Responsive image
博碩士論文 etd-0401115-061012 詳細資訊
Title page for etd-0401115-061012
論文名稱
Title
含固態微型參考電極之鈉/鈣/氯/銨/鉀多重離子感測微系統之開發
Development of EGFET-based Sodium/Calcium/Chloride/Ammonium/Potassium Multi-ion Sensing Microsystem with a Solid-state Reference Electrode
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-04-14
繳交日期
Date of Submission
2015-05-02
關鍵字
Keywords
微機電製程技術、微型離子感測器、微型參考電極晶片、延伸式閘極場效電晶體、多重離子感測陣列
micro ion sensor, multi-ion sensor array, EGFET, micro reference electrode, MEMS
統計
Statistics
本論文已被瀏覽 5882 次,被下載 57
The thesis/dissertation has been browsed 5882 times, has been downloaded 57 times.
中文摘要
隨著科技的進步,人們的生活也愈來愈便利,使得我們可以從世界各地獲取各式各樣的資訊;但也因為如此,各種文明病也不斷地發生在人們身上,生活上的便利常伴隨而來的是生活上的壓力,當壓力過大的時候,則會對人們的健康造成影響。人體中的離子濃度變化能直接反映人體健康與否的因素,過高或過低的許多離子濃度都分別顯示會與許多疾病相關。所以如果能即時監控人體中的許多離子濃度,則對於許多疾病的預防及治療將會有很大的助益。
為了發展出一種可快速的同時檢測人體中許多重要離子濃度的新型微系統,數個不同的微型離子感測器必須整合到同一片晶片上,並且搭配一個共用的微型參考電極晶片,如此方能進一步結合訊號讀取電路而開發出可攜式微型離子檢測系統。本論文運用微機電製程技術開發出五個位於同一晶片上的延伸式閘極場效電晶體,並分別將五種不同的離子感測薄膜(分別為鈉、鈣、氯、銨及鉀離子)分別沉積於閘極感測區域上,以完成單晶片式多重離子感測陣列之開發;其次,為了達成整個離子感測系統的微型化及可攜式化,所設計與製作完成的鈉/鈣/氯/銨/鉀多重離子感測陣列晶片還需要整合另一個微型參考電極晶片之開發。本論文運用微機電製程技術所開發之微型參考電極晶片的尺寸僅僅只有9 mm (W)× 6 mm(L) × 1 mm (H),該晶片包含鈦/銀/氯化銀之電極晶片與具備塗注有氯化鉀凝膠於背面矽腔體之封裝晶片兩大部分;另一方面,本論文所設計開發的延伸式閘極場效電晶體元件之寬長比1000 μm/10 μm,且其感測區域面積為1 mm × 1 mm,而五個離子感測器可以整合在一個1.3 cm (W) × 1.1 cm (L) × 1 mm (H)的矽晶片上。
根據量測結果顯示,本論文所開發之鈉/鈣/氯/銨/鉀多重離子感測陣列具有高感測靈敏度(鈉:38 mV/pNa;鈣:36.7 mV/pCa;氯:56.7 mV/pCl;銨:323 mV/ pNH4 at pNH4 1~1.3、22.2 mV/ pNH4 at pNH4 1.3~4;鉀:48 mV/pK)、高感測線性度(鈉:0.985;鈣:0.941;氯:0.932;銨:0.999 at pNH4 1~1.3、0.990 at pNH4 1.3~4;鉀:99.9%)、低遲滯電壓(鈉:13 mV at pNa 2.6;鈣:10 mV at pCa 2.6;氯:7 mV at pCl 1.3;銨:15 mV at pNH4 1.3;鉀:6 mV at pK 2)、高使用壽命(大於30天)以及低反應時間(約180秒)等優異特性,非常適合應用於可攜式即時檢測之多重離子感測微系統中。另一方面,本論文所開發之鈦/銀/氯化銀/氯化鉀凝膠之微型參考電極晶片具有高穩定性(經三萬秒測試時間,電位僅飄移2.3 mV)的特性,其性能已趨近於商用之參考電極,故可提供多重離子感測陣列晶片一個不受待測溶液離子變化影響之穩定參考電位。
Abstract
With the advance of science and technology, our life has become more and more convenient. We can receive large amount of information from around the world. But also because of this, a lot of civilization diseases appears in modern life (e.g., the pressure of life often accompanied by the convenient life) and will result in poor health conditions of human body. The concentration of ions in human blood not only respond directly to health condition, but also can obtain symptoms of different diseases by detecting it.
In order to develop a novel microsystem that can detect the concentration of different ions rapidly at the same time, several different ion sensors must be integrated on one chip. A common micro reference electrode is also needed to be combined together to develop the portable micro multi-ion detection system. Five extended-gate field-effect transistor (EGFET) devices are fabricated on one chip by utilizing micro-electromechanical systems (MEMS) in this thesis. Five different ion selective membranes (ISMs) which can adsorb the appointed ions are coated on each separate gate metal electrodes of the EGFETs to develop the sodium, calcium, ammonium, chloride and potassium ion sensors array. To obtain the miniaturization and portable ion detection system, a planar solid-state Ti/Ag/AgCl/KCl-gel reference electrode (μRE) is also developed in this study. The size of the proposed μRE also fabricated by utilizing MEMS is only 9 mm (W) × 6 mm (L) × 1 mm (H). The μRE includes two parts: a Ti/Ag/AgCl electrode chip and a packaging chip with the KCl-gel injected on the backside silicon cave. On the other hand, the channel width/length ratio of the implemented EGFET device is 1000 μm/10 μm and the extended gate sensing area is 1 mm × 1 mm. Five EGFET devices are integrated on the silicon chip with a volume of 1.3 cm (W) × 1.1 cm (L) × 1 mm (H).
Based on the measurement results, the proposed multi-ion sensors array have excellent characteristics with high sensitivity (Sodium:38 mV/pNa, Calcium:36.7 mV/pCa, Chloride:56.7 mV/pCl, Ammonium:323 mV/ pNH4 at pNH4 1~1.3 and 22.2 mV/ pNH4 at pNH4 1.3~4, Potassium:48 mV/pK), high sensing linearity (Sodium:0.985, Calcium:0.941, Chloride:0.932, Ammonium:0.999 at pNH4 1~1.3 and 0.990 mV/ pNH4 at pNH4 1.3~4, Potassium:99.9%), low hysteresis voltage (Sodium:13 mV at pNa 2.6, Calcium:10 mV at pCa 2.6, Chloride:7 mV at pCl 1.3, Ammonium:15 mV at pNH4 1.3, Potassium:6 mV at pK 2), long life time (more than 30 days) and short response time (about 180 seconds). It is very suitable for the application of the portable multi-ions detection microsystem. Besides, the implemented Ti/Ag/AgCl/KCl-gel μRE has good characteristics with low drift voltage, which are almost the same as that of the commercial reference electrode. Hence, the proposed μRE can provide the multi-ions sensors array with a stable reference potential.
目次 Table of Contents
論文審定書 i
誌謝 iii
中文摘要 iv
Abstract vi
Contents ix
List of Figures xii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Ion Sensors 3
1.2.1 Ion-selective Electrode 4
1.2.2 Ion-sensitive Field-effect Transistor 6
1.2.3 Extended-gate Field-effect Transistor 7
1.3 Solid-state Reference Electrode 8
Chapter 2 Theory Description 11
2.1 EIS Structure 11
2.2 Double Layer 14
2.3 Site-binding Model 17
Chapter 3 Development of the EGFET-based Multi-ion Sensor 23
3.1 Layout Design of the Proposed EGFET Device 25
3.2 Fabrication of the Proposed EGFET Device 27
3.3 Encapsulation of the silicon-based packaging chip 30
3.4 Preparation of ISMs 32
3.4.1 ISM of Sodium Ion Sensor 32
3.4.2 ISM of Calcium Ion Sensor 32
3.4.3 ISM of Chloride Ion Sensor 32
3.4.4 ISM of Ammonium Ion Sensor 32
3.4.5 ISM of Potassium Ion Sensor 33
3.5 Fabrication of the Planar Solid-state Reference Electrode 33
3.6 Measurement Setup 39
Chapter 4 Results and Discussion 41
4.1 Characterization of the EGFET Device 42
4.2 Characterization of the Planar μRE 43
4.3 Characterization of the EGFET-based Multi-ion Sensor 47
4.3.1 Sensitivity and Linearity 47
4.3.2 Hysteresis 54
4.3.3 Selectivity 58
4.3.4 Lifetime 59
Chapter 5 Conclusions and Future Works 62
5.1 Conclusions 62
5.2 Future Works 63
Reference 65
Personal Publication 76
參考文獻 References
[1] G. J. Kost, “Knowledge optimization theory and application to point-of-care testing,” Stud. Health Technol. Inform. 62, 189-190 (1999).
[2] V. Mudgal, N. Madaan, A. Mudgal, R. B. Singh and S. Mishra, “Effect of Toxic Metals on Human Health,” The Open Nutraceuticals J. 3, 94-99 (2010).
[3] H. B. Glasgow, J. M. Burkholder, R. E. Reed, A. J. Lewitus and J. E. Kleinman, “Real-time remote monitoring of water quality: a review of current applications, and advancements in sensor, telemetry, and computing technologies,” J. Exp. Mar. Biol. Ecol. 300, 409-448 (2004).
[4] N. W. T. Quinn, R. Ortega, P. J. A. Rahilly and C. W. Royer, “Use of environmental sensors and sensor networks to develop water and salinity budgets for seasonal wetland real-time water quality management,” Environ. Modell. Softw. 25, 1045-1058 (2010).
[5] M. S. Frant, “History of Early Commercialization of Ion-selective Electrodes,” Analyst 119, 2293-2301 (1994).
[6] P. Bergveld, “Development of an Ion-sensitive Solid-state Device for Neurophysiological Measurements,” IEEE Trans. Biomed. Eng. BME-17, 70-71 (1970).
[7] P. Bergveld, “Development, operation and application of the ion-sensitive field effect trnsistors as a tool for electrophysiology,” IEEE Trans. Biomed. Eng. BME-19, 342-351 (1972).
[8] P. Bergveld, “Thirty Years of ISFETOLOGY What Happened in the Past 30 years and What May Happen in the Next 30 Years,” Sens. Actuat. B Chem. 88, 1-20 (2003).
[9] C. Jimenez-Jorquera, J. Orozco and A. Baldi, “ISFET Based Microsensors for Environmental Monitoring,” Sensors 10, 61-83 (2010).
[10] J. van der Spiegel, I. Lauks, P. Chan and D. Babic, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-species Microprobe,” Sens. Actuat. 4, 291-298 (1983).
[11] H. Ecken, S. Ingebrandt, M. Krause, D. Richter, M. Hara and A. Offenhausser, “64-Channel extened gate electrode arrays for extracellular signal recording,” Electrochim. Acta 48, 3355–3362 (2003).
[12] M. F. S. Teixeira, B. H. Freitas, P. M. Seraphim, L. O. Salmazo, M. A. Nobre and S. Lanfredi, “Development of an electrochemical sensor for potassium ions based on KSr2Nb5O15 modified electrode,” Procedia Chem. 1, 293-296 (2009).
[13] F. Sauvage, E. Baudrin and J. M. Tarascon, “Study of the potentiometric response towards sodium ions of Na0.44−xMnO2 for the development of selective sodium ion sensors,” Sens. Actuat. B Chem. 120, 638-644 (2007).
[14] A. Seki, K. Motoya, S. Watanabe and I. Kubo, “Novel sensors for potassium, calcium and magnesium ions based on a silicon transducer as a light-addressable potentiometric sensor,” Anal. Chim. Acta 382, 131-136 (1999).
[15] R. C. Faria and L. O. S. Bulhões, “Hydrogen ion selective electrode based on poly(1-aminoanthracene) film,” Anal. Chim. Acta 377, 21-27 (1998).
[16] H. Karami, M. F. Mousavi and M. Shamsipur, “Flow injection potentiometry by a new coated graphite ion-selective electrode for the determination of Pb2+,” Talanta 60, 775-786 (2003).
[17] M. Trojanowicza, P. W. Alexander and D. B. Hibbert, “Flow injection potentiometric determination of free cadmium ions with a cadmium ion-selective electrode,” Anal. Chim. Acta 370, 267-278 (1998).
[18] R. Zielińska E. Mulik, A. Michalska, S. Achmatowicz and M. Maj-Zurawska, “All-solid-state planar miniature ion-selective chloride electrode,” Anal. Chim. Acta 451, 243-249 (2002).
[19] S. Wakida, M. Yamane and K. Hiiro, “A novel Urushi matrix chloride ion-selective field effect transistor,” Talanta 35, 326-328 (1988).
[20] K. Tsukada, M. Sebata, Y. Miyahara and H. Miyagi, “Long-life multiple-ISFETS with polymeric gates,” Sens. Actuat. 18, 329-336 (1989).
[21] S. Ingebrandt, C. K. Yeung, W. Staab, T. Zetterer, A. Offenhausser, “Backside contacted field effect transistor array for extracellular signal recording,” Biosens. Bioelectron. 18, 429-435 (2003).
[22] Determination of the selectivity coefficient, N. Abramova and C. Dominguez, “Investigation of chloride sensitive ISFETs with different membrane compositions suitable for medical applications,” Anal. Chim. Acta 514, 99-106 (2004).
[23] B. H. van der Schoot and P. Bergveld, “ISFET based enzyme sensors,” Biosensors 3, 161-186 (1987).
[24] T. Katsube, M. Katoh, H. Maekawa and M. Hara, “Stabilization of an FET glucose sensor with the thermophilic enzyme glucokinase,” Sens. Actuat. B 1, 504-507 (1990).
[25] I.-Y. Huang and R.-S. Huang, “Fabrication and Characterization of a New Planar Solid-state Reference Electrode for ISFET Sensors,” Thin Solid Films 406, 255-261 (2002).
[26] J. van der Spiegel I. Lauks, P. Chan, D. Babic et al., “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sens. Actuat. 4, 291-298 (1983).
[27] D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuat. B Chem. 117, 488-494 (2006).
[28] E. M. Guerra, G. R. Silva and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method,” Solid State Sci. 11, 456-460 (2009).
[29] L.-T. Yin, Y.-T. Lin, Y.-C. Leu and C.-Y. Hu, “Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors,” Sens. Actuat. B Chem. 148, 207-213 (2010).
[30] A. Das, D. H. Ko, C.-H. Chen, L.-B. Chang, C.-S. Lai, F.-C. Chu, L. Chow and R.-M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sens. Actuat. B Chem. 205, 199-205 (2014).
[31] C.-H. Kao, H. Chen, L.-T. Kuo, J.-C. Wang, Y.-T. Chen, Y.-C. Chu, C.-Y. Chen, C.-S. Lai, S. W. Chang and C. W. Chang, “Multi-analyte biosensors on a CF4 plasma treated Nb2O5-based membrane with an extended gate field effect transistor structure,” Sens. Actuat. B Chem. 194, 419-426 (2014).
[32] P.-C. Yao, J.-L. Chiang and M.-C. Lee, “Application of sol–gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor,” Solid State Sci. 28, 47-54 (2014)
[33] C.-M. Yang, I.-S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuat. B Chem. 187, 274-279 (2013).
[34] C. H. Kao, H. Chen and C.-Y. Huang, “Effects of Ti addition and annealing on high-k Gd2O3 sensing membranes on polycrystalline silicon for extended-gate field-effect transistor applications,” Appl. Surf. Sci. 286, 328-333 (2013).
[35] H.-H. Li, C.-E. Yang, C.-C. Kei, C.-Y. Su, W.-S. Dai, J.-K. Tseng, P.-Y. Yang, J.-C. Chou and H.-C. Cheng, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor,” Thin Solid Films 529, 173-176 (2013).
[36] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun and S.-K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET,” Mater. Chem. Phys. 70, 12-16 (2001).
[37] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun and S.-K. Hsiung, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate,” Sens. Actuat. B Chem. 71, 106-111 (2000).
[38] D.-S. Kim, J.-E. Park, J.-K. Shin, P. K. Kim, G. Lim and S. Shoji, “An extended gate FET-based biosensor integrated with a Si microfluidic channel for detection of protein complexes,” Sens. Actuat. B Chem. 117, 488-494 (2006).
[39] Y.-S. Chiu, C.-T. Lee, L.-R. Lou, S.-C. Ho and C.-T. Chuang, “Wide linear sensing sensors using ZnO:Ta extended-gate field-effect-transistors,” Sens. Actuat. B Chem. 188, 944-948 (2013).
[40] D. Harame, J. Shott, J. Plummer and J. Meindl, “An implantable ion sensor transducer,” Tech. Dig. IEEE International Electron Devices Meeting, Washington, USA, pp. 467-470, 1981.
[41] O. Prohaska, P. Goiser, A. Jackomowicz, F. Kohl and F. Olcaytug, “Miniaturized chamber-type electrochemical cells for medical application,” Proc. 2nd International Meeting on Chemical Sensors, Bordeaux, France, pp. 652-655, 1986.
[42] R. L. Smith and D. C. Scott, “An integrated sensor for electrochemical measurements,” IEEE Trans. Biomed. Eng. BME-33, 83-90 (1986).
[43] S. Yee, H. Jin and L. K. C. Lam, “Miniature liquid junction reference electrode with micromachined silicon cavity,” Sens. Actuat. 15, 337-345 (1988).
[44] A. van den Berg, A. Grisel, H. H. van den Vlekkert and N. F. D. Rooij, “A micro-volume open liquid-junction reference electrode for pH–ISFETs,” Sens. Actuat. B Chem. 1, 425-432 (1990).
[45] K. Eine, S. Kjelstrup, K. Nagy and K. Syverud, “Towards a solid state reference electrode,” Sens. Actuat. B Chem. 44, 381-388 (1997).
[46] D. Desmond, B. Lane, J. Alderman, J. D. Glennon, D. Diamond and D. W. M. Arrigan, “Evaluation of miniaturised solid state reference electrodes on a silicon based component,” Sens. Actuat. B Chem. 44, 389-396 (1997).
[47] M. Ciobanu, J. P. Wilburn, N. I. Buss, P. Ditavong and D. A. Lowy, “Miniaturized reference electrodes based on Ag/AgiX internal reference elements. I. manufacturing and performance,” Electroanal. 14, 989-997 (2002).
[48] M. Ciobanu, J. P. Wilburn and D. A. Lowy, “Miniaturized reference electrodes. II. use in corrosive, biological, and organic media,” Electroanal. 16, 1351-1358 (2004).
[49] J. P. Wilburn, M. Ciobanu, N. I. Buss, D. R. Franceschetti and D. A. Lowy, “Miniaturized reference electrodes with stainless steel internal reference elements,” Anal. Chim. Acta 511, 83-89 (2004).
[50] J. P. Wilburn, M. Ciobanu and D. A. Lowy, “Characterization of acrylic hydrogels by open circuit potential monitoring,” J. Appl. Electrochem. 34, 729-734 (2004).
[51] A. Kisiel, H. Marcisz, A. Michalska and K. Maksymiuk, “All-solid-state reference electrodes based on conducting polymers,” Analyst 130, 1655-1662 (2005).
[52] S. K. Kim, H. Lim, T. D. Chung and H. C. Kim, “A miniaturized electrochemical system with a novel polyelectrolyte reference electrode and its application to thin layer electroanalysis,” Sens. Actuat. B Chem. 115, 212-219 (2006).
[53] J. Ghilane, P. Hapiot and A. J. Bard, “Metal/Polypyrrole quasi-reference electrode for voltammetry in nonaqueous and aqueous solutions,” Anal. Chem. 78, 6868-6872 (2006).
[54] J.-H. Han, S. Park, H. Boo, H. C. Kim, J. Nho and T. D. Chung, “Solid-state reference electrode based on electrodeposited nanoporous platinum for microchip,” Electroanal. 19, 786-792 (2007).
[55] I.-Y. Huang and R.-S. Huang, “A pH sensor with integrated planar reference electrode,” Tech. Dig. 10th International Conference on Solid-State Sensors and Actuators (Transducers'99), Sendai, Japan, pp. 644-647, 1999.
[56] I.-Y. Huang, R.-S. Huang and L.-H. Lo, “Improvement of integrated Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications,” Sens. Actuat. B Chem. 94, 53-64 (2003).
[57] H. Suzuki, A. Hiratsuka, S. Sasaki and I. Karube, “Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability,” Sens. Actuat. B Chem. 46, pp. 104-113 (1998).
[58] H. Suzuki, T. Hirakawa, S. Sasaki and I. Karube, “Micromachined liquid-junction Ag/AgCl reference electrode,” Sens. Actuat. B Chem. 46, 146-154 (1998).
[59] H. Suzuki, H. Ozawa, S. Sasaki and I. Karube, “A novel thin-film Ag/AgClanode structure for microfabricated Clark-type oxygen electrode,” Sens. Actuat. B Chem. 53, 140-146 (1998).
[60] R. E. G. van Hal, P. Bergveld, J. F. J. Engbersen and D. N. Reinhoudt, “Characterization and testing of polymer-oxide adhesion to improve the packaging reliability of ISFETs,” Sens. Actuat. B Chem. 23, 17-26 (1995).
[61] A. Bokulich, “Maxwell, Helmholtz, and the unreasonable effectiveness of the method of physical analogy,” Stud. Hist. Phylos. Sci. Part A 50, 28-37 (2015)
[62] K. B. Oldham, “A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface,” J. Electroanal. Chem. 613, 131-138 (2008).
[63] D. E. Yates, S. Levine and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans. 1, 1807-1818 (1974).
[64] R. P. Buck and E. Lindner, “Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendation 1994),” Pure Appl. Chem. 66, 2527-2536 (1994).
[65] Y. Umezawa, K. Umezawa and H. Sato, “Selectivity coefficients for ion-selective electrodes: recommended methods for reporting KpotA;B values,” Pure Appl. Chem. 67, 507-518 (1995).
[66] Z. M. Baccar, N. J. Renault, C. Martelet, H. Jaffrezic, G. Marest and A. Plantier, “Sodium microsensors based on ISFET/REFET prepared through an ion- implantation process fully compatible with a standard silicon technology,” Sens. Actuat. B Chem. 32, 101-105 (1996).
[67] S.-H. Wang, T.-C. Chou and C.-C. Liu, "Development of a solid-state thick film calcium ion-selective electrode", Sens. Actuat. B Chem. 96, 709-716 (2003).
[68] A. Bratov, N. Abramova, C. Dominguez and A. Baldi, “Ion-selective field effect transistor (ISFET)-based calcium ion sensor with photocured polyurethane membrane suitable for ionised calcium determination in milk,” Analytica. Chimica. Acta. 408, 57-64 (2000).
[69] G. de Vera, M. A. Climenta, C. Antónb, A. Hidalgob and C. Andradeb, “Determination of the selectivity coefficient of a chloride ion selective electrode in alkaline media simulating the cement paste pore solution,” J. Electroanal. Chem. 639, 43-49 (2010).
[70] W.-Y. Chung, K.-C. Chang, D.-Y. Hong, C. Cheng. F. Cruza, T.-S. Liu, D. G. Pijanowska, M. Dawgul, W. Torbicz, C. -H. Yang, P. B. Grabiec, B. Jarosewicz and J.-L. Chiang, “An Electronic Tongue System Design Using Ion Sensitive Field Effect Transistors and Their Interfacing Circuit Techniques,” UGIM 2008 (University Government Idustry Micro/nano) Symposium, July 13-16, 2008, Louisville, KY.
[71] J. S. Benco, H. A. Nienaber and W. G. McGimpsey, “Synthesis of an Ammonium Ionophore and Its Application in a Planar Ion-Selective Electrode,” Anal. Chem. 75, 152-156 (2003).
[72] N. Abramova, A. Ipatov, S. Levichev, A. Bratov, “Integrated multi-sensor chip with photocured polymer membranes containing copolymerised plasticizer for direct pH, potassium, sodium and chloride ions determination in blood serum,” Talanta 79, 984-989 (2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code