Responsive image
博碩士論文 etd-0406117-113805 詳細資訊
Title page for etd-0406117-113805
論文名稱
Title
應用於個人可攜式系統之微型化雙頻濾波器及 雜訊抑制陣列濾波器設計與實現
Design and Implementation of Compact Dual-Band Bandpass Filter and EMI Filter Array for Personal Portable System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
135
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-03-30
繳交日期
Date of Submission
2017-05-06
關鍵字
Keywords
低溫共燒陶瓷、帶通濾波器、雙頻帶通濾波器、近場諧振耦合、雜訊抑制陣列濾波器
FILTERS, DIELECTRIC DEVICES, 4G-LTE, high selectivity, WLAN, Bandpass filters, dual-band, LTCC, FERRITE, EMI
統計
Statistics
本論文已被瀏覽 5685 次,被下載 24
The thesis/dissertation has been browsed 5685 times, has been downloaded 24 times.
中文摘要
本論文目標在利用低溫共燒陶瓷之製程技術來進行可應用於個人可攜式無線通訊系統之雙頻帶通濾波器與雜訊抑制濾波器研究與設計。首先,吾人提出一個具有寬頻截止頻帶的微型化LGA帶通濾波器。其設計利用半集總元件電路和開路殘段來設計出微小尺寸和優良的截止頻帶特性。接著,一個針對微型化雙頻帶通濾波器的新設計方法被提出,這個設計方法中提出由串聯四分之一波長諧振器與開路殘段所構成的雙頻帶通濾波器並具有多個傳輸零點。這個雙頻帶通濾波器具有極小的插入損失在兩個通帶以及多個傳輸零點以達到高抑制能力的寬頻截止頻帶。同時由於無線通訊系統的使用頻段在各個地區與國家不盡相同,為符合不同區域國家的使用頻段及減少電路板設計上的元件數量,因此,本論文亦提出一並聯結構的微型化雙頻帶通濾波器,其通帶可涵蓋不同地區之使用頻段。在第一通帶的頻寬有380 MHz 而第二通帶的頻寬可以達到1350 MHz來涵蓋不同地區所有的IEEE 802.11 頻段,同時具有多個傳輸零點以達到高度選擇性的需求。本論文所提出之帶通濾波器皆利用低溫共燒陶瓷製程來加以實現。

另一方面,由於現今行動裝置的外觀皆朝向輕薄短小的方向發展並整合多項功能,為解決其衍生於介面端口的雜訊干擾問題,本論文亦提出一整合性雜訊抑制陣列濾波器,本設計為第一個提出由混合型材料及低溫共燒陶磁技術所實現之元件。為能夠進一步縮小元件的尺寸並維持良好的雜訊抑制能力與微小的插入損失,一種具有高的導磁係數與低介電損耗的混合型材料被使用在本設計中。這個材料系統是由BaNd2Ti4O12 (BNT) + Ni-Cu-Zn ferrite所組成,並額外添加Bi2O3來降低製程中的燒結溫度到900 ℃以下。而由於在現今4G-LTE通訊系統中,全球的通訊頻段範圍涵蓋從700 MHz 到2690 MHz。因此,本論文中所提出的雜訊陣列抑制濾波器欲能夠濾除從700–2690 MHz 這個頻段所產生的雜訊,並且尺寸為1.6 mm (長) x 0.8 mm (寬) x 0.5 mm (高),最後,所提出之設計在量測的結果和模擬結果上都有相當良好的吻合度。
Abstract
This dissertation aims to study and design a compact single-band and dual-band bandpass filter and EMI filter array for a personal portable system using low-temperature co-fired ceramic technology. First, a compact bandpass filter with wide stop-band in land grid array (LGA) is proposed. The design uses quasi-lumped LC resonator and open stub to create smaller size and better upper stopband performance. In the next, a new approach for design of a compact dual-band bandpass filter using series λ/4 resonators and an open-stub line with multiple transmission zeros is presented due to the requirement of different communication standards. The proposed device has two passband responses with low insertion losses and multiple transmission zeros (TZ) to deliver a wide stopband with high rejection level. To meet the requirements of various operating bands in different regions worldwide, reduce the number of components, and conserve space in the PCB, it is desirable to use a dual-band bandpass filter that covers all operating bands and that can be realized in a single integrated design. Therefore, a compact multilayer dual-band bandpass filter design with shunt architecture is proposed. The proposed dual-band filter has a dual passband to meet the requirement for different operating frequencies. The first (I) and second (II) passbands with small insertion losses have bandwidths near 380 MHz and 1350 MHz to cover all IEEE 802.11 bands in different regions of the world. This dual-band filter has multiple transmission zeros to supply a high rejection level as well. The filter was fabricated using low-temperature co-fired ceramic (LTCC) technology, resulting in miniaturized dimensions of only 2.5 mm (L) x 2.0 mm (W) x 0.7 mm (H). Finally, the measured results are in a good agreement with the simulated values.
Following the developments in personal portable system which has multimode function, it could have EM interference at the interface. To solve this issue, a compact EMI filter array is proposed in the second part. This component is a full-integrated electromagnetic interference (EMI) filter array which was realized using mixed type material that is described for the first time, and this device is implemented via LTCC (low-temperature co-fired ceramic) technology . To miniaturize the size of the component and retain the high rejection and low insertion loss, a mixed powder material with a higher permittivity and lower loss tangent is used in the design and fabrication of the filter. The material system used in this study is BaNd2Ti4O12 (BNT) + Ni-Cu-Zn ferrite. The addition of Bi2O3 reduces the sintering temperature to less than 900 ℃. A compact EMI filter array architecture with a wide rejection band and sufficient isolation is introduced as well. In development of wireless communications, the spectrum for global 4G-LTE covers different frequencies of 700 – 2600 MHz. In this investigation, an EMI filter array is presented that rejects unwanted frequencies from 700–2690 MHz and covers all 4G-LTE bands. The overall dimensions of the EMI filter array are 1.6 mm (L) x 0.8 mm (W) x 0.5 mm (H), the smallest reported so far. The measured results of the developed filter are in good agreement with the results simulated by a full-wave electromagnetic simulator.
目次 Table of Contents
Chapter 1 Introduction........................................................................................................ 1
1.1 Research Motivation.....................................................................................................1
1.2 Introduction of Low-Temperature Co-Fired Ceramic Technology.........................................7
1.2.1 Low-Temperature Co-Fired Ceramic Process...........................................................7
1.2.2 Material System for Low-Temperature Co-Fired Ceramic.........................................10
1.3 Overview of Dissertation...............................................................................................12

Chapter 2 Design of a Compact Bandpass Filter with a Wide Stop-Band in the LGA package..14
2.1 Design Methodology of Minimize Bandpass FIlter...........................................................14
2.2 Three Dimensions of the Proposed Bandpass Filter........................................................22
2.3 Tuning of Transmission Zeros and Discussion of the effect of Side Terminations................27
2.4 Measurement Results and Comparisons........................................................................29
2.5 Summary of Chapter....................................................................................................33

Chapter 3 Minimized Dual-Band Bandpass FIlter Using λ/4 Resonators and Open-Stub Lines..34
3.1 Design of a Minimized Dual-Band Bandpass Filter using series λ/4 Resonators and Open-Stub Lines........................................................................................................................34
3.2 Three-Dimensional Layout of the Proposed Dual-Band Bandpass Filter.............................45
3.3 Measurement Results..................................................................................................47
3.4 Summary of Chapter....................................................................................................50

Chapter 4 Optimum Design of the Dual-Band Bandpass Filter Using Shunt Architecture...........51
4.1 Design Approach for the Dual-Band Bandpass Filter Using Shunt Architecture...................51
4.2 Design Simulation and Measurement Results.................................................................62
4.3 Measurement Results and Analysis...............................................................................65

Chapter 5 Design and Analysis of a Compact Multilayer EMI Filter Array for 4G-LTE Applications......................................................................................................................71
5.1 Design Concept of the EMI FIlter Array...........................................................................71
5.1.1 Circuit Model for the EMI Filter Array......................................................................75
5.1.2 Material System...................................................................................................79
5.2 Simulation Results.......................................................................................................84
5.3 Measurement Results...................................................................................................95

Chapter 6 Conclusions......................................................................................................106
參考文獻 References
[1] H. Yang, S.-B. Liu, X.-K. Kong, H.-C. Zhao, and B.-R. Bian, “A triple-mode passband Filter with improved upper- stop-band performance,” in Proc. Progress in Electromagnetics Research, pp. 217–220, Aug. 12-15, 2013.
[2] F. Cheng, X. Q. Lin, Y. Jiang, K. J. Song, and Y. Fan, “Microstrip filters with adjustable transmission zeros using inductive-coupled open stub-loaded resonators,” Progress in Electromagnetics Research, pp.1360–1363, Aug. 25-28, 2014.
[3] H. H. Ta and A.-V. Pham, “Compact wide stopband bandpass filter on multilayer organic substrate,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 3, pp.161–163, Mar. 2014
[4] H.-H. Huang and T.-S. Horng, “Design of second-order inductive-coupled resonator-based banspass filter with controllable multiple transmission zeros,” Progress in Electromagnetic Research, pp.291–294, Mar. 25-28, 2013.
[5] Y.-H. Jeng, S.-F. R. Chang, and H.-K. Lin, “A high stopband-rejection LTCC filter with multuple transmission zeros,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 2, pp.633– 638, Feb. 2006.
[6] Z. Zhang, Y. Lu. W. Pang, D. Zhang and H. Zhang, “A high performance C-band FBAR filter,” in IEEE Proc. Asia-Pacific Microw. Conf. pp. 923 – 926, 2013.
[7] K. Wang, U. Koelle, J. D. Larson III, R. Thalhammer and S. Martin, “ FBAR laterally coupled resonator filter,” in IEEE Proc. International Ultrasonic Symp., pp. 1 – 5, 2015.
[8] S. Lee, V. Lee, S. A. Sis, and A. Mortazawi, “Linearity analysis of intrinsically switchable ferroelectric FBAR filters,” in IEEE Proc. of MTT-S International Microw. Symp., pp. 1 – 3, 2013.
[9] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithis dual band filter using ceramic lamination technique for dual mode portable telephones,” in Proceeding of IEEE MTT-S IMS, vol.2, pp.789– 792, Jun. 1997.
[10] X. Luo, H. Qian, J.-G. Ma, and K. S. Yeo, “A compact wide stopband microstrip bandpass filter using quarter-wavelength shorted coupled-lines,” in IEEE Proc. Asis-Pacific Microw. Conf., pp.1142–1145, 2010.
[11] C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “Microstrip dual-band bandpass filter design with closely specificed passbands,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp. 98–106, Jan., 2013
[12] S.-F. Chang, Y.-H. Jeng, and J.-L. Chen, “Dual-band step-impedance bandpass filter for multimode wireless LANs,” Electron. Lett., vol. 4, no. 1, pp. 38–39, Jan., 2004.
[13] S. Sun and L. Zhu, “Compact dual-band microstrop bandpass filter without external feed,” IEEE Microw. Wireless Compon. Lett. vol. 15, no. 10, pp. 644–646, Oct., 2005.
[14] Y. P. Zhang and M. Sun, “Dual-band microstrop bandpass filter using stepped-impedance resonators with new coupling schemes,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[15] S. J. Sun, T. Su, K. Deng, B. Wu, and C. H. Liang, “Compact microstrip dual-band bandpass filter using a novel stub-loaded quad-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 23, no.9, pp.465 – 467, Sep., 2013.
[16] J. Le, S. S. Huang, and J. Z. Zhao, “Compact dual-wideband bandpass filter using a novel penta-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 10, pp. 668 – 670, Oct., 2014.
[17] S. Zhang and L. Zhu, “Compact Split-type dual-band bandpass filter based on λ/4 resonators,” IEEE Microw. Wireless Compon. Lett.,vol. 23, no. 7, pp. 344 – 346, Jul., 2013.
[18] Y. Liu and W. Dou, “A dual-band filter realized by alternately connecting the main transmission-line with shut stubs and shunt serial resonators,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 296 – 298, May 2009.
[19] Y. Sung, “Dual-mode dual-band filter with band notch structures,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 73 – 75, Feb., 2010.
[20] C. –C. Chen, “Dual-band bandpass filter using coupled resonator pairs,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp. 249 – 261, April, 2005..
[21] C.-W. Tang and S.-F. You, “Using the technology of low temperature co-fired ceramic to design the dual-band bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 407 – 409, July 2006.
[22] J. M. Yan, L. Z. Cao, J. Xu, and R. S. Chen, “ Design of a fourth-order dual-band bandpass filter with independently controlled external and inter-resonator coupling,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 642–644, 2015.
[23] C. H. Chen, C. H. Huang, T. S. Horng, and S. M. Wu, “Highly miniaturized multiband bandpass filter design based on a stacked spiral resonator structure,” IEEE Trans. Microw. Theory Tech, vol.60, no.5, pp.1278–1286, 2012.
[24] X. Y. Zhang, C. H. Chan, Q. X, and B. J. Hu, “Dual-band bandpass filter with controllable bandwidths using two coupling paths”, IEEE Microw. Wireless Compon. Lett. , vol. 20, no. 11, pp. 616–618, 2010.
[25] T. M. Tuan, “Design dual band microstrip antenna for next generation mobile communication,” International Conference on Advanced Technologies for Communications (ATC), pp.331–335, 2010.
[26] A. N. Kulkarni and S. K. Sharma, “A compact multiband antenna with MIMO implementation for USB size 4G LTE wireless devices,” IEEE Int. Symp. Antenna and propagation, pp.2215–2218, 2011.
[27] Y. -X.Guo, Z. Y. Zhang, and L.-C. Ong, “Design of miniaturized LTCC baluns,” in proceeding of MTT-S International Microwave Symp. Dig., pp. 1567 – 1570, 2006.
[28] S. Vasudevan, “The effect of processing parameters and surface roughness of conductor traces on the microwave properties of LTCC substrate,” Electronic Materials Division in Ferro Corporation.
[29] H. Jantunen, “A novel low temperature co-fired ceramic (LTCC) material for telecommunication devices,” Department of electrical engineer and infotech Oulu, University of Oulu.
[30] C.-F. Chang and S.-J. Chung, “Bandpass filter of serial configuration with two finite transmission zeros using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 2383 – 2388, Jul. 2005.
[31] L. K. Yeung and K. L. Wu, “A compact second-order LTCC bandpass filter with two finite transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 336 – 341, Feb. 2003.
[32] C. -W. Tang, C.-W. Shen, and P.-J Hsieh, “Design of low-temperature co-fired ceramic bandpass filter with modified coupled inductors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 172 – 179, Jan. 2009.
[33] C. -W. Tang and H. -C. Hsu, “Development of multilayered bandpass filters with multiple transmission zeros using open-stub/short-stub/serial semilumped resonators,” IEEE Trans. Microw. Theory Tech., vol. 58, no.3, pp. 624 – 634, Mar. 2010.
[34] T. Yang, M. Tamura, and T. Itoh, “Super compact low-temperature co-fired ceramic bandpass filters using the hybrid resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no.11, pp. 2896 – 2907, Nov. 2010.
[35] C. –H. Teng, J. –M. Sun, C. –W. Tang, and Y. –C. Lin, “Using spur lines to develop the microstrip bandpass filter with a wide stopband,” in Proc. IEEE Asia-Pacific Microwave Conf. 2012, Kaohsiung, Taiwan, Dec. 4 – 7, 2012, pp. 106 – 108.
[36] M.-G. Kim, B.H. Lee, and T.-Y. Yun, “Equivalent-circuit model for high-capacitance MLCC based on transmission-line theory,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 2, no. 6, pp.1012–1020, 2012.
[37] S. Oshima, K. Wada, R. Murata, and Y. Shimakata, “Multilayer dual-band bandpass filter in low-temperature co-fired ceramic substrate for ultra-wideband applications,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 3, pp. 614 –623, Mar., 2010.
[38] A. M. Elelimy and A. M. EL-Tager, “Dual-band BPF embedded in multilayer lower temperature co-fired ceramics (LTCC) for WiMAX application,” in IEEE International Conference on Engineering and Technology (ICET), Apr. 2014.
[39] M. Z. M. Sail, Z. I. Khan, K. A. Othman, and M. K. M. Salleh, “Multilayer broadside-coupled dual-band bandpass ring filter for WLAN applications,” in IEEE International RF and Microwave Conference, Dec. 2015, pp.
[40] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/MICROWAVE Applications. New York; Wiley, 2001.
[41] C. C. Chen, “Dual-band bandpass filter using coupled resonator pairs,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 4, pp.259-261, April 2005.
[42] C. -W. Tang and S. -F. You, “Using the technology of Low Temperature Co-Fired Ceramic to Design the Dual-Band Band pass Filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 7, pp. 407-409, July 2006
[43] C. Y. Hsu, C. Y. Chen, and H.-R. Chuang, “A miniaturized dual-band bandpass filter using embedded resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 658–660, Dec. 2011.
[44] J. H. Part, S. J. Chen, J. Y. Paer, and J. T. Lim, “Ultra-compact dual-band WLAN filter using independent band stop resonators,” IEEE Electron. Compon. Technol. Conf., pp. 2096–2100, 2011.
[45] J. M. Yan, L. Z.Cao, J. Xu, and R. S. Chen, “Design of a fourth-order dual-band bandpass filter with independently controlled external and inter-resonator coupling,” IEEE microw. Wireless Compon. Lett., vol. 25, no. 10, pp. 642 – 644, Oct. 2015.
[46] C. H. Chen, C. H. Huang, T. S. Horng, and S. M. Wu, “Highly miniaturized multiband bandpass filter design based on a stacked spiral resonator structure,” IEEE Trans. Microw. Technology Tech., vol. 60, no. 5, pp.1278 – 1286, May 2012.
[47] H. W. Wu, Y. F. Chen, and Y. W. Chen, “Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform –impedance resonators,” IEEE Microw. Wireless Compone. Lett., vol. 22, no. 3, pp. 114 – 116, Mar. 2012.
[48] X. Z. Zhang, C. H. Chan, Q. Xi, and B. J. Hu, “Dual-band bandpass filter with controllable bandwidths using two coupling paths,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 115, pp. 616 – 618 , Nov. 2010.
[49] K. C. Lin, C. F. Chen, M. C. Wu, and S. J. C, “Dual-bandpass filters with serial configuration using LTCC technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2321–2328, June 2006.
[50] S. Lee and Y. Lee, “A uniform coupled-line dual-band filter with different bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 12, pp. 691–671, Dec. 2006.
[51] Y. X. Guo, L. C. Ong, M. Y. W. Chia, and B. Luo. “Dual-band bandpass filter in LTCC,” in IEEE MTT-S Int. Micro. Synp. Dig., pp. 2019 – 2022, 2005.
[52] E. E. Djoumessi and K. Wu, “Multilayer dual-mode dual-bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 21 – 23, Jan. 2009.
[53] A. S. Liu, T. Y. Huang, and R. B. Wu, “A dual wideband filter design using frequency mapping and stepped-impedance resonators,” IEEE Trans. Microw. Theory Tech., vol.56, no. 12, pp. 2921 – 2922, Dec., 2008.
[54] K. -S. Chin, J. -L. Huang, C. -W. Huang, J. S. Fu, B. –G. Chen, and T. –J.Chen, “LTCC dual-band stepped-impedance-stub filter with vertically folded structure,” IET Electron. Lett., vol. 46, no. 23, pp. 1554 – 1556, 2010.
[55] P. K. Singh, S. Basu, and Y. –H Wang, “Miniature dual-band filter using quarter wavelength stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 88 – 90, Feb., 2008.
[56] Y. –C. Chang, C. –H. Kao, M. –H. Weng, and R. –Y. Yang, “Design of the compact dual-band bandpass filter with high isolation for GPS/WLAN application,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 23, pp.780 – 782, Dec., 2009.
[57] R. G. Garcia and M. S. Renedo, “Microwave dual-band bandpass planar filters based on generalized brahch-line hybrids,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp.3760 – 3769, Dec., 2010.
[58] C. Y. Hsu, C. Y. Chen, and H. R. Chuang, “Microstrip dual-band bandpass filter design with closely specified passbands,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 1, pp.98 – 106, Jan., 2013.
[59] A.Gence, R. Baktur, and R. J. Jost, “Dual-bandpass filters with individually controllable passbands,” IEEE Trans. Compont. Packag. Manuf. Technol., vol. 3 no. 1, pp.105 – 112, Jan. 2013.
[60] W. Shen, W. Y. Yin, and X. W. Sun, “Miniaturized dual-band substrate ntegrated waveguide filter with controllable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 8, pp.418 – 430, Aug. 2011.
[61] Z. Luo, H. Qian, J. G. Ma, K. Ma, and K. S. Yeo, “Compact dual-band bandpass filter using novel embedded spiral resonator (ESR),” IEEE Microw., Wireless Compont. Lett., vol. 20, no. 8, pp. 418 – 430, Aug., 2011.
[62] G. L. Matthael, L. Young, and E. M. Jones, Mircowave filters, Impedance -Matching Network and Coupling Structures. Norwood, MA: Artech House, 1980.
[63] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications. John Wiley & Sons. Inc., 2001.
[64] D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.
[65] A. B. Menicanin, M. S. Damnjanovic, L. D. Zivanov, and O.S. Aleksic, “ Improved model of T-type LC EMI chip filters using new microstrip test fixture,” IEEE Trans. Magn., vol. 47, no. 10, pp.3975–3978, 2011.
[66] X. Wu, D. Xu, Z. Wen, Y. Okuma, and K. Mino, “Design, modeling, and improvement of integrated EMI filter with flexible multilayer foils,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1344–1354, May 2011.
[67] S. K. Lee, K. S. Park, K. S. Lee, S. R. Yoon, O. S. Choi, N. D. Kim, M. Hayakawa, and Y. Kami, “An improved LC filter for reduction of WWAN noise,” Proc. IEEE Int. Symp EMC, pp.1–4, Aug. 18–22, 2008
[68] V. Maric, N. Begenisic, O. Aleksic, L. Zivanov, M. Lukovic and A. Menicanin, “Differential balanced symmetrical T- type LC for EMI chip filters and their EM simulation,” In Proc. IEEE int. Conf. on Microelec., pp.237–240, May 11-14, 2008.
[69] V. Maric, A. Menicanin, L. Živanov, and O. Aleksi, “Cascade configuration of inverted T-Type LC EMI chip filters and its EM simulation,” IEEE EUROCON, pp.218–223, 2009.
[70] U. Sharma, H. Gee, D. Liou, P. Holland, and R. Liu, “Integration of precision passive components on silicon for performance improvements and miniaturization,” 2nd Electronics System-integration Technology Conference, pp.485–490, 2008.
[71] S. Hiura, T. Kitahara, and Y. Oohashi, “RF design of on-chip EMI filters in CMOS logic IC,” Proc. Of European Microwave Confierence, pp.187 – 190, 2008.
[72] A. K. Tiwary and N. Gupta, “Electromagnetic interference reduction using electromagnetic bandgap structures,” International conference on Electromagnetic Interference & Compatibility, pp.33–36, 2008.
[73] S. Wang, F. C. Lee, W. G. Odendaal, and J. D. van Wyk, “Improvement of EMI filter performance with parasitic coupling cancellation,” IEEE Trans. Power Electron., vol. 20, no. 5, pp.1221–1228, Sep. 2005.
[74] S. Wang, F. C. Lee, Dan. Y. Chen, and W. G. Odendaal, “Effects of parasitic parameters on EMI filter performance,” IEEE Trans. Power Electron., vol. 19, no. 3, pp. 869– 877, May 2004.
[75] S. Wuy, X. Wei, X. Wang, H. Yang, and S. Gao, “Effect of Bi2O3 additive on the microstructure and dielectric properties of BaTiO3-based ceramics sintered at lower temperature,” J. Mater. Sci. Technol., 26(5), pp. 472–476, 2010.
[76] T. M. Peng, R. T. Hsu, and J. H. Jean, “Dielectric and magnetic properties of low-temperature fired ferrite-dielectric composites,” J. Am. Ceram. Soc., 89 [9], pp. 2822–2827, 2006.
[77] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering,” Appl. Phs. Lett., vol.84, no.10, pp. 1731–1733, 2004.
[78] Kyocera Manufacturing Co. Ltd., 2012, EMI filters [Online]. Available: www.kyocera.com.
[79]TDK Manufacturing Co. Ltd., 2012, EMI Filters [Online]. Available: www.tdk.com.
[80] Murata Manufacturing Co. Ltd, 2012, EMI filters.
[81] D. M. Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005.
[82] HFSS. Ansys Corporation, PA, 2010
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code