properties and responses of amorphous alloys from microscope
aspect........................................................................................................................ 4
1-4 Purpose and motive of this research ........................................................................ 5
Chapter 2 Background and Literature Review ........................................................................ 7
2-1 Evolution of amorphous alloys ............................................................................... 7
2-1-1 Evolution of bulk and thin film metallic glasses ......................................... 7
2-1-2 Glass forming ability (GFA) ...................................................................... 10
2-1-3 Fabrication of amorphous alloys ................................................................ 12
2-2 Microstructure of co-sputtered and multilayer alloy thin films ............................ 15
2-2-1 Amorphization in miscible alloy system .................................................... 15
2-2-2 Amorphization in immiscible alloy system ............................................... 16
2-2-2-1 Amorphization in Ag-Cu system ................................................ 17
2-2-2-2 Amorphization in Cu-Ta system ................................................. 19
2-2-2-3 Amorphization in Cu-Nb system ................................................ 20
2-3 Deformation mechanism of amorphous alloys ...................................................... 22
2-4 Mechanical properties of thin film metallic glasses .............................................. 24
2-4-1 Nanoindentation and microindentation ...................................................... 24
2-4-2 Microcompression tests ............................................................................. 26
2-5 Toughness of metallic glasses ............................................................................... 32
2-5-1 Intrinsic strengthening ............................................................................... 32
2-5-2 Extrinsic strengthening .............................................................................. 33
Chapter 3 Experimental Procedures ...................................................................................... 35
3-1 Materials ................................................................................................................ 35
3-2 Alloy Designation ................................................................................................. 36
3-3 Sample preparation ................................................................................................ 37
3-3-1 Substrate preparation ................................................................................. 37
3-3-2 Thin film preparation ................................................................................. 38
3-3-3 Post-treatment of the as-deposited ZrCu and ZrCuTi samples .................. 39
3-4 Property measurements and analysis ..................................................................... 40
3-4-1 X-ray diffraction ........................................................................................ 40
3-4-2 Qualitative and quantitative constituent analysis ....................................... 40
3-4-3 Thermal analysis using differential scanning calorimetry ......................... 41
3-4-4 Plan-view TEM analysis ............................................................................ 41
3-4-5 Mechanical tests in micro-scale ................................................................. 41
3-4-5-1 Measurement of elastic modulus and hardness via nanoindentation
................................................................................................... 42
3-4-5-2 Microcompression test ................................................................ 42
Chapter 4 Results ................................................................................................................... 44
4-1 Sub-Tg annealing of Zr-based TFMGs .................................................................. 44
4-1-1 Structural of ZrCu and ZrCuTi TFMGs ..................................................... 44
4-1-1-1 SEM/EDS analysis of ZrCu and ZrCuTi TFMGs ...................... 44
4-1-1-2 XRD analysis of ZrCu and ZrCuTi TFMGs ............................... 44
4-1-2 Influence of hysteresis effect on mechanical properties of Zr-based TFMGs
................................................................................................................ .. 45
4-1-3 Evolution of mechanical properties of Zr69Cu31 and Zr52Cu29Ti19 TFMGs
via sub-Tg annealing .................................................................................. 50
4-1-3-1 Evolution of the mechanical properties by sub-Tg annealing ..... 50
4-1-3-2 Evolution of the mechanical response by sub-Tg annealing ....... 51
4-2 Ta addition in ZrCuTi alloy system ....................................................................... 51
4-2-1 Structural characteristics of ZrCuTiTa alloy thin films via co-sputtering . 52
4-2-2 Nanoindentation results of ZrCuTiTa thin films via co-sputtering ............ 53
4-2-3 Structural characteristics of ZrCuTi/Ta multilayer nanocomposite via
alternative deposition ................................................................................. 55
4-2-4 Nanoindentation results of amorphous ZrCuTi/nanocrystalline Ta
multilayer nanocomposites ........................................................................ 55
4-3 Microcompression properties of Zr55Cu31Ti14 pillars with Ta addition ................. 56
4-3-1 Pre-load effect in microcompression test ................................................... 56
4-3-2 Microcompression results of ZrCuTiTa thin film metallic glasses ............ 58
4-3-3 Microcompression results of nanocrystalline Ta micropillars ................... 59
4-3-4 Microcompression results of ZrCuTi/Ta amorphous/nanocrystalline
multilayered composites ............................................................................ 60
4-3-5 Microcompression results of ZrCuTi 50 nm/Ta 50 nm before strain burst 60
Chapter 5 Discussion ............................................................................................................. 62
5-1 Enhancement of mechanical properties of ZrCu and ZrCuTi TFMGs via sub-Tg
annealing ................................................................................................................ 62
5-1-1 Oxygen effect ............................................................................................. 62
5-1-2 Formation of medium range ordering (MRO) structure ................ 63
5-1-3 Annihilation of excess free volume ............................................... 63
5-1-4 Relationship between time-dependent mechanical response and
sub-Tg annealing ........................................................................ 66
5-2 Evolution of mechanical properties of ZrCuTi TFMGs by addition of immiscible
Ta ........................................................................................................................... 67
5-2-1 Estimation of the mechanical properties in ZrCuTiTa alloy thin films ..... 67
5-2-1-1 Estimation of the mechanical properties of ZrCuTiTa alloy ...... 67
5-2-1-2 Comparison between estimated and experimental nanoindentation
results ......................................................................................... 69
5-2-2 Structural evolution of ZrCuTiTa alloy thin films via XRD analysis ........ 70
5-2-3 Influence of Ta content on mechanical properties ..................................... 72
5-2-4 Microstructure of ZrCuTiTa thin film metallic glasses .............................. 73
5-2-4-1 Ta solute in ZrCuTi amorphous matrix ....................................... 74
5-2-4-2 Zr, Cu, and Ti solutes in Ta amorphous matrix........................... 75
5-3 Mechanical behaviors in amorphous ZrCuTiTa micropillars ................................ 77
5-4 Enhancement of mechanical properties of ZrCuTi TFMGs by inserting
high-strength nc-Ta layers under microcompression ............................................. 81
5-4-1 Thickness effect of nc-Ta layers ................................................................ 81
5-4-2 Shear band propagation of Ta layer in a-ZrCuTi 50 nm/nc-Ta 50 nm
micropillar .................................................................................................. 83
Chapter 6 Conclusion ............................................................................................................ 89
References...............................................................................................................................92
Tables.....................................................................................................................................100
Figures...................................................................................................................................108
參考文獻 References
[1] A.C. Lund and C A. Schuh, J. Appl. Phys., 95 (2004) 4815-4822.
[2] A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mater. Trans., JIM, 32 (1991) 606-609.
[3] J. Schroers and N. Paton, Adv. Mater. Processes, 164 (2006) 61-63.
[4] P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, Nanoscience and Nanotech., 5 (2005) 416-420.
[5] T. Fukushige, S. Hata, and A. Shimokohbe, J. Microelectromech. Syst., 14 (2005) 243-253.
[6] A. Inoue, Mater. Sci. Eng. A, 304-306 (2001) 1-10.
[7] A. Inoue, Acta Metar., 48 (2000) 279-306.
[8] S. Mader, A.S. Nowick, and H. Widmer, Acta Metall., 15 (1967) 203-214.
[9] S. Bysakh, P.K. Das, and K. Chattopadhyay, Philos. Mag. A, 81 (2001) 2689-2704.
[10] R.B. Schwarz and W.L. Johnson, Phys. Rev. Lett., 51 (1983) 415-418.
[11] S. Hata, K. Sato, and A. Shimokohbe, Proc. SPIE, 3892 (1999) 97-108.
[12] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, and C.H. Kuo, Phys. Rev. B, 69 (2004) 113410.
[13] Y. Liu, S. Hata, K. Wada, and A. Shimokohbe, Jpn. J. Appl. Phys., 40 (2001) 5382-5388.
[14] M.W. Chen, Annu. Rev. Mater. Res., 38 (2008) 14.1-14.25.
[15] A.S. Argon, Acta Metall., 27 (1979) 47-58.
[16] W. Klement, R. H. Willens, and P. Duwez, Nature, 187 (1960) 869-870.
[17] H.S. Chen and D. Turnbull, Acta Metall., 17 (1969) 1021-1031.
[18] H.S. Chen, Acta Metall., 22 (1974) 1050-1511.
[19] E.J. Cotts, W.J. Meng, and W.L. Johnson, Phys. Rev. Lett., 57 (1986) 2295-2298.
[20] H.W. Kui, A.L. Greer, and D. Turnbull, Appl. Phys. Lett., 45 (1984) 615-616.
[21] Q.M. Chen, Y.D. Fan, and H.D. Li, Mater. Lett., 6 (1988) 311-315.
[22] J. Dudonis, R. Brucas, and A. Miniotas, Thin Solid Films, 275 (1996) 164-167.
[23] H.U. Krebs, O. Brement, M. Stormer, and Y.S. Luo, Appl. Surf. Sci., 86 (1995) 90-94.
[24] J. Sakurai, S. Hata, and A. Shimokohbe, International Conference on Advanced Technology in Experimental Mechanics 2003, (2003) 10-12.
[25] G.P. Zhang, Y. Liu, W. Wang, and J. Tan, Appl. Phys. Lett., 88 (2006) 013105.
[26] G.P. Zhang, Y. Liu, and B. Zhang, Scripta Mater., 54 (2006) 897-901.
[27] R. Yamauchu, S. Hata, J. Sakurai, and A. Shimokohbe, Mater. Res. Soc, Symp. Proc., 894 (2006) 0894-LL02-05.1-0894-LL02-05.5.
[28] S. Hata, T. Fukushige, and A. Shimokohbe, Proceedings of CPT2002, (2002) 162-167.
[29] G.P. Zhang, Y. Liu, and B. Zhang, Adv. Eng. Mater., 7 (2005) 606-609.
[30] A. Inoue, T. Nakamura, and N. Nishiyama, Mater. Trans., JIM, 33 (1992) 937-945.
[31] Z.P. Lu, H. Tan, Y. Li, and S.C. Ng, Scripta Mater., 42 (2000) 667-673.
[32] Z.P. Lu and C.T. Liu, Acta Metar., 50 (2002) 3501-3512.
[33] X.H. Du, J.C. Huang, C.T. Liu, and Z.P. Liu, J. Appl. Phys., 101 (2007) 086108.
[34] A. Inoue, T. Zhang, and Tsuyoshi, Mater. Trans., JIM, 30 (1989) 965-972.
[35] Z.P. Lu and C.T. Liu, Intermetallics, 12 (2004) 1035-1043.
[36] 吳學陞, 工業材料, 149 (1999) 154-165.
[37] W. Buckel, Z. Phys., 138 (1954) 136-150.
[38] B.X. Liu, Mater. Lett., 5 (1987) 322-327.
[39] Y.G. Chen and B.X. Liu, Appl. Phys. Lett., 68 (1996) 3096-3098.
[40] Y.G. Chen and B.X. Liu, J. Phys .D:Appl. Phys., 30 (1997) 510-516.
[41] Y.P. Deng, Y.F. Guan, J.D. Fowlkes, S.Q. Wen, F.X. Liu, G.M. Pharr, P.K. Liaw, C.T. Liu, and P.D. Rack, Intermetallics, 15 (2007) 1208-1216.
[42] H.M. Chen, Y.C. Chang, T.H. Hung, X.H. Du, J.C. Huang, J.S.C. Jang, and P.K. Liaw, Mater. Trans., 48 (2007) 1802-1805.
[43] T.G. Nieh, T.W. Barbee, and J. Wadsworth, Scripta Mater., 41 (1999) 929-935.
[44] J. Rivory, J.M. Frigerio, M. Harmelin, A. Quivy, Y. Calvayrac, and J. Bigot, Thin Solid Films, 89 (1982) 323-327.
[45] F. Pan and B.X. Liu, J. Phys.: Condens. Matter, 8 (1996) 383-388.
[46] R.F. Zhang, Z.C. Li, and B.X. Liu, Jpn. J. Appl. Phys., 42 (2003) 7009-7012.
[47] E. Ma and M. Atzmon, Mater. Chem. Phys., 39 (1995) 249-267.
[48] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, and K. Hono, Acta Mater., 55 (2007) 2885-2895.
[49] R. Banerjee, S. Bose, A. Genc, and P. Ayyub, J. Appl. Phys., 103 (2008) 033511.
[50] N.A. Mara, D. Bhattacharyy, R.G. Hoagland, and A. Misra, Scripta Mater., 58 (2008) 874-877.
[51] N.A. Mara, T. Tamayo, A.V. Sergueeva, X. Zhang, A. Misra, and A.K. Mukherjee, Thin Solid Films, 515 (2007) 3241-3245.
[52] H.L. Knoedler, G.E. Lucas, and C.G. Levi, Mater. Trans. A, 34A (2003) 1043-1054.
[53] K.W. Kwon, H.J. Kee, and R. Sinclair, Appl. Phys. Lett., 75 (1999) 935-937.
[54] S. Gohil, R. Banerjee, S. Bose, and P. Ayyub, Scripta Mater., 58 (2008) 842-845.
[55] P. Taneja, R. Banerjee, and P. Ayyub, Phys. Rev. B, 64 (2001) 033405.
[56] F. Zeng, Y. Gao, L. Li, D.M. Li, and F. Pan, J. Alloys Compd., 389 (2005) 75-79.
[57] A. Misra and R.G. Hoagland, J. Mater. Res., 20 (2005) 2046-2054.
[58] C. Michaslsen, C. Gente, and R. Bormann, J. Appl. Phys., 81 (1997) 6024-6030.
[59] A. Puthucode, M.J. Kaufman, and R. Banerjee, Mater. Trans. A, 39A (2008) 1578-1584.
[60] D. Kawase, A.P. Tsai, A. Inoue, and T. Masumoto, Appl. Phys. Lett., 62 (1992) 137-139.
[61] B. Gun, K.J. Laws, and M. Ferry, J. Non-cryst. Solids, 352 (2006) 3887-3895.
[62] C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Acta Mater., 55 (2007) 4067-4109.
[63] A.V. Sergueeva, N.A. Mara, J.D. Kuntz, E.J. Lavernia, and A.K. Mukherjee, Philo. Mag., 85 (2005) 2671-2687.
[64] X.K. Xi, D.Q. Zhao, M.X. Pan, W.H. Wang, Y. Wu, and J.J. Lewandowski, Phys. Rev. Lett., 94 (2005) 125510.
[65] F.H. Dalla Torre, A. Dubach, J. Schallibaum, and J.F. Loffler, Acte Mater., 56 (2008) 4635-4646.
[66] F. Shimizu, S. Ogata, and J. Li, Acta Mater., 54 (2006) 4293-4298.
[67] W. C. Crone, H. Brock, and A. Creuziger, Exp. Mech., 47 (2007) 133-142.
[68] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, and J.E. Sundgren, J. Appl. Phys., 80 (1996) 6725-6733.
[69] J. Chen, W. Wang, L.H. Qian, and K. Lu, Scripta Mater., 49 (2003) 645-650.
[70] S.Y. Chang, Y.K. Chang, and Y.S. Lee, Electrochem. Solid-State Lett., 9 (2006) C73-C76.
[71] A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, and J.R. Wilde, Mater. Sci. Eng. A, 375-377 (2004) 1182-1185.
[72] F. Spaepen, Acta Metall., 25 (1977) 407-415.
[73] W.C. Oliver and G.M. Pharr, J. Mater. Res., 7 (1992) 1564-1583.
[74] R.L. Zong, S.P. Wen, F. Zeng, Y. Gao, and F. Pan, J, Alloys Compd., 464 (2007) 544-549.
[75] S. Reyntjens and R. Puers, J. Micromech. Microeng., 11 (2001) 287-300.
[76] A. Misra, Z.L. Wu, M.T. Kush, and R. Gibala, Philo. Mag. A, 78 (1998) 533-550.
[77] H. Bei and E.P. George, Acta Mater., 53 (2005) 69-77.
[78] H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, and G.M. Pharr, Scripta Mater., 57 (2007) 397-400.
[79] S.S. Brenner, J. Appl. Lett., 27 (1956) 1484-1956.
[80] S.S. Brenner, J. Appl. Phys., 28 (1957) 1023-1026.
[81] A.H. Clauer, B.A. Wilcox, and J.P. Hirth, Acta Mater., 18 (1970) 367-379.
[82] G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties - A Handbook, MIT Press, Conbridge, Massachusetts, 1971.
[83] A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, 1953.
[84] R.W.K. Honeycombe, Plastic Deformation of Metals, Second ed., Edward Arnold, London, 1984.
[85] Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, and T.G. Nieh, Scripta Mater., 58 (2008) 890-893.
[86] J.J. Lewandowski, W.H. Wang, and A.L. Greer, Philo. Mag. Lett., 85 (2005) 77-87.
[87] R.D. Conner, R.B. Dandliker, and W.L. Johnson, Acta Mater., 46 (1998) 6089-6102.
[88] J.S.C. Jang, J.Y. Ciou, T.H. Hung, J.C. Huang, and X.H. Du, Appl. Phys. Lett., 92 (2008) 011930.
[89] Z.Z. Tang, J.H. Hsieh, S.Y. Zhang, C. Li, and Y.Q. Fu, Surf. Coat. Technol., 198 (2005) 110-113.
[90] O.J. Kwon, Y.K. Lee, S.O. Park, J.C. Lee, Y.C. Kim, and E. Fleury, Mater. Sci. Eng. A, 449-451 (2007) 169-171.
[91] Y.T. Shen, L.Q. Xing, and K.F. Kelton, Philo. Mag., 85 (2005) 3673-3682.
[92] G. He, Z. Bian, and G. L. Chen, Mater. Sci. Eng. A, (1999) 291-298.
[93] H.H. Liebermann and F.E. Luborsky, Acta Metall., 29 (1981) 1413.
[94] U. Ramamurty, M.L. Lee, J. Basu, and Y. Li, Scripta Mater., 47 (2002) 107-111.
[95] P. Murali and U. Ramamurty, Acta Mater., 53 (2005) 1467-1478.
[96] T. Egami and Y. Waseda, J. Non-cryst. Solids, 64 (1984) 113-134.
[97] F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in Metals, North-Holland, New York, 1988.
[98] W.C. Oliver and G.M. Pharr, J. Mater. Res., 19 (2004) 3-20.
[99] A.R. Yavari, A.L. Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M.D. Michel, and A. Kvick, Acta Mater., 53 (2005) 1611-1619.
[100] H.S. Chou, J.C. Huang, L.W. Chang, and T.G. Nieh, Appl. Phys. Lett., 93 (2008) 191901.
[101] X.J. Liu, G.L. Chen, H.Y. Hou, X. Hui, K.F. Yao, Z.P. Liu, and C.T. Liu, Acta Mater., 56 (2008) 2760-2769.
[102] Y. Hirotsu, T.G. Nieh, A. Hirata, T. Ohkubo, and N. Tanaka, Phys. Rev. B, 73 (2006) 012205.
[103] A. Inoue, H.M. Kimura, and T. Zhang, Mater. Sci. Eng., 294-296 (2000) 727-735.
[104] J. Sieetsma and B.J. Thijsse, Phys. Rev. B, 52 (1995) 3248-3255.
[105] D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton, Mater. Res. Soc. Bulletin, 32 (2007) 629-634.
[106] K.M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y.C. Jean, Acta Mater., 55 (2007) 3403-3411.
[107] C.A. Schuh, A.C. Lund, and T.G. Nieh, Acta Mater., 52 (2004) 5879-5891.
[108] B.G. Yo, J.H. Oh, Y.J. Kim, K.W. Park, J.C. Lee, and J.I. Jang, Intermetallics, 18 (2010) 1898-1901.
[109] D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, and R.H. Howell, J. Mater. Res., 17 (2002) 1153-1161.
[110] A. Castellero, B. Moser, D.I. Uhlenhaut, F.H. Dalla Torre, and J.F. Loffler, Acta mater., 56 (2008) 3777-3785.
[111] L. Charleux, S. Gravier, M. Verdier, M. Fivel, and J.J. Blandin, J. Mater. Res., 22 (2007) 525-532.
[112] M. Ohtsuki, R. Tamura, S. Takeuchi, S. Yoda, and T. Ohmura, Appl. Phys. Lett., 84 (2004) 4911-4913.
[113] J.J. Olivero and R.L. Longbothum, J. Quant. Spec. and Rad. Trans., 17 (1977) 233-236.
[114] M.C. Liu, J.C. Huang, H.S. Chou, Y.H. Lai, C.J. Lee, and T.G. Nieh, Scripta Mater., 61 (2009) 840-843.
[115] T.H. Fang and W.J. Chang, Microelec. Eng., 65 (2003) 231-238.
[116] F.K. Mante, G.R. Baran, and B. Lucas, Biomaerials, 20 (1999) 1051-1055.
[117] S. Benlekbir, Ph.D. Thesis, STEM-HAADF nanotomography:application to nanomaterials, French engineering university Lyon, 2009
[118] K.W. Park, J.I. Jang, M. Wakeda, Y.J. Shibutanic, and J.C. Lee, Scripta Mater., 57 (2007) 805-808.
[119] H.R. Wang, Y.F. Ye, Z.Q. Shi, X.Y. Teng, and G.H. Min, J. Non-cryst. Solids, 311 (2002) 36-41.
[120] H.S. Chou, J.C. Huang, and L.W. Chang, Surf. Coatings Technol., 205 (2010) 587-590.
[121] W.L. Johnson and K. Samwer, Phys. Rev. Lett., 95 (2005) 195501.
[122] D. Pan, A. Inoue, T. Sakurai, and M.W. Chen, Proc. Nat. Acad. Sci., 105 (2008) 14769-14772.
[123] S. Pauly, S. Gorantla, G.Wang, U. Kuhn, and J. Eckert, Nature Mater., 9 (2010) 473-477.
[124] D.C. Hofmann, J.Y. Suh, A.Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Nature, 451 (2008) 1085-1089.
[125] C.A. Volkert, A. Donohue, and F. Spaepen, J. Appl. Phys., 103 (2008) 083539.
[126] H.C. Cao and A.G. Evans, Acta Mater., 39 (1991) 2997-3005.
[127] Y. Wang, J. Li, A.V. Hamza, and T.W. Barbee Jr., Proc. Natl. Acad. Sci., 104 (2007) 11155-11160.
[128] T.G. Nieh and J. Wadsworth, Intermetallics, 16 (2008) 1156-1159.
[129] C.A. Volkert and E.T. Lilleodden, Philo. Mag., 86 (2006) 5567-5579.
[130] A.G. Evans, M.C. Lu, S. Schmauder, and M. Ruhle, Acta Metall., 34 (1986) 1643-1655.
[131] R.D. Conner, W.L. Johnson, N.E. Paton, and W.D. Nix, J. Appl. Phys., 94 (2003) 904-911.
[132] C. Fan, H.Q. Li, L.J. Kecskes, K.X. Tao, H. Choo, P.K. Liaw, and C.T. Liu, Phys. Rev. Lett., 96 (2006) 145506.
[133] T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, and S. Brennan, Intermetallics, 10 (2002) 1163-1166.
[134] S.Y. Kuan, H.S. Chou, M.C. Liu, X.H. Du, and J.C. Huang, Intermetallics, 18 (2010) 2453-2457.
[135] Y.M. Wang, A.M. Hodge, P.M. Bythow, T.W. Barbee Jr., and A.V. Hamza, Appl. Phys. Lett., 89 (2006) 081903.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.213.4.140
論文開放下載的時間是 校外不公開

Your IP address is 18.213.4.140
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code