Responsive image
博碩士論文 etd-0408110-131240 詳細資訊
Title page for etd-0408110-131240
論文名稱
Title
可拋棄式微型鈣、鈉離子感測器之研究
Study of Disposable EGFET-based Calcium and Sodium Micro Ion Sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-01-28
繳交日期
Date of Submission
2010-04-08
關鍵字
Keywords
延伸式閘極場效電晶體、可拋棄式、鈣離子選擇薄膜、鈉離子選擇薄膜
Extended Gate Field Effect Transistor(EGFET), Disposable, Calcium selective membrane, Sodium selective membrane
統計
Statistics
本論文已被瀏覽 5630 次,被下載 0
The thesis/dissertation has been browsed 5630 times, has been downloaded 0 times.
中文摘要
隨著現代人工作時間的增長,外食及熬夜成為一種無法避免的生活常態,因而身體健康也易隨之亮起了紅燈。人體血液中之鈣、鈉離子濃度除了直接反應了人體健康情況,亦可由其觀察得知各種疾病之症候。故人體血液中之鈣、鈉離子之濃度可作為人體健康指標上之重要參數。
為了製作出一種可隨時偵測鈣、鈉離子之濃度之可拋棄式離子感測器,本研究使用延伸式閘極場效電晶體(EGFET)取代傳統離子感測場效電晶體(ISFET),並在其閘極感測層塗佈一層離子選擇薄膜(ISM),藉由離子選擇薄膜(ISM)中之離子選擇物來吸附所要感測之離子。本論文中之延伸式閘極場效電晶體,其主要製程步驟包含了四道黃光微影製程與兩層薄膜的沉積製程,而其中本論文主要探討: (1) 通道寬長比、(2) 通道形狀設計、(3) 閘極感測層面積、(4) 離子佈植能量以及(5) 離子佈植劑量對於延伸式閘極場效電晶體與離子感測器特性之影響。
根據量測之結果,鈣離子感測器於鈣離子濃度範圍介於10-1 ~ 10-5 mol/L之間其靈敏度為37.75 mV/decade,線性度為97.732 %;鈉離子感測器於鈉離子濃度範圍介於1 ~ 10-1 mol/L之間靈敏度為56 mV/decade,而其線性度為95.537 %。
Abstract
As working time increases for most people, dining out and staying up late is inevitable, resulting in bad health conditions. The concentrations of calcium and sodium ion in human blood not only respond directly to health conditions, but can also obtain symptoms of different diseases by observing it. This shows that the concentrations of calcium and sodium ion in human blood are an important index of health.
In order to manufacture disposable ion sensor and make it easy to measure, this study uses extended gate field effect transistor (EGFET) with an ion selective membrane(ISM) on top of the gate sensitive layer to replace traditional ion sensitive field effect transistor (ISFET). The ISM adsorbs the appointed ion by means of ion selective medicament which is covered by a macromolecule. The main processing steps of the extended gate field effect transistor developed in this study involve at least four photolithographic and two thin-film deposition processes. The influence of the channel’s width to length ratio, the design of channel, the area of the gate sensitive layer, the energy and dose of ion implantation used for the transistor and ion sensor were investigated.
Based on the measurement results of the ion sensor, a sensitivity of 40mV/decade with linearity of 98.589 % is measured for calcium ion concentration in human blood ranging from 5 × 10-3 mol/L to 5 × 10-4 mol/L. On the other hand, a sensitivity of 56 mV/decade with linearity of 98.589 % is measured for sodium ion concentration in human blood ranging from 1 mol/L to 10-1 mol/L.
目次 Table of Contents
摘要.............................................................................................................I
Abstract......................................................................................................II
誌謝..........................................................................................................III
目錄..........................................................................................................IV
圖目錄.....................................................................................................VII
表目錄......................................................................................................IX
第一章 緒論...............................................................................................1
1-1 前言...............................................................................................1
1-2 研究動機.......................................................................................4
第二章 離子感測器之原理介紹...............................................................6
2-1 離子感測器之種類.......................................................................6
2-1-1 離子選擇電極(ISE)............................................................7
2-1-2 離子感測場效電晶體(ISFET) ...........................................8
2-1-3 延伸式閘極場效電晶體(EGFET)....................................12
第三章 元件設計與製作流程.................................................................14
3-1延伸式閘極場效電晶體(EGFET)之原理介紹..........................14
3-2 延伸式閘極場效電晶體之光罩佈局設計.................................17
3-3 延伸式閘極場效電晶體之製程整合設計.................................21
3-3-1 金屬層之選用...................................................................21
3-3-2延伸式閘極場效電晶體之製作流程...............................21
3-3-3 詳細製程步驟與參數.......................................................23
3-4 鈣離子感測薄膜之配製.............................................................30
3-4-1 實驗藥品及材料…...........................................................32
3-4-2 PVC高分子薄膜之調配...................................................33
3-5 鈉離子感測薄膜之配製.............................................................34
3-5-1 實驗藥品及材料...............................................................34
3-5-2 PVC高分子薄膜之調配...................................................35
第四章 結果與討論.................................................................................37
4-1延伸式閘極場效電晶體(EGFET)之分析...................................38
4-1-1 離子佈植對電晶體之影響...............................................40
4-1-2 元件設計對電晶體之影響...............................................43
4-2 元件封裝.....................................................................................47
4-3 鈣離子感測器之分析.................................................................48
4-3-1 量測範圍、靈敏度及線性度...........................................48
4-3-2 遲滯效應及漏電流...........................................................50
4-3-3 選擇性...............................................................................51
4-3-4生命期及響應時間............................................................54
4-4 鈉離子感測器之分析.................................................................56
4-4-1 感測範圍、靈敏度及線性度.............................................56
4-4-2 遲滯效應及漏電流...........................................................58
4-4-3 選擇性及響應時間...........................................................59
第五章 結論與未來展望.........................................................................62
5-1 結論.............................................................................................62
5-2 未來展望.....................................................................................64
參考文獻..................................................................................................65
附錄..........................................................................................................68
參考文獻 References
[1] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,“ IEEE Transactions on Bio-Medical Engineering, 1970. 70-71.
[2] D. Ammann, “Ion-Selective Microelectrodes,” Berlin, 1986.
[3] E. Bakker, P. Buhlmann and E. Pretsch, “Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics,” Chem. Rev. 1997. 3083-3132.
[4] E. Bakker, P. Buhlmann and E. Pretsch, “Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors,” Chem Rev 1998, 1593-1687.
[5] E. Bakker, D. Diamond, A. Lewenstam and E. Pretsch, “Ion Sensors: Current Limits and New Trends,” Anal. Chem. Acta 1999, 393, 11-18.
[6] E. Bakker and E. Pretsc, “Potentiometry at Trace Levels”, Trends in Anal. Chem. 2001, 20, 11-19.
[7] U. Schefer, D. Ammann, E. Pretsch, U. Oesch, and W. Simon, “Neutral Carrier Based Ca2+- Selective Electrodes”, Anal. Chem. 1986, 58, 2282-2285.
[8] J. Van Der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sensor and Actuator, 4, 1983, 291-298.
[9] 「微機電系統技術與應用」 ,行政院國家科學委員會精密儀
器發展中心出版,2003。
[10] IUPAC, “Recommendations for nomenclature of ion-selective electrodes,” Pure Applied Chemistry, Vol.66, 1994, 2527-2536.
[11] M. S. Frant, “History of the early commercialization of ion-selective electrodes,” Analyst, Vol.199, 1994, 2293-2301.
[12] M.E. Meyerhoff, W.N. Opdycke, “Ion selective electrodes,” Advances in Clinical Chemistry, Vol.25, 1986, 1-47.
66
[13] K. Covington, “Ion-selective electrode methodology,” CRC press, 1979, 6.
[14] Z. Zou, A. Jang, E. MacKnight, P. M. Wu, J. Do, P. L. Bishop, C. H. Ahn, “Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement,” Sensors and Actuators B, Vol. 134, 2008, 18-24.
[15] C. D. Fung, P. W. Cheung and W. H. Ko, “A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. ED-33, NO.1, 1986, 8-18.
[16] P. Bergveld, “Thirty years of ISFETOLOGY – What happened in the past 30 years and what may happen in the next 30 years,” Sensors and Actuators B: Chemical (SCI, Impact factor = 2.934), Vol. 94, 1, 53-64.
[17] A. Topkar and R. Lal, ”Effect of electrolyte Exposure on Silicon Dioxide in Electrolyte-Oxide-Semiconductor Structures,” Thin Solid Films, Vol. 232, 1993, 265-270.
[18] B. D. Liu, Y. K. Su, and S. C. Chen, ”Ion-Sensitive Field-Effect Transistor with Silicon Nitride Gate for pH Sensing,” Int. J. Electronics, Vol.67, 1989, 265-270.
[19] T. Matsuo and M. Esashi, ”Method of ISFET Fabrication,” Sensors and Actuators, Vol. 1, 1981, 77-96.
[20] 黃義佑,含有積體化微固態參考電極及背接式結構的單晶片酸鹼值感測器,清華大學電機工程博士論文,May. 2002.
[21] I. Y. Huang, R.S. Huang and L.H. Lo, Aug., “Improvement of Integrated Ag/AgCl Thin-film Electrodes by KCl-gel Coating for ISFET Applications,” Sensors and Actuators B: Chemical (SCI, Impact factor = 2.934), Vol. 94, 1, 2003,53-64.(NSC 88-2218-E-007-006).
[22] J. Van der Spiegel, I. Lauks, P. Chan, and D. Babic, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators B, Vol. 88 ,2003, 1-20.
67
[23] T. Katsube, T. Araki, M. Hara, T. Yaji, Si Kobayashi and K. Suziki,”A Multi-species biosensor with extended-gate field effect transistors,” Proceeding of 6th Sensor Symposium, Tsukuba Japan, 1986, 211-214.
[24] P. Bergveld and A. Sibbald,”Analytical and biomedical application of ion-sensitive field effect transistor,” Elsevier Science Publishing Company Inc, New York, 1988, 2-60.
[25] 王詩涵,微製造技術應用於鈣離子感測器及奈米氧化鎢二氧化氮感測器,成功大學化學工程博士論文,2003.
[26] I. Bedlechowicz-Śliwakowska , P. Lingenfelter , T. Sokalski , A. Lewenstam , M. Maj-Żurawska, “Ion-selective electrode for measuring low Ca2+ concentrations in the presence of high K+,Na+ and Mg2+ background,” Anal Bioanal Chem., Vol. 385, 2006, 1477-1482.
[27] L. M. I. Codinachs, A.Baldi, A. Merlos, N, Abramova, A. Ipatov, C. Jimenez-Jorquera, A. Bratov, “Integrated Multisensor for FIA-Based Electronic Tongue Applications,” IEEE Sens. J.2008, 8, (5-6), 608-615.
[28] S. Amemiya, P. Bu1hlmann, E. Pretsch, B. Rusterholz, Y. Umezawa, “Cationic or anionic sites-selectivity optimization of ion-selective electrodes based on charged ionophores,” Analytical Chemistry , Vol.72, 2000, 1618-1631.
[29] E. Bakker, E. Pretsch, “Ion-selective electrodes based on two competitive ionophores for determining effective stability constants of ion-carrier complexes in solvent polymeric membranes,” Analytical Chemistry, Vol.70, 1998, 395-302.
[30] Sigma-aldrich, ”http://WWW.sigmaaldrich.com”, P.O. Box 14508, St. Louis, MO 63178, USA.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.113.188
論文開放下載的時間是 校外不公開

Your IP address is 3.138.113.188
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code