Responsive image
博碩士論文 etd-0408111-103618 詳細資訊
Title page for etd-0408111-103618
論文名稱
Title
從甘藷老化葉片分子選殖 mitogen-activated protein kinase cDNA 及乙烯訊息傳導探討
Molecular cloning of mitogen-activated protein kinase cDNA and study of ethylene signaling in senescent sweet potato leaves
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-26
繳交日期
Date of Submission
2011-04-08
關鍵字
Keywords
甘藷、乙烯、葉片老化、有絲分裂活化蛋白質激酶
sweet potato, ethylene, leaf senescence, mitogen-activated protein kinase, PD98059
統計
Statistics
本論文已被瀏覽 5707 次,被下載 10
The thesis/dissertation has been browsed 5707 times, has been downloaded 10 times.
中文摘要
乙烯是植物生長調節物質,且在葉片老化的過程扮演一個主要的角色,然而其訊息傳遞的研究在甘藷方面大部份仍然不清楚。Ethephon (釋放乙烯的化合物) 誘導甘藷葉片老化和相關基因的表現受有絲分裂活化蛋白質激酶 (MAPK) kinase inhibitor PD98095的抑制,此結果建議 MAPK cascade 可能參與乙烯誘導甘藷葉片老化和相關基因表現的過程。利用基因專一性引子及 RT-PCR 方法從 ethephon 處理的葉片選殖出一條全長的 cDNA 命名為 SPMAPK,其 open reading frame 總共由1098個核苷酸 (365個胺基酸) 所組成。胺基酸序列比對與植物的 MAPK 具有79.8-83.4 %相似性,且與 Arabidopsis MPK3及 MPK6在親緣樹分析上最為相近。RT-PCR 分析結果顯示 SPMAPK 基因在甘藷的根、莖及葉皆有表現,其中年青成熟的葉片以及部分黃化的老葉表現較多,SPMAPK 的表現亦受 ethephon 誘導而有增強的現象。利用不同的 inhibitors 或 effectors 研究顯示分離的甘藷葉片經 ethephon 處理會加速葉片老化的速度、葉綠素含量降低、光合作用效率 (Fv/Fm 值) 衰減以及誘導相關基因的表現,乙烯受器抑制劑 (1-methylcyclopropene,1-MCP)、MAPK kinase 抑制劑 PD98059、NADPH oxidase 抑制劑 (diphenylene iodonium,DPI)、抗氧化劑 reduced glutathione、Ca2+螯合劑 EGTA 以及新合成蛋白質抑制劑 cycloheximide,都可以延緩或抑制 ethephon 對葉片所造成的效應。根據以上的結果結論,從甘藷葉片分離出一個乙烯可以誘導的有絲分裂活化蛋白質激酶SPMAPK,其在成熟及部分黃化的葉片表現量較多,ethephon 誘導其表現時受1-MCP、PD98059、DPI、reduced glutathione、EGTA 及 cycloheximide 等抑制。此結果亦建議參與在乙烯誘導葉片老化、SPMAPK 及其他相關基因表現可能的訊息因子有乙烯受器,MAPK cascade,增加的過氧化氫,細胞外的鈣離子流入,以及新生合成的蛋白質。一個可能的乙烯訊息傳導模式導致甘藷葉片老化及相關基因表現也被提出討論。
Abstract
Ethylene is a plant growth regulator and plays a key role in leaf senescence. Its signaling, however, remains mostly unclear in sweet potato. Ethephon, an ethylene releasing compound, induced sweet potato detached leaf senescence and associated gene expression, and the effects were repressed by mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059. These data suggest that MAPK cascade is likely involved in ethylene signaling leading to leaf senescence and associated gene expression. With gene-specific primers and RT-PCR methods, a full-length cDNA, SPMAPK, was isolated from ethephon-treated sweet potato leaves. SPMAPK contained 1098 nucleotides (365 amino acids) in the open reading frame. Sweet potato SPMAPK also exhibited high amino acid sequence identities (ca. 79.8% to 83.4%) with plant MAPKs, and was most close to Arabidopsis MPK3 and MPK6 in phylogenetic tree analysis. RT-PCR analysis showed that SPMAPK gene expression was detected in roots, stems, and leaves. The mature and partial yellowing leaves expressed higher amount. SPMAPK gene expression was also inducible and significantly enhanced by ethephon. Results from studies with inhibitors or effectors showed that ethephon treatment resulted in acceleration of leaf senescence in detached sweet potato leaves, promotion of leaf chlorophyll content reduction and decrease of photochemical Fv/Fm, and induction of associated gene expression. These ethephon-mediated effects were all delayed or repressed by pretreatment with ethylene receptor inhibitor 1-methylcyclopropene (1-MCP), MAPK kinase inhibitor PD98059, NADPH oxidase inhibitor diphenyleneiodonium (DPI), antioxidant reduced glutathione, calcium ion chelator EGTA, and de novo protein synthesis inhibitor cycloheximide, respectively. Based on these results we conclude that an ethylene-inducible mitogen-activated protein kinase SPMAPK was isolated from sweet potato leaves, and expressed higher amount in mature and partial yellowing leaves. Ethephon-induced sweet potato SPMAPK expression was significantly repressed by 1-MCP, PD98059, DPI, reduced glutathione, EGTA and cycloheximide. These data also suggest that the possible signal components in ethephon-mediated leaf senescence and associated gene expression in sweet potato leaves likely include ethylene receptor, MAPK cascade, elevated H2O2 , external calcium influx, and de novo synthesized proteins. A possible ethylene signaling model leading to sweet potato leaf senescence and associated gene expression was also proposed.
目次 Table of Contents
論文審定書..............................................................................................i
誌謝............................................................................................................ii
圖次..........................................................................................................vii
縮寫表........................................................................................................x
中文摘要.................................................................................................xi
英文摘要...............................................................................................xiii
壹、緒論.......................................................................................................1
前言.......................................................................................................1
乙烯受器...............................................................................................3
MAPK cascade......................................................................................4
氧化壓力與抗氧化劑...........................................................................6
細胞外鈣離子流入...............................................................................7
貳、材料與方法.......................................................................................10
I. 實驗材料
A. 甘藷......................................................................................................10
B. 葉片老化相關基因..............................................................................10
C. 化學試劑..............................................................................................10
II. 實驗方法
A. PD98059對 ethephon 誘導甘藷葉片老化之影響............................10
藥品配製..............................................................................................11
PD98059前處理...................................................................................12
Ethephon 處理.....................................................................................12
葉綠素含量測量..................................................................................12
光合作用效率測量 (Fv/Fm value).....................................................13
DAB 染色分析....................................................................................13
H2O2定量分析.....................................................................................14
RT-PCR 分析.......................................................................................14
B. 從甘藷的老化葉片分子選殖 mitogen-activated protein kinase full length cDNA,並進行其胺基酸序列的 alignment 及親源樹分析..........................................................................................................18
甘藷 mitogen-activated protein kinase 全長 cDNA 分子選殖.......19
Sequence alignment 及親緣樹 (phylogenic tree) 分析.....................23
C. 甘藷葉片分離的 mitogen-activated protein kinase SPMAPK 之定性分析......................................................................................................24
SPMAPK 的時間 (temporal) 及空間 (spatial) 表現分析...............24
Ethephon 處理的 SPMAPK 表現之分析.........................................25
D. Inhibitors 與 effectors 對 ethephon 誘導甘藷葉片老化的影響..........................................................................................................25
PD98059、DPI、reduced glutathione、EGTA 及 cycloheximide 的前處理..................................................................................................25
1-MCP 的前處理................................................................................26
參、結果.....................................................................................................29
I. Ethephon 誘導甘藷葉片老化、H2O2含量上升及其老化相關基因的表現受 PD98059影響.........................................................................29
II. 甘藷葉片乙烯可誘導的 mitogen-activated protein kinase 分子選殖及定性分析..........................................................................................30
甘藷 mitogen-activated protein kinase 的分子選殖及生物資訊學分析..........................................................................................................31
甘藷 SPMAPK 的時間 (temporal) 及空間 (spatial) 表現分析.....33
Ethephon 增強甘藷 SPMAPK 基因的表現.....................................34
III. Ethephon 誘導甘藷葉片老化以及相關基因的表現受1-MCP、PD98059、DPI、reduced glutathione、EGTA 與 cycloheximide 影響..........................................................................................................36
1-MCP 減緩 ethephon 誘導甘藷葉片老化及降低其相關基因的表現..........................................................................................................36
PD98059減緩 ethephon 誘導甘藷葉片老化及降低其相關基因的表現..........................................................................................................37
DPI 減緩 ethephon 誘導甘藷葉片老化及降低其相關基因的表現..........................................................................................................39
Reduced glutathione 減緩 ethephon 誘導甘藷葉片的老化及降低其相關基因的表現..................................................................................40
EGTA 減緩 ethephon 誘導甘藷葉片老化及降低其相關基因的表現..........................................................................................................41
Cycloheximide 減緩ethephon 誘導甘藷葉片的老化及降低其相關基因的表現..........................................................................................43
肆、討論...................................................................................................45
參考文獻................................................................................................52
參考文獻 References
Beier D, Gross R (2006) Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9: 143-152

Bethke G, Unthan T, Uhrig J, Pöschl Y, Gust A, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci 106: 8067-8072

Blankenship SM, Dole JM (2003) 1-methylcyclopropane: a review. Postharvest Biology and Technology 28: 1-25

Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16: 1-18

Burnett EC, Desikan R, Moser RC, Neill SJ (2000) ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot 51: 197-205

Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539-544

Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89: 1133-1144

Chen HJ, Hou WC, Jane WN, Lin YH (2000) Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. Tainong 57). J Plant Physiol 157: 669-676

Chen HJ, Hou WC, Liu JS, Yang CY, Huang DJ, Lin YH (2004) Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. J Exp Bot 55: 825-835

Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. J Plant Physiol 160: 547-555

Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH (2006) Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. J Plant Physiol 163: 863-876

Chen HJ, Huang GJ, Chen WS, Su CT, Hou WC, Lin YH (2009) Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescenct leaves. Botanical Studies 50: 159-170

Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH (2010a) Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J Plant Physiol 167: 838-847

Chen HJ, Tsai YJ, Chen WS, Huang GJ, Huang SS, Lin YH (2010b) Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Botanical Studies 51: 171-181

Chen YC, Lin HH, Jeng ST (2008) Calcium influxes and mitogen-activated protein kinase kinase activation mediate ethylene inducing ipomoelin gene expression in sweet potato. Plant Cell Environ 31: 62-72

Chen YC, Tseng BW, Huang YL, Jeng ST (2003b) Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion and ethylene. Plant Cell Environ 26: 1373-1383

Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Annals of Botany 95: 901-915

Fill BK, Petersen K, Petersen M, Mundy J (2009) Gene regulation by MAP kinase cascades. Curr Opin Plant Biol 12:615-621

Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27: 521-549

Hahn A, Harter K (2009) Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiol 149: 1207-1210

Hancock JT, Desikan R, Neill SJ (2001) Role of reactive oxygen species in cell signalling pathways. Biochemical Society Transactions 29: 345-350

Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52

Hortensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53: 927-937

Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271

Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS Gene. Science 269: 1712-1714

Hung SH, Yu CW, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46: 1-10

Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci 93: 11274-11279

Jih PJ, Chen YC, Jeng ST (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the Ipomoelin gene from sweet potato. Plant Physiol 132: 381-389

Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11: 479-485

Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427-441

Kim YS, Kim HS, Lee YH, Kim MS Oh HW, Hahn KW, Joung H, Jeon JH (2008) Elevated H2O2 production via overexpression of a chloroplastic Cu/ZnSOD gene of lily (Lilium oriental hybrid ‘Marco Polo’) triggers ethylene synthesis in transgenic potato. Plant Cell Rep 27: 973-983

Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci 97: 2940-2945

Lim, PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58: 115-136

Liu Y, Zhang, S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16: 3386-3399

Liu Y, Li X, Tan H, Liu M, Zhao X, Wang J (2010) Molecular characterization of RsMPK2, a C1 subgroup mitogen-activated protein kinase in the desert plant Reaumuria soongorica. Plant Physiol and Biochem 48: 836-844
Lohman KN, Gan S, John MC, Amasino RM (1994) Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92: 322-328
Marcote MJ, Carbonell J (2000) Transient expression of a pea MAP kinase gene induced by gibberellic acid and 6-benzyladenine in unpollinated pea ovaries. Plant Mol Biol 44: 177-186

Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165: 1390-1403

Miao Y, Laun TM, Smykowski A, Zentgraf U (2007) Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 65: 63-76

Miedema H, Bothwell JHF, Brownlee C, Davies JM (2001) Calcium uptake by plant cells–channels and pumps acting in concert. Trends Plant Sci 6: 514-519

Mishra NS, Tuteja, R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics 452: 55-68

Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22: 2601-2611

Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K (1993) AtMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett 336: 440-444

Morris, PC (2001) MAP kinase signal transduction pathways in plants. New Phytol 151: 67-89

Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10: 339-346

Neill S, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric acid as signalling molecules in plants. J Exp Bot 53: 1237-1247

Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41: 181-194

Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30: 739-754

Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282-1288

Quirino BF, Noh YS, Himelblau E, Amasino RM (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5: 278-282

Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is and ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci 95: 5812-5817

Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56: 13-27

Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the Crossroads of Signaling. Plant Cell 14: S401-S417

Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radical Biology & Medicine 30: 1191-1212

Schweighofer A, Meskiene I (2008) Regulation of stress hormones jasmonates and ethylene by MAPK pathways in plants. Mol Bio Syst 4: 799-803

Seo S, Okamoto M, Seto H, Ishizuka K, Ohashi Y (1995) Tobacco MAP kinase: a possible mediator in woung signal transduction pathways. Science 270: 1988-1992

Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100: 577-582

Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes and development 12: 3703-3714

Shao HB, Chu LY, Shao MA, Cheruth AJ, Mi HM (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biologies 331: 433-441

Tassoni A, Watkins CB, Davies PJ (2006) Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J Exp Bot 57: 3313-3325

Tatsuki M, Hayama H, Nakamura Y (2009) Apple ethylene receptor protein concentrations are affected by ethylene, and differ in cultivars that have different storage life. Planta 230: 407-417

Tripathi SK, Singh AP, Sane AP, Nath P (2009) Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. J Exp Bot 60: 2035-2044

Villarreal NM, Bustamante CA, Civello PM, Martinez GA (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90: 683-689

Villarreal NM, Bustamante CA, Cievello PM, Martinez GA (2010) Effect of ethylene and 1-MCP treatments on strawberry fruit ripening. J Sci Food Agric 90: 683-689

Xu T, Li T, Qi M (2009) Calcium requirement for ethylene-induced abscission. J Plant Nutrition 32: 351-366

Yan SC, Chen JY, Yu WM, Kuang JF, Chen WX, Li XP, Lu WJ (2010) Expression of genes associated with ethylene-signalling pathway in harvested banana fruit in response to temperature and 1-MCP treatment. J Sci. Food Agric

Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451: 789-796

Yoo SD, Sheen J (2008) MAPK signaling in plant hormone ethylene signal transduction. Plant Signaling & Behavior 3: 848-849

Yoshida, S. (2003). Molecular regulation of leaf senescence. Curr Opin Plant Biol 6: 79-84

Yu Y, Wang J, Wang H (2010) Relationship between Rh-RTH1 and ethylene receptor gene expression in response to ethylene in cut rose. Plant Cell Rep 29: 895-904

Zhao MG, Tian QY, Zhang WH (2007) Ethylene activates a plasma membrane Ca2+-permeable channel in tobacco suspension cells. New Phytol 174: 507-515

Zhang T, Liu Y,Xue L, Xu S, Chen T, Yang T, Zhang L, An L (2006a) Molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol and Biochem 44: 78-84

Zhang T, Liu Y, Yang T, Zhang L, Xu S, Xue L, An L (2006b) Diverse signals converge at MAPK cascades in plant. Plant Physiol and Biochem 44: 274-283

Zhou C, Cai Z, Guo Y, Gan S (2009) An Arabidopsis mitogen-activated protein kinase cascade, MKK9-MPK6, plays a role in leaf senescence. Plant Physiol 150: 167-177

Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29: 1049-1060

吳欣黛,從甘藷葉片選殖ethephon可誘導之基因與定性分析。國立中山大學 生物科學系研究所,碩士論文2010。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.216.186.164
論文開放下載的時間是 校外不公開

Your IP address is 18.216.186.164
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code