Responsive image
博碩士論文 etd-0404105-150809 詳細資訊
Title page for etd-0404105-150809
論文名稱
Title
新型IGBT電流感測器等效電路模型
A New Equivalent Circuit Model of IGBT Current Sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-03-25
繳交日期
Date of Submission
2005-04-04
關鍵字
Keywords
電力電子、感測器
Sensors, Power semiconductor devices
統計
Statistics
本論文已被瀏覽 5742 次,被下載 3325
The thesis/dissertation has been browsed 5742 times, has been downloaded 3325 times.
中文摘要
本文建構了一個結合多個MOS的新等效電路模型來模擬絕緣閘極雙載子電晶體 (IGBT) 電流感測器。本模型可以同時考慮IGBT內電子和電洞電流,以及MOS內摻雜濃度的變化。本模擬利用SPICE3的演算模擬三種電流感測器-活動性、雙載子電晶體和金氧半導體的電性, 所得結果與電流感測器測試結果相當吻合,其平均誤差只有4.4%。
Abstract
A new equivalent circuit model for IGBT is presented. It takes into account both electron and hole conduction in sensors and is incorporated with SPICE3 for the simulation of three types of current sensors, namely active, bipolar, and MOS sensors. It adopts a multi-MOS model to include the doping variation in the MOS body. The results agree well with the current sensing measurements within an average error of 4.4%.
目次 Table of Contents
CHAPTER 1. INTRODUCTION………………………… 1
CHAPTER 2. DEVICE STRUCTURES……………….… 5
2.1 IGBT………………………………………………….. 5
2.2 IGBT current sensors……………………………….. 8
CHAPTER 3. PROPOSED IGBT MODEL….…………. 11
3.1 The Poisson Equation…………………………..…… 17
3.2 The Continuity Equations……………………….…. 19
3.3 The IGBT Current Sensors Equivalent Circuit…. 23
CHAPTER 4. SIMULATION RESULTS……………….. 28
4.1 IGBT ………………………………………………… 28
4.2 IGBT current sensors……………………………….. 37
CHAPTER 5. CONCLUSION ………………………….. 41
CHAPTER 6. ADVANCED APPLICATIONⅠ:
3D PHYSICAL MODEL AND SIMULATION FOR DVI CONNECTOR AT HIGH FREQUENCY……………………… 42
6-1 Introduction……………………………………….. 43
6-2 3D Connector Model and Spicelink……………… 45
6-3 Modeling—Lumped LC Elements………………... 47
6-4 Electrical and Materials Parameters……………. 54
6-5 Results and Discussion…………………………… 58
6-6 Conclusions ………………………………………. 60

CHAPTER 7. ADVANCED APPLICATIONⅡ:
A BETTER TECHNIQUE USING MULTI-SEGMENT MODELING AND ANALYSIS OF HIGH DENSITY AND HIGH SPEED CONNECTORS……………………………………………. 61
7-1 INTRODUCTION………………………………… 62
7-2 HIGH DENSITY AND HIGH SPEED CONNECTOR…………………………………….. 65
7-3 TDR SYSTEM AND MEASUREMENT PRINCIPLE……………………………………… 67
7-4 PARAMETER EXTRACTION……………………. 69
7-5 MODELING……………………………………….. 77
7-6 EXPERIMENTAL RESULTS……………………. 80
7-7 CONCLUSIONS…………………………………….. 86


REFERENCES……………………………………………… 88
Appendix A Source code………………………….…… 100
Appendix B Paper list………………………….……… 108
參考文獻 References
[1] J. T. Hsu and K. D. T. Ngo, “Behavioral modeling of the IGBT using the Hammerstein configuration,” IEEE Trans. Power Electron., vol. 11, pp. 746–754, Nov. 1996.
[2] B. J. Baliag, “Analysis of insulated gate transistor turn-off characteristics,” IEEE Electron Device Lett., vol. EDL-6, pp. 74–77, Feb. 1985.
[3] A. R. Hefner, “Analytical modeling of device-circuit interactions for the power insulated gate bipolar transistor (IGBT),” Conf. Rec.—IAS Annu. Meeting (IEEE Ind. Appl. Soc.), vol. 35, no. 6, pp. 606–614, 1988.
[4] A. R. Hefner, “Dynamic electro-thermal model for the IGBT,” IEEE Trans. Ind. Applicat., vol. 30, pp. 364–405, Mar./Apr. 1994.
[5] A. R. Hefner and D. M. Diebolt, “Experimentally verified IGBT model implemented in the Saber circuit simulator,” IEEE Trans. Power Electron., vol. 9, pp. 532–542, Sept. 1994.
[6] D. S. Kuo, C. Hu, and S. P. Sapp, “An analytical model for the power bipolar-MOS transistor,” Solid-State Electron., vol. 29, no. 12, pp. 1229–1237, 1986.
[7] H. Dettmer, W. Fichtner, F. Bauer, and T. Stockmeier, “Punch-through IGBTs with homogeneous N-base operation at 4 kV line voltage,” in Proc. Int. Symp. Power Semicon. Devices ICs (ISPSD), pp. 492–496, 1995.
[8] Databook, European power-semiconductor and electronics company (EUPEC), 1998.
[9] Databook, International Rectifier (IR), 1997.
[10] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love, and N. Zommer, “Insulated gate rectifier (IGR): A new power switching device,” in Proc. Tech. Dig. IEDM, pp. 264–267, 1982.
[11] D. S. Kuo, J. Y. Choi, D. Giandomenico, C. Hu, S. P. Sapp, K. A. Sassaman, and R. Bregar, “Modeling the turn-off characteristics of the bipolar-MOS transistor,” IEEE Electron Device Lett., vol. EDL-6, pp. 211–214, May 1985.
[12] B. J. Baliga, Modern Power Devices. New York: Wiley, pp. 353–387, 1987.
[13] J. G. Fossum, R. J. McDonald, and M. A. Shibib, “Network representations of LIGBT structures for CAD of power integrated circuits,” IEEE Trans. Electron Devices, vol. 35, pp. 507–514, Apr. 1988.
[14] A. R. Hefner, “Improved understanding for the transient operation of the power insulated gate bipolar transistor (IGBT),” in Proc. PESC Rec.—IEEE Power Electron. Spec. Conf., vol. 1, pp. 303–313, 1989.
[15] A. R. Hefner, “An investigation of the drive circuit requirements for the power insulated gate bipolar transistor (IGBT),” in Proc. PESC Rec.—IEEE Power Electron. Spec. Conf., pp. 126–137, 1990.
[16] A. R. Hefner, “Analytical modeling of device-circuit interactions for the power insulated gate bipolar transistor (IGBT),” IEEE Trans. Ind. Appl., vol. 26, pp. 995–1005, Nov./Dec. 1990.
[17] A. R. Hefner, “An investigation of the drive circuit requirements for the power insulated gate bipolar transistor (IGBT),” IEEE Trans. Power Electron., vol. 6, pp. 208–219, Apr. 1991.
[18] A. R. Hefner, “An improved understanding for the transient operation of the power insulated gate bipolar transistor (IGBT),” IEEE Trans. Power Electron., vol. 5, pp. 459–468, Oct. 1990.
[19] Z. Shen and T. P. Chow, “An analytical IGBT model for power circuit simulation,” in Proc. 3rd Int. Symp. Power Semicond. Devices ICs ISPSD, pp. 79–82, 1991.
[20] C. S. Mitter, A. R. Hefner, D. Y. Chen, and F. C. Lee, “Insulated gate bipolar transistor (IGBT) modeling using IG-SPICE,” in Proc. 91 IEEE Ind. Appl. Soc. Annu. Meeting, pp. 1515–1521, 1992.
[21] A. R. Hefner and D. M. Diebolt, “An experimentally verified IGBT model implemented in the Saber circuit simulator,” in Proc. PESC Rec.—IEEE Power Electron. Spec. Conf., pp. 10–19, 1991.
[22] R. Kraus and K. Hoffmann, “Analytical model of IGBTs with low emitter efficiency,” in Proc. Int. Symp. Power Semicond. Devices ICs, pp. 30–34, 1993.
[23] Z. Shen and R. P. Chow, “Modeling and characterization of the insulated gate bipolar transistor (IGBT) for SPICE simulation,” in Proc. BN: Int. Symp. Power Semicond. Devices ICs, pp. 165–170, 1993.
[24] S. M. Clemente and D. A. Dapkus, “IGBT models account for switching and conduction losses,” Power Conv. Intell. Motion, vol. 19, no. 8, pp. 51–54, Aug. 1993.
[25] Y. Y. Tzou and L. J. Hsu, “Practical SPICE macro model for the IGBT,” IECON Proc. (Ind. Electron. Conf.), vol. 2, pp. 762–766, 1993.
[26] F. F. Protiwa, O. Apeldoorn, and N. Groos, “New IGBT model for PSpice,” IEE Conf. Publ., vol. 2, no. 377, pp. 226–231, 1993.
[27] B. Fatemizadeh and D. Silber, “A versatile electrical model for IGBT including thermal effects,” in Proc. PESC Rec.—IEEE Annu. Power Electron. Spec. Conf., pp. 85–92, 1993.
[28] D. Metzner, “Modular concept for the circuit simulation of bipolar power semiconductors,” IEE Conf. Publ., vol. 2, no. 377, pp. 15–20, 1993.
[29] O. Kvien, T. M. Undeland, and T. Rogne, “Models for simulation of diode (and IGBT) switchings which include the effect of the depletion layer,” in Proc. Conf. Rec.—IAS Annu. Meeting (IEEE Ind. Appl. Soc.), vol. 2, 1993, pp. 1190–1195.
[30] H. S. Kim, Y. H. Cho, S. D. Kim, Y. I. Choi, and M. K. Han, “Parameter extraction for the static and dynamic model of IGBT,” Tech. Rep., 1993.
[31] M. Andersson, P. Kuivalainen, and H. Pohjonen, “Circuit simulation models for MOS-gated power devices: Application to the simulation of an electronics lamp ballast circuit,” in Proc. Conf.—IEEE Applicat. Power Electron. Expo—APEC, pp. 498–503, 1993.
[32] J. M. Li, D. Lafore, J. Arnould, and B. Reymond, “Analysis of switching behavior of the power insulated gate bipolar transistor by soft modeling,” in Proc. EPE’93, pp. 220–225, 1993.
[33] J. B. Kuo and C. S. Chiang, “Turn-on transient analysis of a power IGBT with an inductive load in series with a resistive load,” Solid-State Electron., vol. 37, no. 9, pp. 1673–1676, Sept. 1994.
[34] D. Metzner, T. Vogler, and D. Schroeder, “Modular concept for the circuit simulation of bipolar power semiconductors,” IEEE Trans. Power Electron., vol. 9, pp. 506–513, Sept. 1994.
[35] H. Goebel, “Unified method for modeling semiconductor power devices,” IEEE Trans. Power Electron., vol. 9, pp. 497–505, Sept. 1994.
[36] V. A. Kuzmin, S. N. Yurkov, and L. I. Pomortseva, “Analysis and simulation of insulated gate bipolar transistor with buffer N’-layer,” in Proc. IEE Conf. Publ., Power Electron. Variable-Speed Drives, vol. 399, pp. 24–28, 1994.
[37] B. Allard, H. Morel, C. C. Lin, H. Helali, and J. P. Chante, “Rules for deriving basic semiconductor region models,” in Proc. PESC Rec.—IEEE Annu. Power Electron. Spec. Conf., pp. 44–51, 1994.
[38] D. Kovac and I. Kovacova, “New switching simulation models of power electronic parts as IGBT, MOSFET and power diode,” IECON Proc. (Ind. Electron. Conf.), vol. 1, pp. 124–128, 1994.
[39] K. Besbes, “Modeling an insulated gate bipolar transistor using bond graph techniques,” Int. J. Numer. Modeling: Electron. Networks, Devices Fields, vol. 8, no. 1, pp. 51–60, Jan./Feb. 1995.
[40] P. Spanik, B. Dobrucky, and R. Gubric, “Dynamic modeling of IGBT with reverse diode modeling,” Meas. Contr. A: General Phys., Electron., Electr. Eng., vol. 59, no. 1–3, pp. 23–32, 1995.
[41] F. Mihalic, K. Jezernik, D. Krischan, and M. Rentmeister, “IGBT SPICE model,” IEEE Trans Ind. Electron., vol. 42, pp. 98–105, Feb. 1995.
[42] C. Alonso and T. A. Meynard, “Simulation of short-circuit phenomena in IGBT,” in Proc. IEE Colloq. (Dig.), p. 10/1–5, 1994.
[43] A. R. Hefner, “Modeling buffer layer IGBTs for circuit simulation,” IEEE Trans. Power Electron., vol. 10, pp. 111–123, Mar. 1995.
[44] C. Wong, “EMTP modeling of IGBT dynamic performance for power dissipation estimation,” in Proc. Conf. Rec.—IAS Annu. Meeting (IEEE Ind. Applicat. Soc.), vol. 3, pp. 2656–2662, 1995.
[45] F. Udrea and G. A. J. Amaratunga, “A unified analytical model for carrier dynamics in trench insulated gate bipolar transistor (TIGBT),” in Proc. IEEE Int. Symp. Power Semiconductor Devices ICs (ISPSD), pp. 190–200, 1995.
[46] , “Steady-state analytical model the trench insulated gate bipolar transistor,” in Proc. Int. Semiconductor Conf., CAS, pp. 49–52, 1995.
[47] L. Sabesan, P. Mawby, M. Towers, K. Board, and P. Waind, “Analysis of nonpunch through trench emitter insulated gate bipolar transistor (IGBT),” in Proc. IEEE Region 10 Annu. Int. Conf./TENCON, pp. 420–423, 1995.
[48] W. Feiler, W. Gerlach, and U. Wiese, “Two-dimensional analytical models of the carrier distribution in the on-state of the IGBT,” Solid-State Electron., vol. 38, no. 10, pp. 1781–1790, 1995.
[49] Y. Kawaguchi, Y. Terazaki, and A. Nakagawa, “Subcircuit spice modeling of a lateral IGBT for high voltage power IC design,” in Proc. 1995 Int. Symp. Power Semicond. Devices ICs, pp. 346–349, 1995.
[50] A. F. Petrie and C. Hymowitz, “SPICE model accurately simulates IGBT parameters,” Power Conversion Intell. Motion, vol. 22, no. 1, pp. 40–51, Jan. 1996.
[51] B. Fatemizadeh, G. Tchouangue, and D. Silber, “User-optimized electro-thermal IGBT model for power electronic circuit simulation in the circuit simulator ELDO,” in Proc. IEEE Appl. Power Electron. Conf. Expo—APEC, vol. 1, 1996, pp. 81–87. 1266 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 15, NO. 6, NOVEMBER 2000.
[52] S. Musumeci, A. Raciti, M. Sardo, F. Frisina, and R. Letor, “PT-IGBT PSpice model with new parameter extraction for life-time and epy dependent behavior simulation,” in Proc. PESC Rec.—IEEE Annu. Power Electron. Spec. Conf., vol. 2, pp. 1682–1688, 1996.
[53] A. Agbossou, I. Rasoanarivo, and B. Davat, “Comparative study of high power IGBT model behavior in voltage source inverter,” in Proc. PESC Rec.—IEEE Annu. Power Electron. Specialists Conf., vol. 1, pp. 56–61, 1996.
[54] F. Blaabjerg, F. K. Pedersen, S. Sigurjonsson, and A. Elkjaer, “Extended model of power losses in hard-switched IGBT-inverters,” in Proc. Conf. Rec.—IAS Annu. Meeting (IEEE Ind. Applicat. Soc.), vol. 3, pp. 1454–1463, 1996.
[55] K. Sheng, S. J. Finney, and B. W. Williams, “Fast and accurate IGBT model for PSpice,” Electron. Lett., vol. 32, no. 25, pp. 2294–2295, Dec. 5, 1996.
[56] A. Monti, “Fuzzy-based black-box approach to IGBT modeling,” in Proc. IEEE Int. Conf. Electron., Circuits, Syst., vol. 2, pp. 1147–1150, 1996.
[57] L. Zhang, C. Watthanasarn, and W. Shepherd, “IGBT modeling using HSPICE,” in Proc. Int. Power Electron. Congr.—CIEP, pp. 160–169, 1996.
[58] A. Amimi, R. Bouchakour, and T. Maurel, “Modeling of self-heating and degradation effects on the electrical behavior of the IGBT,” in Proc. PEMC’96, vol. 1, pp. 146–150, 1996.
[59] Y. Yue, J. J. Liou, and I. Batarseh, “Steady-state and transient IGBT model valid for all free-carrier injection conditions,” in Proc. IEEE Appl. Power Electron. Conf. Expo—APEC, vol. 1, pp. 168–174, 1997.
[60] K. Sheng, S. J. Finney, and B. W. Williams, “A new analytical IGBT model with improved electrical characteristics,” IEEE Trans. Power Electron., vol. 14, pp. 98–107, Jan. 1999.
[61] C. Wong, “EMTP modeling of IGBT dynamic performance for power dissipation estimation,” IEEE Trans. Ind. Applicat., vol. 33, pp. 64–71, Jan./Feb. 1997.
[62] H. A. Mantooth and A. R. Hefner, “Electrothermal simulation of an IGBT PWM inverter,” IEEE Trans. Power Electron., vol. 12, pp. 474–484, May 1997.
[63] R. Sunkavalli and B. J. Baliga, “Analysis of on-state carrier distribution in the DI-LIGBT,” Solid-State Electron., vol. 41, no. 5, pp. 733–738, May 1997.
[64] F. Udrea and G. A. J. Amaratunga, “On-state analytical model for the trench insulated gate bipolar transistors (TIGBT),” Solid-State Electron., vol. 41, no. 8, pp. 1111–1118, Aug. 1997.
[65] A. G. M. Strollo, “New IGBT circuit model for SPICE simulation,” in Proc. PESC Rec.—IEEE Annu. Power Electron. Spec. Conf., vol. 1, pp. 133–138, 1997.
[66] E. Napoli, A. G. M. Strollo, and P. Spirito, “Two-dimensional modeling of on state voltage drop in IGBT,” in Proc. Int. Conf. Microelectron., vol. 2, pp. 505–508, 1997.
[67] J. Sigg, P. Tuerkes, and R. Kraus, “Parameter extraction methodology and validation for an electro-thermal physics-based NPT IGBT model,” in Proc. Conf. Rec.—IAS Annu. Meeting (IEEE Ind. Applicat. Soc.), vol. 2, pp. 1166–1173, 1997.
[68] A. Ammous, B. Allard, and H. Morel, “Transient temperature measurements and modeling of IGBTs under short circuit,” IEEE Trans. Power Electron., vol. 13, pp. 12–25, Jan. 1998.
[69] C.H. Kao, and Y.C. Liang, "An Equivalent circuit Model for IGBT," Third IEEE International Caracas Conference on Devices, pp. 15-17, Mar. 2000.
[70] Tsung-Yi Huang, Jeng Gong and Shin-Hui Chen, “Modeling the Turn-off Characteristics of Insulated-Gate Bipolar Transistor”, Jpn. J. Appl. Phys. , Vol. 41, pp. 1288-1292, p.1-6, March 2002.
[71] Shen, Z., So, K. C. and Chow, T. P., “Comparative Study of Integrated Current Sensors in N-channel IGBTs”, Proc. 6th Inter. Symp. On Power Semiconductor Devices & IC’s, Davos, Switzerland, p. 75-80, May 1994.
[72] Baliga, B. J., Chang, H.R., Chow, T. P. and Almarayati, S., IEDM Tech. Dig., p. 809-812, 1988.
[73] Hsu, J. T. and Ngo, K.D.T., “Behavior Modeling of the Hammerstein Configuration, IEEE Trans. on Power Electronics, vol. 11, no. 6, p. 746-754, Nov. 1996.
[74] Yue, Y. and Liou, J. J., “An Analytical Insulated Gate Bipolar Transistor (IGBT) Model for Steady-State and Transient Applications under AllFree-Carrier Injection Conditions”, solid-State Electronics, vol. 39, no. 9, p. 1250-1266, 1996.
[75] Portesine, M., Fasce, F., Pamplili, P., Cova, P., Menozzi, R., Cascone, B., and Fratelli, L., “Optimized Diode Design for IGBT’s and GCT’s Switching Circuits”, 9th European Conference on Power Electronics and Applications, Lecture Session 4, p.379-388, 2001.
[76] Sheng, K., Williams, B. W., and Finney, S. J., “A Review of IGBT Models”, IEEE Trans. on Power Electronics, V 15(6), p.1250-1266, Nov. 2000.
[77] Hefner, A. R., Jr. and Diebolt, D. M., “An Experimentally Verified IGBT Model Implemened in the Saber Circuit Simulator”, IEEE Trans. on Power Electronics, vol. 9, issue:5, p. 532-542, 1994.
[78] G. Panella, E. Bogatin, and M. Brenneman, “Electrical Modeling of Connectors using Partial Inductance,” IICIT
[79] h. Katzier, R. Reichi, and P. Pagnin, “Spice-Models for High Pincount Board Connectors, IEEE Trans. Comp., Packaging, Manuf. Tech., Part B, V. 19, p. 3 , 1996.
[80] H. Katzier, R. Reischl, and P. Pagnin, “SPICE-Models for High-Pincount Board Connectors,” IEEE Trans. Comp., Packag., Manufact. Technol. B, vol. 19, p. 3-6, 1996.
[81] A. Feller, H. R. Kaupp, and J. J. Digiacoma, “Crosstalk and reflections in high speed digital systems,” AFIPS Conf., Proc. Fall Joint Comput. Conf., p. 511-525, 1965.
[82] T-C. Tseng, C. H. Kao, M. F. Lai, and F. M. Lee, “A Transmission Line Modeling and Analysis of High Density and High Speed Interconnects,” 2001-ECC Symposium, 2001.
[83] F. M. Lee and H. Jong, (a) “Noise Characterization of DVI Connector and Cable at High Frequency,” IICIT Symposium, (2001); (b) “Electrical Characterization of DVI Connector and Cable Using Time Domain Reflectometer and Patter Displaying Test,” 2001-ECC Symposium, 2001.
[84] FCI-Taiwan, Int. Rep., 2000.
[85] J. M. Jong and V. K. Tripathi, “Time Domain Characterization of Interconnect Discontinuities in High Speed Circuits,” IEEE Trans. Comp., Hybrids, Manuf. Tech., V.14, p. 497, 1992.
[86] J-M Jong, B. Janko, and V. Tripathi, “Equivalent Circuit Modeling of Interconnects from Time-Domain Measurements,” IEEE Trans. Of Components, Hybrids, and Manufg. Tech., V.15, No. 1, p. 119 , 1993.
[87] D. Seraphim, et al, Principles of Electronic Packaging, McGraw Hill, p.106 , 1989
[88] B. D. Washo, “Bandwidth Relationships Applicable in electronic Digital Signal Communications,” IICIT Symposium, p. 217 , 2001.
[89] P. A. Kok, and D. De Zutter, “Least-Square Estimation of the Equivalent Circuit parameters of a Via-Hole from a TDR Reflectogram, including on-board Rise Time and Delay Estimation,” IEEE Trans. Composites, Hybr. And Manufg. Tech., vol. 16, No. 3, p. 292 , 1993.
[90] S. Pannala, A. Haridass, and M. Swaminathan, “IEEE Trans. Adv. Packg., vol. 22, No. 1, p. 32 , 1999.
[91] R. Malucci, “Current Rating for Multi-Path Power Module Connectors,” IICIT Symposium, p. 163 , 2001.
[92] A.J. Bialy, "A Spice model for lossy transmission lines applied to PCB traces," 31st Annual Connector and Interconnection Symposium and Trade Show, Danvers, Massachusetts, Oct., 1998.
[93] S. Goodwin, and A.C.L. Marvin, "A transmission line model of cable to antenna coupling inside a screened room," IEEE Trans. Electromagnetic compatibility, vol.31, no.4, pp. 397-40, Nov. 1989.
[94] E. M. Sisal, "Modeling and testing RF and coaxial connectors," 31st Annual Connector and Interconnection Symposium and Trade Show, Danvers, Massachusetts, Oct. 1998.
[95] S. Pannala, A. Haridass, and M. Swaminnathan, "Parameter extraction and electrical characterization of high density connector using time domain measurements," IEEE Trans. Advanced Packaging, vol. 22, no.1 , pp.32-39, Feb. 1999.
[96] A. Deutsch, C. W. Surovic, J. S. Campbell, P. W. Coteus, A. P. Lanzetta, J. T. Holton, and A. D. Knight, "Electrical Characteristics of High-Performance Pin-in-Socket and Pad-on-Pad Connectors," IEEE Trans. CHMT part B Advanced Packaging, vol. 20, no.1 , pp.64-77, Feb. 1997.
[97] "Digital visual interface DVI," Revision 1.0, Digital Display Workgroup, Apr. 1999.
[98] H. Katzier, R. Reischl, and P. Pagnin, "SPICE-Models for high-pincountboard connectors," IEEE Trans. Comp., Packag., Manufact. Technol. B,vol. 19, pp. 3–6, Feb. 1996.
[99] A. Haridass, C. Nguyen, and M. Swaminathan, "Electrical characterization of high speed connector for high frequency applications," in Proc.INTERPack’97 Conf., vol. EEP-19-1, pp. 483–488, June 1997.
[100] S. Pannala, M. Swaminathan, and C. Nguyen, "Extraction of electrical parameters of high density connectors using time domain measurements," in Proc. 47th Electron. Comp. Technol. Conf., pp.936–941, June 1997.
[101] J. M. Jong and V. K. Tripathi, "Time domain characterization of interconnect discontinuities in high-speed circuits," IEEE Trans. Comp.,Hybrids, Manufact. Technol., vol. 15, pp. 497–504, Aug. 1992.
[102] A. Feller, H. R. Kaupp, and J. J. Digiacoma, "Crosstalk and refections in high speed digital systems," AFIPS Conf. Proc.Fall Joint Comput.Conf., pp. 511–525, 1965.
[103] S. C. Burkhart and R. B. Wilcox, "Arbitrary pulse shape synthesis via nonuniform transmission lines," IEEE Trans. on Microwave Theory and Techniques, vol. 38, no. 10, pp. 1514 –1518, Oct. 1990.
[104] Anonymous, "TDR and VNA Measurement Primer," Application Note, No. TVMP-0404, TDA Systems, Inc., http://www.tdasystems.com , 2004.
[105] Anonymous, "Characterization of Differential Interconnect Interconnects from TDR Measurements," Application Note, No. DIFF-1099, TDA Systems, Inc., http://www.tdasystems.com , 2000.
[106] J. M. Jong, B. Janko, and V. Tripathi, "Equivalent Circuit Modeling of Interconnects from Time-Domain Measurements," IEEE Trans. On Components, Hybrids, and Manufacturing Technology, vol. 16, no. 1, pp. 119-126, 1993.
[107] D. A. Smolyansky, S. D. Corey, "Printed circuit board interconnect characterization from TDR measurements", Printed Circuit Design Magazine, pp 18-26, May 1999
[108] C. C. Tseng, C. H. Kao, F. M. Lee, and M. F. Lai, "3D Physical Model and Simulation for DVI Connector at High Frequency," 2001 Electronic Contact and Connector Symposium, pp.D1~D14, 2001.
[109] L. A. Hayden, V. K. Tripathi, " Characterization and modeling of multiple line interconnects from TDR measurements", IEEE Transactions on Microwave Theory and Techniques, Vol 42. pp 1737-1743, September 1994.
[110] C. W. Hsue, T. W. Pan, "Reconstruction of nonuniform transmission lines in time-domain reflectometry", IEEE Transactions on Microwave Theory and Techniques, Vol 45, No. 1, pp 32-38, January 1997.
[111] E. Bogatin, S. Corey, M. Resso, "Practical characterization, analysis and simulation of lossy lines, DesignCon 2001, Santa Clara, CA January 2001.
[112] W. Kim, S. Dalmia and M. Swaminathan, "Extraction of Frequency-Dependent Properties of Embedded Inductors Using TDR Measurements", Proceedings of the 5th IEEE Workshop on Signal Propagation on Interconnects, Cavallino - Venice, Italy, May 2001.
[113] W. Kim, S. H. Lee, M. Swaminathan and R. Tummala, "Robust Extraction of the Frequency-Dependent Characteristic Impedance of Transmission Lines using One-Port TDR Measurements", Proceedings of the 10th Topical Meeting on Electrical Performance of Electronic Packaging, pp. 113-116, Boston, Massachusetts, Oct.2001.
[114] W. Kim and M. Swaminathan, "Validity of Non-Physical RLGC Models for Simulating Lossy Transmission Lines", Proceedings of the International Symposium on Antennas and Propagation, Vol. 3, pp. 786-789, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code