Responsive image
博碩士論文 etd-0406114-170143 詳細資訊
Title page for etd-0406114-170143
論文名稱
Title
3D IC TSVs 於高頻電磁場之模擬與分析
Simulation and Analysis of 3D IC Through Silicon Vias (TSVs) Arrays under High-Frequency Electromagnetic Fields
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-12
繳交日期
Date of Submission
2014-07-21
關鍵字
Keywords
Shorting Via、通孔、去耦合電容、散射參數、矽導孔 (Through Silicon Via)、有限元素法、等效電路模型
Decoupling Capacitor, , Through Via, Shorting Via, Finite Element Method, Through Silicon Via, S-parameter, Equivalent Circuit Model
統計
Statistics
本論文已被瀏覽 5733 次,被下載 1437
The thesis/dissertation has been browsed 5733 times, has been downloaded 1437 times.
中文摘要
本論文之研究方向分為兩部分,第一部分為探討通孔傳輸訊號之功率損耗,第二部分為探討3D Integration中矽導孔 (Through Silicon Via, TSV)傳輸訊號之功率損耗。在印刷電路板中訊號藉由通孔來連接各個訊號層,常見的問題為回流路徑不連續與寄生電容導致訊號功率損耗增加,本論文針對印刷電路板中的通孔進行訊號完整性分析,首先利用有限元素模擬軟體HFSS (High Frequency Structural Simulator)進行模擬,取得散射參數,其次觀察訊號的傳輸、反射與損耗,並探討在通孔周圍加入Shorting Via與去耦合電容之情形,並從結果中討論數目和距離對於改善回流路徑不連續之影響。研究結果顯示Shorting Via與去耦合電容之數目增加皆有利於減少功率損耗,且與通孔之距離愈近也有較好的改善效果。關於第二部分,由於晶片之材料一般是使用低電阻率的矽,在此情況下矽與TSV之間會產生寄生電容,導致訊號藉由TSV垂直傳遞時會有很大的功率損耗。本論文針對TSV進行訊號完整性分析,除了利用有限元素模擬軟體HFSS進行模擬取得散射參數外,還推導TSV之等效電路模型,探討的內容針對TSV之幾何與材料參數對散射參數之影響,研究結果顯示本論文之模擬與理論結果相互吻合,更證實本論文研究結果的正確性。
Abstract
This study consists of two parts. First part is about the through via in printed circuit board (PCB). In the PCB, signal transmission between different layers occurs by way of through via. The excessive capacitance is generated near the through via. Such capacitance influences the signal transmission between different layers. Through via also cause return current path discontinuous. It excites parasitic transverse electromagnetic modes in PCB. Both excessive capacitance and return current path discontinuous cause the power loss. Some techniques solving this problem are discussed. Finite element method (FEM) is used to simulate the high frequency electromagnetism and extract the S-parameters. S-parameters are used to describe the electrical behavior of through via. By these model, we want to predict the signal transmission performance of the through via structure.
Second part is about through silicon via (TSV). TSV which is used to connect stacked chips in a vertical fashion become the heart of this technique, because there are big signal attenuation in the wire bonding approach and large solder balls in the flip-chip. When a high frequency signal is transmitted vertically through the substrate via, low resistivity silicon substrate will cause significant signal attenuation and lead poor ratio frequency (RF) performance. 3D electromagnetic field solver is employed to build up finite element models. Equivalent circuit model is also used to simulate the electrical performance of TSV. The impact of different TSV shapes and materials on electrical performance is evaluated by using S-parameters. By these models, we want to propose an accurate finite element model to predict electrical performance of TSV and easily design 3D IC integration for designer.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 研究主旨 1
1.2 研究動機 4
1.3 現況與挑戰 10
1.4 研究背景 14
1.5 論文結構 16
第二章 文獻回顧 17
2.1 通孔研究之國內外研究狀況 17
2.1.1 重要文獻 17
2.1.2 國外相關重要文獻 17
2.2 TSV研究之國內外研究狀況 24
2.2.1 重要文獻 24
2.2.2 國外相關重要文獻 24
2.3 總結 34
第三章 模擬與分析基礎理論 35
3.1 研究方法 35
3.1.1 印刷電路板通孔模擬 35
3.1.2 Through Silicon Via模擬 36
3.2 常見的電磁模擬方法 38
3.2.1 矩量法 (Method of Moment, MoM) 38
3.2.2 有限元素法 (Finite Element Method, FEM) 38
3.2.3 有限時域差分法 (Finite Different Time Domain, FDTD) 39
3.3 電磁理論 40
3.4 Network Theory 43
3.4.1 開路阻抗參數 (Z-parameter) 44
3.4.2 散射參數 (S-parameter) 47
3.5 總結 53
第四章 通孔之模擬結果與討論 54
4.1 通孔有限元素模型介紹 54
4.2 模擬結果與討論 56
4.2.1 四層板初步模擬結果與討論 56
4.2.2 測試樣品與模擬比較 59
4.2.3 Shorting Vias 61
4.2.4 五層板模擬結果與討論 64
4.2.5 去耦合電容 (Decoupling Capacitor)模擬結果與討論 69
4.3 總結 72
第五章 TSV之模擬結果與討論 73
5.1 TSV有限元素模型介紹 73
5.2 TSV之等效電路模型 76
5.3 TSV模擬結果 81
5.3.1 TSV高度變化 81
5.3.2 TSV半徑變化 85
5.3.3 Scaling Ratio變化 90
5.3.4 Tapered TSV角度變化 95
5.3.5 Annular TSV之銅層厚度變化 101
5.3.6 TSV形狀比較 103
5.3.7 TSV陣列探討 106
5.4 Coaxial TSV 109
5.4.1 Coaxial TSV與TSV Pair比較 109
5.4.2 矽基板電阻率比較 112
5.4.3 金屬導體材料比較 114
5.5 總結 116
第六章 結論與未來展望 117
6.1 結論 117
6.2 未來展望 119
參考文獻 121
參考文獻 References
[1] Lau, J. H. (2010). TSV Manufacturing Yield and Hidden Costs for 3D IC Integration. Proceedings of the 2010 IEEE 60th Electronic Components and Technology Conference, 01-04 June. Las Vegas, Nevada: Paris Las Vegas Hotel.
[2] Ndip, I., Ohnimus, F., Löbbicke, K., Bierwirth, M., Tschoban, C., Guttowski, S., Reichl, H., Lang, K., & Henke, H. (2010). Modeling, Quantification, and Reduction of the Impact of Uncontrolled Return Currents of Vias Transiting Multilayered Packages and Boards. IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, pp. 421-435.
[3] Xu, Z., & Lu, J. Q. (2011). High-Speed Design and Broadband Modeling of Through-Strata-Vias (TSVs) in 3D Integration. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 2, pp. 154-162.
[4] Camerlo, S., Ahmad, B., Zou, Y., Dang, L., Hu, M., & Priore, S. (2004). Improving Signal Integrity of System Packaging by Back-Drilling Plated Through Holes in Board Assembly. Proceedings of the 54th Electronic Components and Technology Conference, 1-4 June. Las Vegas, Nevada, USA.
[5] Zhang, J., Chen, Q. B., Wang, H., Fan, J., Orlandi, A., & Drewniak, J. L. (2010). Stub Length Prediction for Back-Drilled Vias Using a Fast Via Tool. Proceedings of the 2010 IEEE Electrical Design of Advanced Packaging Systems Symposium, 07-09 December. Singapore.
[6] Hsu, S. G., & Wu, R. B. (1994). Full Wave Characterization of a Through Hole Via Using the Matrix-Penciled Moment Method. IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 8, pp. 1540-1547.
[7] Hsu, S. G., & Wu, R. B. (1995). Full-Wave Characterization of a Through Hole Via in Multi-Layered Packaging. IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 5, pp. 1073-1081.
[8] Wang, C. C., Kuo, C. W., Kuo, C. C., & Wu, T. L. (2006). A Time-Domain Approach for Extracting Broadband Macro-π Models of Differential Via Holes. IEEE Transactions on Advanced Packaging, Vol. 29, No. 4, pp. 789-797.
[9] Wang, T., Harrington, R. F., & Mautz, J. R. (1988). Quasi-Static Analysis of a Microstrip Via Through a Hole in a Ground Plane. IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 6, pp. 1008-1013.
[10] Wang, T., Mautz, J. R., & Harrington, R. F. (1990). The Excess Capacitance of a Microstrip Via in a Dielectric Substrate. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 9, No. 1, pp. 48-56.
[11] Kok, P. A., & De Zutter, D. (1991). Capacitance of a Circular Symmetric Model of a Via Hole Including Finite Ground Plane Thickness. IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 7, pp. 1229-1234.
[12] Kok, P. A., & De Zutter, D. (1994). Prediction of the Excess Capacitance of a Via-Hole Through a Multilayered Board Including the Effect of Connecting Microstrips or Striplines. IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, pp. 2270-2276.
[13] Harms, P. H., Lee, J. F., & Mittra, R. (1993). Characterizing the Cylindrical Via Discontinuity. IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 1, pp. 153-156.
[14] Mathis, A. W., Peterson, A. F., & Butler, C. M. (1997). Rigorous and Simplified Models for the Capacitance of a Circularly Symmetric Via. IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 10, pp. 1875-1878.
[15] Tefiku, F., & Yamashita, E. (1992). Capacitance Characterization Method for Thick-Conductor Multiple Planar Ring Structures on Multiple Substrate Layers. IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 10, pp. 1894-1902.
[16] Tefiku, F., & Yamashita, E. (1995). Efficient Method for the Capacitance Calculation of Circularly Symmetric Via in Multilayered Media. IEEE Microwave and Guided Wave Letters, Vol. 5, No. 9, pp. 305-307.
[17] Gu, Q., Yang, Y. E., & Tassoudji, M. A. (1993). Modeling and Analysis of Vias in Multilayered Integrated Circuits. IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 2, pp. 206-214.
[18] Kwon, D., Kim, J., Kim, K., Choi, S. C., Lim, J., Park, J. H., Choi, L., Hwang, S., & Lee, S. (2003). Characterization and Modeling of a New Via Structure in Multilayered Printed Circuit Boards. IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2, pp. 483-489.
[19] Ndip, I., John, W., & Reichl, H. (2005). Minimizing Reflections and Cross-Talk in Chip Packages. Proceedings of the 7th Electronics Packaging Technology Conference, 07-09 December. Singapore: Grand Copthorne Waterfront.
[20] Ndip, I., Ohnimus, F., Guttowski, S., & Reichl, H. (2008). Minimizing Electromagnetic Interference in Power-Ground Cavities. Proceedings of the 2008 Electrical Design of Advanced Packaging and Systems Symposium, 10-12 December. Seoul, Korea (South): COEX Mall.
[21] Ndip, I., Ohnimus, F., Guttowski, S., & Reichl, H. (2008). Modeling and Analysis of Return-Current Paths for Microstrip-to-Microstrip Via Transitions. Proceedings of the 2008 2nd Electronic System-Integration Technology Conference, 01-04 September. Greenwich, London: University of Greenwich.
[22] Antonini, G., Scogna, A. C., & Orlandi, A. (2003). S-parameters Characterization of Through, Blind, and Buried Via Holes. IEEE Transactions on Mobile Computing, Vol. 2, No. 2, pp. 174-184.
[23] Sedig, A., Vittal, B., & Aldo, M. (2005). De-Embedding Techniques in Signal Integrity: A Comparison Study. Proceedings of the Conference on Information Sciences and Systems, 16-18 March. Baltimore, Maryland: Johns Hopkins University.
[24] Knadle, K., & Endicott, N. Y. (2009). Reliability and Failure Mechanisms of Laminate Substrates in a Pb-Free World. IPC APEX EXPO 2009.
[25] Huang, S. Q., Yung, K. C., & Sun, B. (2012). A Finite Element Model and Experimental Analysis of PTH Reliability in Rigid-Flex Printed Circuits Using the Taguchi Method. International Journal of Fatigue, Vol. 40, pp. 84-96.
[26] Nowak, T., Schacht, R., Walter, H., Wunderle, B., Ras, M. A., May, D., Wittler, O., & Lang, K. D. (2011). Experimental and Numerical Reinvestigation for Lifetime-Estimation of Plated Through Holes in Printed Circuit Boards. Proceedings of the 2011 17th International Workshop on Thermal Investigations of ICs and Systems, 27-29 September. Paris, France: The Novotel Paris Vaugirard Montparnasse.
[27] Yung, W. K. C., Liem, H. M., Choy, H. H. S., & Man, Y. W. (2011). Correlating Interconnect Stress Test and Accelerated Thermal Cycling for Accessing the Reliabilities of High Performance Printed Circuit Boards. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 12, pp. 2005-2017.
[28] Xie, J., Kang, R., Zhang, Y., & Guo, G. (2006). A PTH Reliability Model Considering Barrel Stress Distributions and Multiple PTHs in a PWB. Proceedings of the Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, 26-30 March. San Jose, California, USA.
[29] Salahouelhadj, A., Martiny, M., Mercier, S., Bodin, L., Manteigas, D., & Stephan, B. (2013). Reliability of Thermally Stressed Rigid-Flex Printed Circuit Boards for High Density Interconnect Applications. Microelectronics Reliability, Vol. 54, pp. 204-213.
[30] Goval, D., Azimi, H., Chong, K. P., & Lii, M. J. (1997). Reliability of High Aspect Ratio Plated Through Holes (PTH) for Advanced Printed Circuit Board (PCB) Packages. Proceedings of the Reliability Physics Symposium, 8-10 April. Denver, Colorado, USA.
[31] Liu, C., Hu, W., & Sun, Y. (2013). Sensitivity Analysis of PCB's Design Parameters of the Plated Through Hole. Proceedings of the 2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 15-18 July. Emeishan, Sichuan, China.
[32] Mirman, B. (1988). Mathematical Model of a Plated-Through-Hole Structure under a Load Induced by Thermal Mismatch. Proceedings of the InterSociety Conference on Thermal Phenomena in the Fabrication and Operation of Electronic Components: I-THERM '88, 11-12 May. Los Angeles, California, USA.
[33] Shao, Y., Peng, Z., & Lee, J. F. (2010). High Speed Interconnects of Multi-Layer PCB Analysis by Using Non-Conformal Domain Decomposition Method. Proceedings of the 2010 IEEE International Symposium on Electromagnetic Compatibility, 25-30 July. Fort Lauderdale, Florida: Greater Fort Lauderdale/Broward County Convention Center.
[34] Zhang, Y., Fan, J., Selli, G., Cocchini, M., & de Paulis, F. (2008). Analytical Evaluation of Via-Plate Capacitance for Multilayer Printed Circuit Boards and Packages. IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 9, pp. 2118-2128.
[35] Ong, C. J., Wu, B., Tsang, L., & Gu, X. (2008). Full-Wave Solver for Microstrip Trace and Through-Hole Via in Layered Media. IEEE Transactions on Advanced Packaging, Vol. 31, No. 2, pp. 292-302.
[36] Selli, G., Schuster, C., & Kwark, Y. (2006). Model-to-Hardware Correlation of Physics Based Via Models with the Parallel Plate Impedance Included. Proceedings of the 2006 IEEE International Symposium on Electromagnetic Compatibility, 2006. EMC 2006, 14-18 August. Portland, Oregon, USA.
[37] Yoon, C., Lee, J., Lee, J., Park, H., Kim, J., Pak, J. S., & Kim, J. (2008). Design of a Low-Noise UWB Transceiver SiP. IEEE Design Test of Computers, Vol. 25, No. 1, pp. 18-28.
[38] Freda, M., & Reid, P. (2009). Thermal Cycle Testing of PWBs: Methodology. Proceedings of the International Conference on Soldering and Reliability, 20-22 May. Toronto, Ontario, Canada.
[39] Su, F., Mao, R., Xiong, J., Zhou, K., Zhang, Z., Shao, J., & Xie, C. (2012). On Thermo-Mechanical Reliability of Plated-Through-Hole (PTH). Microelectronics Reliability, Vol. 52, No. 6, pp. 1189-1196.
[40] Chang, R. W. Y., See, K. Y., & Chua, E. K. (2007). Comprehensive Analysis of the Impact of Via Design on High-Speed Signal Integrity. Proceedings of the 9th Electronics Packaging Technology Conference, 10-12 December. Singapore: Grand Copthorne Waterfront Hotel.
[41] Chang, Y. J., Chuang, H. H., Lu, Y. C., Chiou, Y. P., Wu, T. L., Chen, P. S., Wu, S. H., Kuo, T. Y., Zhan, C. J., & Lo, W. C. (2012). Novel Crosstalk Modeling for Multiple Through-Silicon-Vias (TSV) on 3-D IC: Experimental Validation and Application to Faraday Cage Design. Proceedings of the 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems, 21-24 October. Tempe, Arizona: Tempe Mission Palms Hotel.
[42] Lu, K. C., Horng, T. S., Li, H. H., Fan, K. C., Huang, T. Y., & Lin, C. H. (2012). Scalable Modeling and Wideband Measurement Techniques for a Signal TSV Surrounded by Multiple Ground TSVs for RF/High-Speed Applications. Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, 29 May-01 June. San Diego, California: Sheraton San Diego Hotel and Marina.
[43] Ko, C. T., Hsiao, Z. C., Chang, Y. J., Chen, P. S., Huang, J. H., Fu, H. C., Huang, Y. J., Chiang, C. W., Lee, C. K., Chang, H. H., Tsai, W. L., Chen, Y. H., Lo, W. C., & Chen, K. N. (2012). Structural Design, Process, and Reliability of a Wafer-Level 3D Integration Scheme with Cu TSVs Based on Micro-Bump/Adhesive Hybrid Wafer Bonding. Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, 29 May-01 June. San Diego, California: Sheraton San Diego Hotel and Marina.
[44] Ko, C. T., Hsiao, Z. C., Chang, Y. J., Chen, P. S., Huang, J. H., Fu, H. C., Huang, Y. J., Chiang, C. W., Tsai, W. L., Chen, Y. H., Lo, W. C., & Chen, K. N. (2012). Wafer-Level 3D Integration with Cu TSV and Micro-Bump/Adhesive Hybrid Bonding Technologies. Proceedings of the 3D Systems Integration Conference (3D IC), 2011 IEEE International, 31 January-02 February. Osaka, Japan.
[45] Engin, A. E., & Narasimhan, S. R. (2013). Modeling of Crosstalk in Through Silicon Vias. IEEE Transactions on Electromagnetic Compatibility, Vol. 55, No. 1, pp. 149-158.
[46] Engin, A. E., & Raghavan, N. S. (2012). Modeling of Coupled TSVs in 3D ICs. Proceedings of the 2012 IEEE International Symposium on Electromagnetic Compatibility, 06-10 August. Pittsburgh, Pennsylvania: Pittsburgh David L. Laurence Convention Center.
[47] Paul, C. R. (1978). Prediction of Crosstalk in Ribbon Cables: Comparison of Model Predictions and Experimental Results. IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-20, No. 3, pp. 394-406.
[48] Paul, C. R. (2008). Analysis of Multiconductor Transmission Lines: John Wiley & Sons.
[49] Kim, J., Song, E., Cho, J., Pak, J. S., Lee, J., Lee, H., Park, K., & Kim, J. (2009). Through Silicon Via (TSV) Equalizer. Proceedings of the 2009 IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems, 19-20 October. Portland, Oregon: Embassy Suites Washington Square.
[50] Kim, J., Pak, J. S., Cho, J., Song, E., Cho, J., Kim, H., Song, T., Lee, J., Lee, H., Park, K., Yang, S., Suh, M. S., Byun, K. Y., & Kim, J. (2011). High-Frequency Scalable Electrical Model and Analysis of a Through Silicon Via (TSV). IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 2, pp. 181-195.
[51] Kim, J., & Kim, J. (2013). Signal Integrity Modeling and Measurement of TSV in 3D IC. Proceedings of the 2013 18th Asia and South Pacific Design Automation Conference, 22-25 January. Yokohama, Japan: Pacifico Yokohama.
[52] Cho, J., Shim, J., Song, E., Pak, J. S., Lee, J., Lee, H., Park, K., & Kim, J. (2009). Active Circuit to Through Silicon Via (TSV) Noise Coupling. Proceedings of the IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems, 19-21 October. Portland, Oregon: Embassy Suites Washington Square.
[53] Cho, J., Song, E., Yoon, K., Pak, J. S., Kim, J., Lee, W., Song, T., Kim, K., Lee, J., Lee, H., Park, K., Yang, S., Suh, M., Byun, K., & Kim, J. (2011). Modeling and Analysis of Through-Silicon Via (TSV) Noise Coupling and Suppression Using a Guard Ring. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 2, pp. 220-233.
[54] Ndip, I., Löbbicke, K., Zoschke, K., Guttowski, S., Wolf, J., Reichl, H., & Lang, K. D. (2012). Analysis and Comparison of Methods for Extracting the Inductance and Capacitance of TSVs. Proceedings of the 2012 IEEE 14th Electronics Packaging Technology Conference, 05-07 December. Singapore: Resorts World Sentosa.
[55] Ndip, I., Zoschke, K., Löbbicke, K., Wolf, M. J., Guttowski, S., Reichl, H., Lang, K. D., & Henke, H. (2013). Analytical, Numerical-, and Measurement-Based Methods for Extracting the Electrical Parameters of Through Silicon Vias (TSVs). IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 4, No. 2, pp. 504-515.
[56] Ndip, I., Curran, B., Löbbicke, K., Guttowski, S., Reichl, H., Lang, K., & Henke, H. (2011). High-Frequency Modeling of TSVs for 3-D Chip Integration and Silicon Interposers Considering Skin-Effect, Dielectric Quasi-Tem and Slow-Wave Modes. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 10, pp. 1627-1641.
[57] Xu, Z., & Lu, J. Q. (2012). Three-Dimensional Coaxial Through-Silicon-Via (TSV) Design. IEEE Electron Device Letters, Vol. 33, No. 10, pp. 1441-1443.
[58] Ho, S. W., Yoon, S. W., Zhou, Q., Pasad, K., Kripesh, V., & Lau, J. H. (2008). High RF Performance TSV Silicon Carrier for High Frequency Application. Proceedings of the 2008 IEEE 58th Electronic Components and Technology Conference, 27-30 May. Lake Buena Vista, Florida: Walt Disney World Contemporary Hotel.
[59] Xie, B., & Swaminathan, M. (2012). Electromagnetic Modeling of Non-Uniform Through-Silicon Via (TSV) Interconnections. Proceedings of the 2012 IEEE 16th Workshop on Signal and Power Integrity, 13-16 May. Sorrento, Italy: Hotel Parco dei Principi.
[60] Khan, N., Rao, V. S., Lim, S., We, H. S., Lee, V., Zhang, X., Liao, E. B., Nagarajan, R., Chai, T. C., Kripesh, V., & Lau, J. H. (2010). Development of 3-D Silicon Module with TSV for System in Packaging. IEEE Transactions on Components and Packaging Technologies, Vol. 33, No. 1, pp. 3-9.
[61] Hsu, T., Chiang, K., Lai, J. Y., & Wang, Y. P. (2008). Electrical Characterization of Through Silicon Via (TSV) for High-Speed Memory Application. Proceedings of the 33rd International Electronics Manufacturing Technology Conference, 04-06 November. Penang, Malaysia: Parkroyal Hotel.
[62] Ndip, I., Curran, B., Guttowski, S., & Reichl, H. (2009). Modeling and Quantification of Conventional and Coax-TSVs for RF Applications. Proceedings of the 2009 European Microelectronics and Packaging Conference, 16-18 June. Rimini, Italy: Palacongressi di Rimini.
[63] Xu, Z., Beece, A., Zhang, D., Chen, Q., Rose, K., & Lu, J. Q. (2010). Characterization and Modeling of Solder Balls and Through-Strata-Vias (TSVs) in 3D Architecture. Proceedings of the 2010 IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems, 25-27 October. Austin, Texas: Crowne Plaza Hotel.
[64] Sung, T., Chiang, K., Lee, D., & Ma, M. (2012). Electrical Analyses of TSV-RDL-Bump of Interposers for High-Speed 3D IC Integration. Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, 29 May-01 June. San Diego, California: Sheraton San Diego Hotel and Marina.
[65] Ranganathan, N., Lee, D. Y., Youhe, L., Lo, G. Q., Prasad, K., & Pey, K. L. (2011). Influence of Bosch Etch Process on Electrical Isolation of TSV Structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 10, pp. 1497-1507.
[66] Shen, L. C., Chien, C. W., Jaung, J. Y., Hung, Y. P., Lo, W. C., Hsu, C. K., Lee, Y. C., Cheng, H. C., & Lin, C. T. (2008). A Clamped Through Silicon Via (TSV) Interconnection for Stacked Chip Bonding Using Metal Cap on Pad and Metal Column Forming in Via. Proceedings of the 2008 IEEE 58th Electronic Components and Technology Conference, 27-30 May. Lake Buena Vista, Florida: Walt Disney World Contemporary Hotel.
[67] Shen, L. C., Chien, C. W., Cheng, H. C., & Lin, C. T. (2010). Development of Three-Dimensional Chip Stacking Technology Using a Clamped Through-Silicon Via Interconnection. Microelectronics Reliability, Vol. 50, No. 4, pp. 489-497.
[68] Cheng, E. J., & Shen, Y. L. (2012). Thermal Expansion Behavior of Through-Silicon-Via Structures in Three-Dimensional Microelectronic Packaging. Microelectronics Reliability, Vol. 52, No. 3, pp. 534-540.
[69] Park, S., Bang, H., Bang, H., & You, J. (2012). Thermo-Mechanical Analysis of TSV and Solder Interconnects for Different Cu Pillar Bump Types. Microelectronic Engineering, Vol. 99, pp. 38-42.
[70] Ranganathan, N., Prasad, K., Balasubramanian, N., & Pey, K. L. (2008). A Study of Thermo-Mechanical Stress and Its Impact on Through-Silicon Vias. Journal of Micromechanics and Microengineering, Vol. 18, No. 7.
[71] Zhou, J., Yu, D., He, R., WeiDai, F., Guo, X., Song, C., Wang, H., Guidotti, D., Cao, L., & Wan, L. (2011). Nonlinear Thermal Stress and Strain Analysis of Through Silicon Vias with Different Structures and Polymer Filling. Proceedings of the 2011 IEEE 13th Electronics Packaging Technology Conference, 07-09 December. Singapore: Shangri-La Hotel.
[72] Chan, Y. S., Li, H. Y., & Zhang, X. (2013). Thermo-Mechanical Design Rules for the Fabrication of TSV Interposers. IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 4, pp. 633-640.
[73] Katti, G., Stucchi, M., De Meyer, K., & Dehaene, W. (2010). Electrical Modeling and Characterization of Through Silicon Via for Three-Dimensional ICs. IEEE Transactions on Electron Devices, Vol. 57, No. 1, pp. 256-262.
[74] Pak, J. S., Cho, J., Kim, J., Lee, J., Lee, H., Park, K., & Kim, J. (2010). Slow Wave and Dielectric Quasi-TEM Modes of Metal-Insulator-Semiconductor (MIS) Structure Through Silicon Via (TSV) in Signal Propagation and Power Delivery in 3D Chip Package. Proceedings of the 2010 IEEE 60th Electronic Components and Technology Conference, 01-04 June. Las Vegas, Nevada: Paris Las Vegas Hotel.
[75] Jung, M., Pan, D. Z., & Lim, S. K. (2012). Chip/Package Co-Analysis of Thermo-Mechanical Stress and Reliability in TSV-Based 3D ICs. Proceedings of the 2012 49th ACM/EDAC/IEEE Design Automation Conference, 03-07 June. San Francisco, California: Moscone Center.
[76] Liang, L., Miao, M., Li, Z., Xu, S., Zhang, Y., & Zhang, X. (2011). 3D Modeling and Electrical Characteristics of Through-Silicon-Via (TSV) in 3D Integrated Circuits. Proceedings of the 2011 12th International Conference on Electronic Packaging Technology & High Density Packaging, 08-11 August. Shanghai, China: Shanghai Riverfront Business Hotel.
[77] Ryu, C., Lee, J., Lee, H., Lee, K., Oh, T., & Kim, J. (2006). High Frequency Electrical Model of Through Wafer Via for 3-D Stacked Chip Packaging. Proceedings of the 2006 1st Electronic Systemintegration Technology Conference, 05-07 September. Dresden, Germany: International Congress Center.
[78] Sadiku, M. N. O. (1994). Elements of Electromagnetics, 3rd ed. New York: Oxford Univ. Press.
[79] Hall, S. H., Hall, G. W., & McCall, J. A. (2000). High-Speed Digital System Design - A Handbook of Interconnect Theory and Design Practices New York: Wiley.
[80] Frickey, D. A. (1994). Conversions Between S, Z, Y, h, ABCD, and T Parameters which Are Valid for Complex Source and Load Impedances. IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 2, pp. 205-211.
[81] Beica, R., Sharbono, C., & Ritzdorf, T. (2008). Through Silicon Via Copper Electrodeposition for 3D Integration. Proceedings of the 2008 IEEE 58th Electronic Components and Technology Conference, 27-30 May. Lake Buena Vista, Florida: Walt Disney World Contemporary Hotel.
[82] Ranganathan, N., Lee, D. Y., Ebin, L., Balasubramanian, N., Prasad, K., & Pey, K. L. (2008). The Development of a Tapered Silicon Micro-Micromachining Process for 3D Microsystems Packaging. Journal of Micromechanics and Microengineering, Vol. 18, No. 11.
[83] Ranganathan, N., Ebin, L., Linn, L., Lee, W. S. V., Navas, O. K., Kripesh, V., & Balasubramanian, N. (2009). Integration of High Aspect Ratio Tapered Silicon Via for Silicon Carrier Fabrication. IEEE Transactions on Advanced Packaging, Vol. 32, No. 1, pp. 62-71.
[84] Rao, V. S., Wee, H. S., Vincent, L., Yu, H., Ebin, L., Nagarajan, R., Chong, C. T., Zhang, X., & Damaruganath, P. (2009). TSV Interposer Fabrication for 3D IC Packaging. Proceedings of the 2009 11th Electronics Packaging Technology Conference, 09-11 December. Singapore: Shangri-La Hotel.
[85] Dixit, P., Salonen, J., Pohjonen, H., & Monnoyer, P. (2011). The Application of Dry Photoresists in Fabricating Cost-Effective Tapered Through-Silicon Vias and Redistribution Lines in a Single Step. Journal of Micromechanics and Microengineering, Vol. 21, No. 2.
[86] Morikawa, Y., Murayama, T., Sakuishi, Y. N. T., Suzuki, A., & Suu, K. (2013). Total Cost Effective Scallop Free Si Etching for 2.5D & 3D TSV Fabrication Technologies in 300 mm Wafer. Proceedings of the 2013 IEEE 63rd Electronic Components and Technology Conference, 28-31 May. Las Vegas, Nevada: Cosmopolitan Hotel of Las Vegas.
[87] Zhao, W. S., Guo, Y. X., & Yin, W. Y. (2012). Electrical Characterization of Through-Silicon Vias (TSV) with Different Physical Configurations. Proceedings of the 2012 IEEE Electrical Design of Advanced Packaging and Systems Symposium, 09-11 December. Taipei, Taiwan: Howard International House.
[88] Bandyopadhyay, T., Chatterjee, R., Chung, D., Swaminathan, M., & Tummala, R. (2009). Electrical Modeling of Annular and Coaxial TSVs Considering MOS Capacitance Effects. Proceedings of the IEEE 18th Conference on Electrical Performance of Electronic Packaging and Systems, 19-21 October. Portland, Oregon: Embassy Suites Washington Square.
[89] Kim, B. J., Ha, M. L., & Kwon, Y. S. (2006). New Through-Wafer Via Interconnections with Thick Oxidized Porous Silicon Sidewall Via. Japanese Journal of Applied Physics, Vol. 45, No. 8A, pp. 6141-6145.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code