Responsive image
博碩士論文 etd-0407113-233141 詳細資訊
Title page for etd-0407113-233141
論文名稱
Title
發展複合式薄膜系統回收廢水及地下水
Development of a hybrid membrane system for wastewater and groundwater reclamation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-25
繳交日期
Date of Submission
2013-05-07
關鍵字
Keywords
三氯乙烯、水回收、複合式薄膜、薄膜污堵、溶解性微生物產物
soluble microbial products, trichloroethylene, water recycling, membrane fouling, coagulation, hybrid membrane system
統計
Statistics
本論文已被瀏覽 5747 次,被下載 0
The thesis/dissertation has been browsed 5747 times, has been downloaded 0 times.
中文摘要
本論文發展複合式薄膜分離系統(hybrid membrane system)進行廢水回收及地下水污染處理之研究,試驗方法包含實驗室批次試驗(batch test)、模廠測試(pilot test)及離地(ex situ)地下水試驗。模廠及地下水試驗之用水來源,取某加工區之二級放流水及受含氯有機污染地下水,其中實驗室批次試驗則取區內半導體封裝原廢水(packaging wastewater)進行之。半導體製程之封裝廢水含多量無機性之奈米(nano)與微米(micro)級細顆粒,經處理結果得知廢水pH值中性時,快混與慢混分別添加低耗鹼度之多元氯化鋁(poly aluminum chloride, PAC)及陽性高分子聚合物[cationic polymer, polyacrylamide (CPAM)(-CH2-CH-)n],其水質可符合模廠薄膜之進水要求,顯示化學法可破壞膠體粒子之穩定性(destabilize),並促進膠羽(floc)凝聚縮短沉降時間。模型廠試驗結合具有之快濾及初濾保護功能之纖維快濾(fiber ball filtration, FF),使水質可達到薄膜使用之進水要求,而透過此複合式薄膜系統處理該加工區之二級放流水,結果顯示FF串聯雙薄膜 (double membrane system, DMS)時,當FF濾速控制88 m/hr、壓力小於1.5 kg/cm2濁度去除率可維持70%之上,超級過濾(ultrafiltration, UF)操作控制壓力為3.06 kgf/cm2、產水量為26 L/m2-min運轉至800分鐘需進行反沖洗(12% NaOCl 及 50% citric acid),另逆滲透(reverse osmosis, RO)之操作結果得知,高產水量(recovery rate > 40%)之要求下,無法降低現地模廠清水之導電度。地下水採離地(ex situ)試驗,利用薄膜濃縮機制處理受三氯乙烯(trichloroethylene, TCE)污染之地下水,結果顯示當截留分子量(molecular weight cutoff, MWCO)為200 Da (Dalton)之奈米過濾薄膜(nano-filtration, NF),因篩除與靜電排斥(electrostatic repulsion)增加TCE之回收效果,故透過複合式薄膜分離處理後,地下水之滲透液可符合地下水污染管制、監測、冷卻及澆灌用水標準。透過薄膜通量(membrane flux)結果得知,本研究放流水及地下水由複合式薄膜處理可分別提升6.8%及8.9%,其中放流水以螢光激發發射光譜(excitation emission fluorescence matrix )分析結果,顯示其水質含溶解性微生物產物(soluble microbial products, SMP)及蛋白質(protein)。
Abstract
The objective used hybrid membrane system for wastewater recycling and groundwater remediation. The study methods included laboratory batch testing, pilot testing, and ex situ groundwater treatment. Wastewater and groundwater samples were collected form a semiconductor-processing site in export processing zone. The proposed pretreatment for batch test involves chemical coagulation-flocculation followed by packaging wastewater treatment with polyaluminum chloride (PAC) and a polyacrylamide cationic polymer [(CPAM)(-CH2-CH-)n] that would increase floc cohesion and disrupt the stability of colloidal particles at neutral pH value. Our purpose was to meet the recycled influent water quality requirements of a model wastewater-reclamation plant by using a fiber-ball filtration (FF) treatment process that combined rapid sand filtration and a membrane filter advantages. The results showed that the FF series double membrane system (DMS). Results show the FF filtration system controlling the filtration rate and pressure to 88 m/h and 1.5 kg/cm2, respectively, that was reduced turbidity by more than 70%. Under these conditions, the ultrafiltration (UF) membrane control pressure was 3.06 kgf/cm2, and the permeation flow was 26 L/m2•min. Operating the UF system for more than 800 min required the addition of 12% NaOCl and 50% citric acid to maintain conductivity and increase the RO membrane efficiency. When high recovery rate more than 40% for water yield that could not decrease the conductivity in model plant. Groundwater ex situ test on trichloroethylene (TCE) concentrate was used for the membrane toleration test. Results show when use 200 Da nano-filtration (NF) membrane that provides electrostatic repulsion mechanism to optimal TCE solution processing. And permeate of groundwater form hybrid membrane system that was meet groundwater pollution control, monitoring, cooling, and irrigation standards. The membrane flux in the hybrid-membrane system increased by 6.8% and 8.9% for wastewater and groundwater samples, respectively. And membrane analysis of hybrid membrane system permeate was showed the presence of soluble microbial products (SMP) and proteins.
目次 Table of Contents
誌謝 I
摘要 II
Abstract III
English language roots chart IV
List of Contents V
List of Figures VII
List of Tables VIII
Chapter 1 Introduction 2
1.1 Background 2
1.2 Objectives 3
Chapter 2 Literature review 6
2.1 Packaging wastewater in semiconductor factory 6
2.1.1 Nano-particles removal methods 6
2.1.2 Environmental fate 8
2.2 Groundwater contamination 9
2.2.1 Trichloroethylene groundwater 9
2.2.2 Groundwater remediation technologies 10
2.3 Application of water treatment technologies 12
2.3.1 Physical 12
2.3.2 Chemical 14
2.3.3 Bio-treatment 17
2.3.4 Water reuse regulations 18
2.4 Membrane application limits and fouling mechanisms 20
2.4.1 Characteristics on membrane fouling 24
2.4.1.1 Biological and organic fouling 25
2.4.1.2 Colloid fouling 27
Chapter 3. Materials and methods 30
3.1 Sampling locations 30
3.1.1 Packaging wastewater 31
3.1.2 Pilot system influent 32
3.1.3 Groundwater 32
3.2 Experimental conditions 34
3.2.1 Coagulation/flocculation 34
3.2.2 Sand filtration 36
3.2.3 Fiber ball filtration 37
3.2.4 Lab-scale membrane separation test 39
3.2.5 Hybrid membrane processes 42
Chapter 4 Results and Discussion 48
4.1 Locations and sampling 48
4.1.1 Characteristics of packaging wastewater 48
4.1.2 Characteristics of TCE groundwater 51
4.2 Laboratory test of packaging wastewater 54
4.2.1 Sand filtration efficiency 54
4.2.2 Optimum conditions for coagulation/flocculation 55
4.2.3 Treatment efficiencies of three-stage system 59
4.2.4 Membrane surface and inner structure accumulation 62
4.3 On site pilot test 63
4.3.1 Characteristics of influent 63
4.3.2 Coagulation/flocculation 65
4.3.3 Fiber ball filtration 67
4.3.4 DMS (UF/RO) processes 68
4.3.5 Reclamation on hybrid membrane system 71
4.4 Groundwater reclamation 74
4.4.1 Performance of pretreatment 74
4.4.2 Results of TCE membrane tolerance 74
4.4.3 Groundwater ex-situ purification 76
4.5 Membrane flux and fouling evaluate 79
Chapter 5 Conclusion and Recommendations 85
5.1 Conclusion 85
5.2 Laboratory batch test. 85
5.3 On-site pilot-scale system 86
5.4 Trichloroethylene groundwater reclaimed. 87
5.5 Recommendations 88
References 91
參考文獻 References
Al-Amoudi, A.S. (2010) “Factor affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review”, Desalination, 259, 1–10.
Al-Amoudi, A., Williams, P., Mandale, S., Lovitt, R.W. (2007) “Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability”, Sep. Sci. Technol. 54(2), 234-240.
Avşar, Y., Kurt, U., Gönüllü, T. (2007) “Comparison of classical chemical and electrochemicalprocesses for treating rose processing wastewater”, J. Hazard. Mater. 148(1-3), 340-345.
Ahmad, A.L., Sumathi, S., Hameed, B.H. (2006) “Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC”, Chem. Eng. J. 118, 99–105.
American Public Health Association, American water works association & water environment federation, (2005) “Standard methods for the examination of water and wastewater”, APHA, 21st ed. Washington, D.C. USA.
Aguilar, M.I., Sáez, J., Lloréns, M., Soler, A., Ortuňo, J.F. (2003) “Microscopic observation of particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferric sulphate as coagulant and different coagulant aids”, Water Res. 37(9), 2233-2241.
Abdessemed, D., Nezzal, G. (2002) “Treatment of primary effluent by coagulation-adsorption-ultrafiltration for reuse”, Desalination, 152, 367–373.
Barredo-Damas, S., Alcaina-Miranda, M.I., Bes-Piá, A., Iborra-Clar, M.I., Iborra-Clar, A., and Mendoza-Roca, J.A. (2010) “Ceramic membrane behavior in textile wastewater ultrafiltration”, Desalination, 250, 623–628.
Buttiglieri, G., Bouju, H., Malpei, F., Ficara, E., Canziani, R. (2010) “Microcalorimetry: A tool to investigate aerobic, anoxic and anaerobic autotrophic and heterotrophic biodegradation”, Biochem. Eng. J., 52, 25–32.
Bellona, C., Marts, M., and Drewes, J.E. (2010) “The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membrane”, Sep. Purif. Technol. 74, 44–54.
Bennett, P., Gandhi, D., Warner, S., Bussey, J. (2007) “In situ reductive dechlorination of chlorinated ethenes in high nitrate groundwater”, J. Hazard. Mater. 92, 103-114.
Bomo, A.M., Ekeberg, D., Stevik, T.K., Hanssen, J.F., Frostegard, A. (2004) “Retention and removal of the fish pathogenic bacterium Yersinia ruckeri in biological sand filters”, J. Appl. Microbiol. 97, 598–608.
Baker, R.W., Membrane technology and applications. McGraw-Hill. (2004) ISBN: 0071354409.
Boopathy, R. (2000) “Factors limiting bioremediation technologies”, Bioresour. Technol. 74, 63–67.
Baker, S.J., and Dudley, L.Y. (1998) “Biofouling in membrane systems – A review”, Desalination, 118, 81–90.
Davis, M. L. (2011) “water and wastewater engineering, design principles and practice”, Mc Graw-Hill, ISBN 978-007-128924-5.
Chen, K.F., Kao, C.M., Chen, C.W., Surampalli, R.Y., Lee, M.S. (2010) “Control of petroleum-hydrocarbon contaminated groundwater by intrinsic and enhanced bioremediation”, Journal of Environmental Sciences-China. 22(6), 864-871.
Clech, P.L. (2010) “Membrane bioreactors and their uses in wastewater treatment”, Appl. Microbiol. Biotechnol. 88, 1253–1260.
Chae, S.R., Yamamura, H., Choi, B., Watanabe, Y. (2009) “Fouling characteristics of pressurized and submerged PVDF (polyvinylidene fluoride) microfiltration membranes in a pilot-scale drinking water treatment system under low and high turbidity conditions”, Desalination, 244, 215–226.
Choi, J.S., Hwang, T.M., Lee, S., Hong, S. (2009) “A systematic approach of determine the fouling index for a RO/NF membrane process”, Desalinatio, 238, 117–127.
Chae, S.R., Yamamura, H., Ikeda, K., Watanabe, Y. (2008) “Comparison of fouling characteristics of two different poly-vinylidene fluoride microfiltration membranes in a pilot-scale drinking water treatment system using pre-coagulation/sedimentation, sand filtration, and chlorination”, Water Res. 42, 2029–2042.
Choo, K.H., Choi, S.J., Hwang, E.D. (2007) “Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system”, Desalination, 202, 262–270.
Cornelissen, E.R., Vrouwenvelder, J.S., Heijman, S.G.J., Viallefont, X.D., van Der Kooji, D., Wessels, L.P. (2007) “Periodic air/water cleaning for control of biofouling in spiral wound membrane elements,” J. Memb. Sci. 287, 94–101.
Chuang, S.H., Chang, W.C., Chang, T.C., You, S.J. (2006) ”Improving the removal of anions by coagulation and dissolved air flotation in wastewater reclamation. Environ. Technol. 27 (2006) 493–500.
Clech, P.L., Chen, V., Fane, T.A.G., Fouling in membrane bioreactor used in wastewater treatment. J. Memb. Sci. 284 (2006) 17–53.
Côté, P., Masini, M., Mourato, D., Comparison of membrane options for water reuse and reclamation. Desalination. 167 (2004) 1–11.
Chen, W., Westerhoff, P., Leenheer, J.A, Booksh, K., Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 37(24) (2003) 701–5710.
Drews, A., Vocks, M., Bracklow, U., Iversen, V., and Kraume, M., Does fouling in MBRs depend on SMP? Desalination, 231 (2008) 141–149.
Fan, L., Harris, J.L., Roddick, F.A., Booker, N.A., Influence of the characteristics of natural organic matter on the fouling of microfiltration membranes. Water Res. 35(18) (2011) 4455-4463.
Foss-Hansen, S., Baun, A., Michelson, E.S., Kamper, A., Borling, P., Stuer-Lauridsen, F., Nanomaterials in consumer products: categorization and exposure assessment. in nanomaterials: risks and benefits. Linkov, I., Steevens, J., Eds.; Springer: Dordrecht, The Netherlands, (2009) 359-368.
Fuchs, W., Theiss, M., Braun, R., Influence of standard wastewater parameters and pre–flocculation n the fouling capacity during dead end membrane filtration of wastewater treatment effluents, Sep. Purif. Technol. 52 (2006) 46–52.
Federal Register, National primary and secondary drinking water regulations, Fed. Reg. 54 (1981) 22062-22160.
Gregoire, M., Soetaert, K., Carbon, nitrogen, oxygen and sulfide budgets in the Black Sea: A biogeochemical model of the whole water column coupling the oxic and anoxic parts, Ecol. Modell., 221 (2010) 2287–2301.
Gohary, F.E., Tawfik, A., Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination. 249(3) (2009) 1159-1164.
Guibal, E., Van Vooren, M., Dempsey, B.A., A review of the use of chitosan for the removal of particulate and dissolved contaminants, Sep. Sci. Technol. 41 (2006) 2487-2514.
Greenberg, G., Hasson, D., Semiat, R., Limits of RO recovery imposed by calcium phosphate precipitation. Desalination, 183 (2005) 273–288.
Huang, C.J., Yang, B.M., Chen, K.S., Chang, C.C., Kao, C.M., Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desalination, 278 (2011) 203–210.
Healy, M.G., Burke, P., Rodgers, M., The use of laboratory sand, soil and crushed-glass filter columns for polishing domestic-strength synthetic wastewater that has undergone secondary treatment, J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 45 (2010) 1635–1641.
Huang, C.J., Chen, K.S., Kao, C.M., Chang, C.C., Study on the performance improvement of fiber ball filter filtration system. 2010 Asia-Pacific Conference on Desalination and Water Reclamation. June 22-25 (2010), Qingdao, China.
Hung, P.V.X., Cho, S.H., Moon, S.H., Prediction of boron transport through seawater reverse osmosis membranes using solution-diffusion model. Desalination. 247 (2009) 33–44.
Huang, H., Schwab, K., Jacangelo, J.G., Pretreatment for low pressure membranes in water treatment: a review. Environ. Sci. Technol. 43 (2009) 3011–3019.
Hsu, Y.U., Wu, H.Z., Ye, M.H., Chen, J.P., Huang, H.L., Lin, P.H.P., An industrial-scale biodegradation system for volatile organics contaminated wastewater from semiconductor manufacturing process. J. Taiwan Inst. Chem. Eng. 40(1) (2009) 70-76.
Her, N., Amy, G., Chung, J., Yoon, J., and Yoon, Y., Characterizing dissolved organic matter and evaluating associated nanofiltration membrane fouling. Chemosphere, 70 (2008) 495–502.
Hoinkis, J., Panten, V., Wastewater recycling in laundries-From pilot to large-scale plant. Chem. Eng. Prog. 47(7) (2008) 1159-1164.
Handy, R.D., von der Kammer, F., Lead, J.R., Hassellöv, M., Owen, R., Crane, M. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17(4) (2008) 287-314.
Haberkamp, J., Ruhl, A.S., Ernst, M., Jekel, M., Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration, Water Res. 41 (2007) 3794–3802.
Handy, R.D., Shaw, B.J., Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc. 9(2) (2007) 125-44.
Heng, S., Yeung, K.L., Djafer, M., Schrotter, J.C., A novel membrane reactor for ozone water treatment, J. Memb. Sci., 289 (2007) 67–75.
Howell J.A., Future of membrane and membrane reactor in green technologies and for water reuse, Desalination. 162 (2004) 1–11.
Huber, M.M., GÖbel, A., Joss, A., Hermann, N., LÖffler, D., McArdell, C.S., Ried, A., Siegrist, H., Ternes, T.A., Gunten, U., Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: a pilot study. Environ. Sci. Technol. 39 (2005) 4290-4299.
Hong, S.K., Elimelech, M., Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membrane. J. Memb. Sci. 132 (1997) 159–181.
Interstate Technology & Regulatory Council (ITRC) (2005) Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater, Technical/Regulatory Guidance.
Juwarkar, A.A., Singh, S.K., Mudhoo, A., A comprehensive overview of elements in bioremediation, Rev. Environ. Sci. Biotechnol. 9 (2010) 215–288.
Janhom, T., Wattanachira S., Pavasant P., Characterization of brewery wastewater with spectrofluorometry analysis. Journal of Environmental Management, 90 (2009) 1184–1190.
Juang, Y.C., Lee, D.J., Lai, J.Y., Fouling layer on hollow-fibre membrane in aerobic granule membrane bioreactor, J. of the Chinese Institute of Chemical Engineers, 39 (2008) 657–661.
Kang, Y.W., Mancl, K., Tuovinen, O., Treatment of Turkey processing wastewater with sand filtration, Bioresour. Technol. 98(7) (2007) 1460-1466.
Jung, C.W., Son, H.J., Kang, L.S., Effects of membrane material and pretreatment coagulation on membrane fouling: fouling mechanism and NOM removal. Desalination, 197 (2006) 154–164.
Kuo, Y.C., Cheng, S.F., Liu, P.W.G., Chiou, H.Y., Kao, C.M., Application of enhanced bioremediation for TCE-contaminated groundwater: a pilot-scale study. Desalination and water treatment. 41(1-3) (2012) 364-371.
Kim, D., Jung, S., Sohn, J., Kim, H., Lee, S., Biocide application for controlling biofouling of SWRO membranes–an overview. Desalination. 238 (2009) 43–52.
Konieczny, K., Sakol, D., Plonka, J., Rajca, M., Bodzek, M., Coagulation-ultrafiltration system for river water treatment. Desalination. 240(1-3) (2009) 151-159.
Kao, C.M., Chen, C.Y., Chen, S.C., Chien, H.Y., Chen, Y.L., Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere, 70(8) (2008) 1492–1499.
Kumar, A., Dewulf, J., Langenhove, H.V., Membrane-based biological waste gas treatment. Chem. Eng. J. 136 (2008) 82–91.
Kimura, K., Maeda, T., Yamamura, H., Watanabe, Y., Irreversible membrane fouling in microfiltration membrane filtering coagulated surface water. J. Member. Sci. 320 (2008) 356–362.
Khan, S.J., Visvanathan, C. Influence of mechanical mixing intensity on a biofilm structure and permeability in a membrane bioreactor. Desalination, 231 (2008) 253–267.
Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J., Snyder, S.A., Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 41 (2007) 1013–1021.
Kao, C.M., Chai, C.T., Liu, J.K., Yeh, T.Y., Chen, K.F., Chen, S.C., Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res. 38(3) (2004) 663–672.
Kao, C.M., Chen, S.C., Su, M.C., Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation Chemosphere, 44( 5) (2001) 925-934 .
Klein, E., Affinity membranes: a 10-year review, J. Memb. Sci. 179 (2000) 1–27.
Knyazkova, T.V., Maynarovich, A.A., Recognition of membrane fouling: testing of theoretical approaches with data on NF of salt solutions containing a low molecular weight surfactant as a foulant. Desalination, 126 (1999) 163–169.
Lin, J.L., Huang, C., Chin, C.J.M., Pan, J.R., The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PAC coagulation. Water Res. 43(17) (2009) 4285-4295.
Lee, J.J., Johir, M.A.H., Chinu, K.H., Shon, H.K., Vigneswaran, S., Kandasamy, J., Kim, C.W., and Shaw, K., Hybrid filtration method for pre-treatment of seawater reverse osmosis (SWRO), Desalination. 249 (2009) 15–24.
Lee, T.C., Liu, F.J., Recovery of hazardous semiconductor-industry sludge as a useful resource. J. Hazard. Mater., 165(103) (2009) 359-365.
Leverenz, H.L., Tchobanoglous, G., Darby, J.L., Clogging in intermittently dosed sand filters used for wastewater treatment. Water Res. 43 (2009) 695–705.
Luna, M.D.G., Warmadewanthi, Lui, J.C., Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer. Colloids and Surfaces A: Physicochem, Eng. 347(1-3) (2009) 64-68.
Liang, Z., Wang, Y., Zhou, Y., Liu, H., Wu, Z., Variables affecting melanoidins removal from molasses wastewater by coagulation/flocculation. Sep. Purif. Technol. 68(3) (2009) 382-389.
Liang, C., Bruell, C., Albert, M.F., Cross, P.E., Ryan, D.K., Evaluation of reverse osmosis and nanofiltration for in situ persulfate remediated groundwater. Desalination. 208 (2007) 238–259.
Lee, S., Ang, W.S., Elimelech, M.. Fouling or reverse osmosis membrane by hydrophilic organic matter: implication for water reuse. Desalination. 187 (2006) 313–321.
Li, L., Fan, M., Brown, R.C., Leeuwen, J.V., Wang, J., Wang, W., Song, Y., Zhang, P., Synthesis, Properties and environmental application of nanoscale iron-based materials: A review, Crit. Rev. Environ. Sci. Technol., 36(5) (2006) 405-431.
Lee, J.W., Kwon, T.Q., Moon, I.S., Performance of polyamide reverse osmosis membranes for steel wastewater reuse, Desalination 189 (2006) 309–322.
Lin, C.J., Shirazi, S., Rao, P., Mechanistic model for CaSO4 fouling on nanofiltration membrane. J. Envir. Engrg. 131 (2005) 1387–1392.
Lin, S,H., Kiang, C.D., Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant. J. Haz. Mat. B97(1-3) (2003) 159-171.
Laîné, J.M., Vial, D., Moulart, P., Status after 10 years of operation — overview of UF technology today. Desalination. 131(1-3) (2000) 17-25.
Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A., Vaidya, A., Bioreactors for treatments of VOCs and odours – a review, J. Environ. Manage. 91 (2010) 1039–1054.
McDowall, B., Hoefel, D., Newcombe, G., Saint, C.P., Ho, L., Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria. Water Res. 43 (2009) 433–440.
Mamalis, A.G., Recent advances in nanotechnology. J. Mater. Process. Technol. 181(1-3) (2007) 52-58.
Moore, M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 32(8) (2006) 967-976.
Mukherjee, P., SenGupta, A.K., Some observations about electrolyte permeation mechanism through reverse osmosis and nanofiltration membranes. J. Membr. Sci. 278 (2006) 301–307.
Meyssami, B., Kasaeian, A.B., Use of coagulants in treatment of olive oil wastewater model solutions by induced air flotation. Bioresour. Technol. 96 (2005) 303-307.
McCurdy, K., Carlson, K., Gregory, D., Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminium chloride coagulants. Water Res. 38(2) (2004) 486-494.
Mccarron, A.M., Crispo, S., Smith-Palmer, T., The flocculation of kaolin by cationic polyacrylamides and the effect of cationic surfactant on this process. J. Appl. Polym. Aci. 83(11) (2002) 2382-2389.
Melo, L.F., and Vieira, M.J., Physical stability and biological activity of biofilms under turbulent flow and low substrate concentration. Bioprocess Eng. 20 (1999) 363–368.
Melo, L.F., Bott, T.R., Biofouling in water systems. Experimental Thermal and Fluid Science, 14 (1997) 375–381.
MWH, Water Treatment: Principles and Design, John Wiley & Sons, Hoboken, New Jersey, 882, 892-894.
Nghiem, L.D., Vogel, D., and Khan, S., Characterizing humic acid fouling of nanofiltration membrane using bisphenol A as molecular indicator. Water Res. 42 (2008) 4049–4058.
Nicolaisen, B., Developments in membrane technology for water treatment, Desalination, 153 (2002) 355–360.
Nilson, J.A., Digiano, F.A., Influence of NOM Composition on nanofiltration. J. AWWA., 885 (1996) 55–66.
O’Brien N., Cummins, E., Nano-scale pollutants: fate in irish surface and drinking water regulatory systems. Hum. Ecol. Risk. Assess. 16(4) (2010) 847-872.
Petala, M., Tsiridis, V., Samaras, P., Zouboulis, A., Sakellaropoulos, G.P., Wastewater reclamation by advanced treatment of secondary effluents, Desalination. 195 (2006) 109-118.
Peeva, L.G., Gibbins, E., Luthra, S.S., White, L.S., Stateva, R.P., Livingston, A.G., Effect of concentration polarisation and osmotic pressure on flux in organic solvent nanofiltration, J. Membr. Sci. 236 (2004) 121–136.
Rezaei, H., Ashtiani, F.Z., Fouladitajar, A., Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey. Desalination. 274 (2011) 262–271.
Remize, P.J., Guigui, C., Cabassud, C., Evaluation of backwash efficiency, definition of remaining fouling and characterisation of its contribution in irreversible fouling: case of drinking water production by air–assisted ultra–filtration, J. Membr. Sci. 355 (2010) 104–111.
Rasheed, Q.J., Pandian, K., Muthukumar, K., Treatment of petroleum refinery wastewater by ultrasound-dispersed nanoscale zero-valent iron particles. Ultrason. Sonochem., 18(5) (2011) 1138-1142.
Rivas, F.J., Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. Journal of Hazardous Materials, 138(2) (2006) 234-251.
Rodgers, M., Healy, M.G., and Mulqueen, J., Organic carbon removal and nitrification of high strength wastewaters using stratified sand filters. Water Res. 39 (2005) 3279–3286.
Reißmann, F.G., Schulze, E., Albrecht, V., Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water, Desalination. 178 (2005) 41-49.
Schäfer, T., Huber, F., Seher, H., Missana, T., Alonso, U., Kumke, M., Eidner, S., Claret, F., Enzmann, F., Nanoparticles and their influence on radionuclide mobility in deep geological formations. Appl. Geochem. 27(2) (2012) 390-403.
Shirazi, S., Lin, C.J., Chen, D., Inorganic fouling of pressure-driven membrane processes–A critical review, Desalination. 250 (2010) 236–248.
Stoller, M., On the effect of flocculation as pretreatment process and particle size distribution for membrane fouling reduction. Desalination. 240(1-3) (2009) 209-217.
Syron, E., Casey, E., Membrane-aerated biofilm for high rate biotreatment: performance appraisal, engineering principles, scale-up, and development requirements. Environ. Sci. Technol., 42 (2008) 1833–1844.
Sielechi, J.M., Lartiges, B.S., Kayem, G.J., Frochot, C., Thieme, J., Ghanbaja, J., d’Espinose de la Caillerie, J.B., Barrès, O., Kamga, R., Levitz, P., Michot, L.J., Changes in humic acid conformation during coagulation with ferric chloride: implications for drinking water treatment. Water Environ. Res. 42(8-9) (2008) 2111-2123.
Singh, R., Paul, D., Jain, R.K., Biofilms: implications in bioremediation, Trends Microbiol. 14 (2006) 389–397.
Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Ngo, H.H., Fouling of ultrafiltration membrane by effluent organic matter: a detailed characterization using different organic fractions in wastewater, J. Membr. Sci. 278 (2006) 232–238.
Shah, T.N., Yoon, Y., Pederson, C.L., Lueptow, R.M., Rotating reverse osmosis and spiral wound reverse osmosis filtration: A comparison, J. Membr. Sci. 285 (2006) 353-361.
Šostar-Turk, S., Petrinić, I., Simonič, M., Laundry wastewater treatment using coagulation and membrane filtration, Resources and Conservation, 44 (2005) 185–196.
Sadiq, R., Al-Zahrani, M.A., Sheikh, A.K., Husain, T., Farooq, S., Performance evaluation of slow sand filters using fuzzy rule-based modeling, Environmental Modelling & Software. 19 (2004) 507–515.
Song, Z., William, C.J., Edyvean, R.G., Treatment of tannery wastewater by chemical coagulation. Desalination. 164(3) (2004) 249-259.
Semerjian, L., Ayoub, G.M., High-pH-magnesium coagulation-flocculation in wastewater treatment. Adv. Environ. Res. 7 (2003) 389-403.
Tyagi, M., da Fonseca, M.M.R., de Carvalho, C.C.C.R., Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2) (2011)231–241.
Torres, L.G., Belloc, C., Vaca, M., Iturbe, R., Bandala, E.R., Coagulation-flocculation process applied to wastewaters generated in hydrocarbon-contaminated soil washing: Interactions among coagulant and flocculant concentrations and pH value. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 44(13) (2009) 1449-1456.
Tsai, T.T., Kao, C.M., Surampalli, R.Y., Chien, H.Y., Enhanced bioremediation of fuel-oil contaminated soils: laboratory feasibility study. Journal of Environmental Engineering-ASCE, 135(9) (2009a) 845-853.
Tsai, T.T., Kao, C.M., Surampalli, R.Y., Liang, S.H., Treatment of fuel-oil contaminated soils by biodegradable surfactant washing followed by Fenton-like oxidation. Journal of Environmental Engineering-ASCE. 135(10) (2009b) 1015-1024.
Tsai, T.T., Kao, C.M., Hong, A., Liang, S.H., Chien. H.Y., Remediation of TCE-contaminated aquifer by an in situ three-stage treatment train system. Colloids and Surfaces A: Physicochem. Eng. Aspects 322 (2008) 130-137.
Tam, L.S., Tang, T.W., Lau, G.N., Sharma, K.R., Chen, G.H., A pilot study for wastewater reclamation and reuse with MBR/RO and MF/RO systems, Desalination. 202 (2007) 106-113.
Üzüm, Ç., Shahwan, T., Eroğlu, A.E., Lieberwirth, I., Scott, T.B., Hallam, K.R., Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem. Eng. J. 144(2) (2008) 213-220.
Um, I.C., Kweon, H.Y., Lee, K.G., Ihm, D.W., Lee, J.H., Park, Y.H., Wet spinning of silk polymer: I. Effect of coagulation conditions on the morphological feature of filament. Int. J. Biol. Macromol. 34(1-2) (2004) 89-105.
US Environmental Protection Agency, Guidance for data quality assessment, practical methods for data analysis, USEPA (2000).
Vogel, D., Simon, A., Alturki, A.A., Bilitewski, B., Price, W.E., and Nghiem, L.D., Effects of fouling and scaling on the retention of trace organic contaminants by a nanofiltration membrane: The role of cake-enhanced concentration polarization. Sep. Purif. Technol. 73 (2010) 256–263.
Vrouwenvelder, J.S., Picioreanu, C., Kruithof, J.C., van Loosdrecht, M.C.M., Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. J. Membr. Sci. 346 (2010) 71–85.
Veza, J.M., Ortiz, M., Sadhwani, J.J., Gonzalez, J.E., Santana, F.J. Measurement of biofouling in seawater: some practical tests. Desalination, 220 (2008) 326–334.
Vrijenhoek, E.M., and Hong, S., Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188 (2001) 115–128.
Wang, Y., Hammes, F, Egli, T., The impact of industrial-scale cartridge filtration on the native microbial communities from groundwater. Water Res. 42 (2008) 4319-4326.
Wert, E.C., Neemann, J.J., Rexing, D., Zegers, R.E., Biofiltration for removal BOM and residual ammonia following control of bromated formation. Water Res. 42 (2008) 372–378.
Water environment federation(WEF), membrane system for wastewater treatment. WEF. Press. McGraw-Hill, 2006.
Wolf, P.H., Siverns, S., Monti, S., UF membranes for RO desalination pretreatment, Desalination. 182 (2005) 293-300.
Xu, W., Gao, B., Mao, R., Yue, Q., Influence of floc size and structure on membrane fouling in coagulation–ultrafiltration hybrid process–The role of Al13 species. J. Hazard. Mater., 193 (2011) 249-256.
Xue, G., Ma, Z.Y., Meng, Y.P., Xie, L., Study on algae removal by micro-flocculation and high stretch yarn Terylene fiber ball filtration, China Water Wastewater, 25, (2009) 52–54.
Xue, G., Gao, P. Dai, X.M., Wang, Y.H., Study on ultrafiltration and nanofiltration combined with pretreatment of micro-flocculation fiber ball used in hotel bath wastewater treatment and comprehensive reuse, Technol. Water Treat. 34 (2008) 3.
Xu, P., Drewes, J.E., Kim, T., Bellona, C., and Amy, G., Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci., 279 (2006a)165–175.
Xu, P., Drewes, J.E., Viability of nanofiltration and ultra-low pressure reverse osmosis membranes for multi-beneficial use of membrane produced water. Separation and Purification, 52 (2006b) 67–76.
Yang, B.M., Huang, C.J., Lai, W.L., Chang, C.C., Kao C.M., Development of a three-stage system for the treatment and reclamation of wastewater containing nano-scale particles. Desalination, 284 (2012) 182–190.
Yang, B.M., Kao, C.M., Sung, W.P., Yang, C.P., Chen, T.Y., Removing of ano-particles from semiconductor wastewater using a hybrid treatment system. Advanced Materials Research. 528 (2012) 71-74
Yu, Y., Lee, S., and Hong, S., Effect of solution chemistry on organic fouling of reverse osmosis membrane in sweater desalination, J. Memb. Sci. 351 (2010) 205–213.
You, S.H., Tseng, D.H., Hsu, W.C., Membrane fouling formation when treating effluent by ultrafiltration. J. Taiwan Inst. Chem. Eng. 39(4) (2008) 381-384
Yeh, C.K.J., Wu, H.M., Chen, T.C. Chemical oxidation of chlorinated non-aqueous phase liquids by hydrogen peroxide in natural sand systems. Journal of Hazardous Materials, 96(1) (2003) 29-51.
Yiantsios, S.G., Karabelas, A.J., An assessment of the silt density index based on RO membrane colloidal fouling experiments with iron oxide particles, Desalination, 151 (2002) 229–238.
Zhao, Y.X., Gao, B.Y., Rong, H.Y., Shon, H.K., Kim, J.-H., Yue, Q.Y., Wang, Y., The impacts of coagulant aid-polydimethyldiallylammonium chloride on coagulation performances and floc characteristics in humic acid–kaolin synthetic water treatment with titanium tetrachloride. Chem. Eng. J. 173(2) (2011a) 376-384.
Zhao, Y., Liu, Z., Liu, F., Li, Z., Cometabolic degradation of trichloroethylene in a hollow fiber membrane reactor with toluene as a substrate, J. Membr. Sci. 372 (2011b) 322–330.
Zhang, H., Gao, J., Jiang, T., Gao, D., Zhang, S., Li, H., Yang, F., A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors. Bioresour. Technol. 102(24) (2011) 11121-11131.
Zeng, Y.B., Zhang, X.L., Yang, D.W., Ran, S.Y., and Zhu, Z.M., Application of modified fiber ball in reuse of heavy oil wastewater as boiler water. Ind. Water Wastewater, 38 (2007) 66–69.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.209.81.51
論文開放下載的時間是 校外不公開

Your IP address is 3.209.81.51
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code