Responsive image
博碩士論文 etd-0411117-145727 詳細資訊
Title page for etd-0411117-145727
論文名稱
Title
脂質體在珊瑚與渦鞭毛藻共生系統之動態脂體學
Dynamic lipidomics of lipid bodies in coral-Symbiodinium endosymbiosis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
354
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-12
繳交日期
Date of Submission
2017-05-11
關鍵字
Keywords
共生藻、脂質體、脂質、造礁珊瑚、脂肪酸
Symbiodinium, lipid body, lipids, fatty acids, coral reef
統計
Statistics
本論文已被瀏覽 5770 次,被下載 33
The thesis/dissertation has been browsed 5770 times, has been downloaded 33 times.
中文摘要
造礁珊瑚與單細胞渦鞭毛藻所形成的胞內共生現象,即建立在代謝營養物質交換的互利關係上,而胞內共生細胞間的代謝分子交換則是支撐起此成功的海洋生態系的關鍵;研究珊瑚宿主與共生藻的代謝產物間交互作用有助於更深入了解胞內共生機制。先前研究發現在造礁珊瑚內胚層的脂質體(LBs)是調節維繫胞內共生的關鍵胞器,當共生現象因內在或外在環境消長時,脂質體亦隨之變化;而在日夜週期下,觀察到脂質體在數量、形態上的週期性韻律變化,也認為它是一個動態胞器,並且發現其脂質成份在共生機制間的生物生理代謝具有重要的功能。
此研究收集日夜週期下的珊瑚觸手,並將珊瑚內胚層分離出各個細胞組成:珊瑚動物宿主細胞、脂質體及共生藻,進一步分析其脂質及脂肪酸成分,提出了以往未發現的脂質生合成動態變化。首先,從不同細胞組成分離出六種主要脂質種類(蠟酯、固醇酯、三酸甘油酯、膽固醇、游離脂肪酸、磷酯質)各自顯示出其不同的晝夜變化。第二,各細胞組成在脂質含量、飽和及不飽和脂肪酸的比例
隨著時間而改變,而其相關性及差異性顯示出宿主與共生藻脂質代謝關係中,脂質體作為一個脂質生合成及代謝交流的中樞胞器。第三,脂質體與宿主細胞的脂質種類及脂肪酸組成變化,在不同時間點間皆有著較為相近的關係,顯示脂質體的起源可能來自於動物宿主細胞,實驗結果也指出脂質體具有自我合成代謝部分脂質成分的功能。
此外,利用光合作用抑制劑實驗結果,再次證明共生關係中,宿主細胞、脂質體以及共生藻各自所扮演的角色及其重要性,並指出珊瑚動物宿主及脂質體的脂質成分及含量,受到共生藻的影響。最後,以次世代定序分析日夜週期下的珊瑚基因體發現,其脂質、脂肪酸代謝及脂質體生合成相關的基因表現隨著日夜週期而變化,並顯示於這些脂質相關基因,珊瑚宿主於日出後具有較高比例的基因表現,而多數共生藻基因則是在中午後表現量增加。
綜上所述,本研究對於脂質體在共生關係間的調控,其關鍵定位也有更多實驗證據支持,也發現珊瑚宿主及脂質體在脂質生合成與共生藻脂質代謝間的動態關聯;並指出珊瑚胞內共生關係,是由動態的共生機制所調控,包含各個分子層次,其中脂質分子及基因調控下日夜週期的變化,進一步提供了在脂質體及基因體學的實驗證據,證明了脂質體為一珊瑚與共生藻胞內共生能量交換及共生機制調控的樞紐。
Abstract
Reef-building corals engage in symbiosis with single-celled dinoflagellate algae (genus Symbiodinium), from which they acquire photosynthetically-fixed organic carbon that supports most of their energetic needs. Metabolic exchange is central to the ecological success of the coral-dinoflagellate endosymbiosis, and elucidating the metabolic dialogue between host coral and Symbiodinium will be critical to ultimately revealing the molecular mechanisms that bind these evolutionarily distant taxa together. It has been proposed that lipid bodies (LBs) in the gastrodermal tissues of reef corals are key organelles in the regulation of this endosymbiosis. The fact that there are temporal changes in LB distribution, composition, and morphology suggests that the host-Symbiodinium endosymbiosis is quite dynamic over the diel cycle with respect to metabolite production and catabolism.
Herein, we provide lipidome-scale evidence to shed further light on the metabolic relationship between host tissues, LBs, and Symbiodinium, with a particular focus on the different fatty acid moieties found in each of these three compartments. First, the concentrations of all major lipid classes (wax esters [WE]. sterol esters [SE], triacylglycerols [TAG], cholesterols [Col], free fatty acids [FFA], and phospholipids [PL]) exhibited diel fluctuations in all compartments, and the patterns of diel variability were compartment-specific. Secondly, the concentration of various fatty acid moieties and ratio of saturated to polyunsaturated fatty acids in these compartments varied over time, resulting in dynamic lipid profiles. The diel relevance of these differences in the lipidomes indicated that the LB is a marker organelle of lipogenesis in coral-Symbiodinium metabolism. Thirdly, the acyl pool profiles of the individual LB lipid classes were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs.
Furthermore, an imbalance in the symbiotic status caused by the inhibition of photosynthetic carbon input through DCMU exposure not only caused significant changes to the lipid composition of the LB, but also affected the lipidomes of the host gastrodermal cells and the symbionts. Our data showed that carbon fixation via photosynthesis produces a large portion of the initial carbon skeletons used for lipid biosynthesis in host gastrodermal cells and in LBs. Finally, we investigated the transcriptome of the host and Symbiodinium by next generation sequencing. We found that the expression of genes involved in lipid metabolism, fatty acid metabolism and LB biogenesis exhibit diel changes. Expression levels of genes involved in these pathways were highest at dawn in host cells while the Symbiodinium had a peak in expression at noon time. Such diel changes in mRNA expression may have driven the changes in lipid composition of the three cellular compartments.
In summary, based on the examination of lipidomic dynamics the present study revealed that the LB plays a pivotal role in regulating lipid metabolism within the coral-Symbiodinium endosymbiosis. Thus, lipidomic metabolite exchange via LBs is a key endosymbiotic mechanism underlying the dynamic association of host corals with the dinoflagellate Symbiodinium.
目次 Table of Contents
Table of Contents - Page

審定書 - i
授權書 - ii
誌謝 - iii
摘要 - iv
Abstract - vi
Abbreviations - ix
Table of Contents - xiv
List of Figures - xxi
List of Tables - xxv
List of Appendix - xxviii

Chapter 1. Introduction - 1
1.1. Coral, Symbiodinium and endosymbiosis - 1
1.1.1. Corals and symbiotic dinoflagellates - 1
1.1.2. Photosynthesis of Symbiodinium - 2
1.1.3. Establishment and breakdown of endosymbiotic association - 4
1.1.4. The regulation of endosymbiosis - 5
1.2. Dynamics of the lipids fluxes in symbiotic corals - 6
1.2.1. Lipids in symbiotic corals - 6
1.2.2. Lipid fluxes between coral host and algal symbionts - 8
1.2.3. Lipid and fatty acid metabolism - 10
1.2.4. Lipid bodies in coral–dinoflagellate endosymbiosis - 13
1.3. Research goal - 17
1.3.1. Experiment I. Comparison of lipid profile and fatty acid moiety among the LBs, host tissue and Symbiodinium - 19
1.3.2. Experiment II. Examination of lipidomics between three compartments during the diel cycle - 19
1.3.3. Experiment III. Investigation of lipidomics in host gastrodermal cells between healthy coral and treat with photosynthesis inhibitor - 20
1.3.4. Experiment IV. Determination of the gene expression between host coal and Symbiodinium - 20
1.3.5. A combination of four specific approaches elucidate the lipidomic mechanism in coral-Symbiodinium endosymbiosis - 21

Chapter 2. Material and Methods - 23
2.1. Coral collection/maintenance and Symbiodinium culture - 23
2.2. Separation of the cellular compartments in coral host - 24
2.2.1. Separation of the tissue layer in host - 24
2.2.2. Homogenization of the gastrodermal cells - 25
2.2.3. Purification of the endosymbiotic Symbiodinium and LB - 26
2.2.4. Purification of the cell lysates from host gastrodermal cell - 27
2.3. Assessment of the purity for different cellular compartments - 28
2.4. Lipid analysis by HPLC - 30
2.5. Fatty acid and wax ester analysis by GC/MS - 32
2.6. Study of photosynthesis inhibitor-treated coral - 34
2.6.1. Exposure and recovery experiments - 34
2.6.2. Treatment of coral with DCMU - 35
2.6.3. Analysis of photosynthetic efficiency by PAM fluorometry - 36
2.6.4. Fluorescence analysis of the chlorophyll - 37
2.6.5. Ultrastructure morphology determination by TEM - 38
2.6.6. Measurement of the size of LBs in hosts by imaging analyses - 41
2.7. Expression of gene involving in lipidomic metabolism during diel cycle - 41
2.8. Statistical analysis of the data - 43

Chapter 3. Results - 45
3.1. Experiment I. Comparison of lipid profile and fatty acid moiety among the LBs, host tissue and Symbiodinium - 45
3.1.1. Purify the host tissue, LBs and symbionts - 45
3.1.2. Difference amount of each lipid classes - 46
3.1.3. Fatty acid moieties of total lipids - 47
3.1.4. Identification of WE content and species - 48
3.1.5. Fatty acid moieties in SE - 49
3.1.6. Fatty acid moieties in TAG - 50
3.1.7. Fatty acid moieties in FFA - 51
3.1.8. Fatty acid moieties in PL - 51
3.1.9. Summary - 52
3.2. Experiment II. Diel fluctuations in the lipidomes of three compartments of the coral-dinoflagellate endosymbiosis - 54
3.2.1. Diel fluctuation in lipid amounts - 54
3.2.2. Dynamic change in total fatty acid pools - 55
3.2.3. Variation in individual lipid amounts - 57
3.2.4. Diel changes in WE amounts - 59
3.2.5. Temporal contribution of individual lipids to LB formation - 60
3.2.6. Inter-compartmental lipid involvement - 61
3.3. Experiment III. The lipidomes of multiple, cellular compartments of coral-dinoflagellate endosymbioses exposed to the photosynthesis inhibitor DCMU - 63
3.3.1. Treatment of corals with a photosynthesis inhibitor - 63
3.3.2. Effects of DCMU on coral physiology - 64
3.3.3. LB morphology changes - 65
3.3.4. Inter-compartmental lipid variation during DCMU treatment - 66
3.3.5. Inter-compartmental FA moiety variation during DCMU treatment - 67
3.3.6. Inter-compartmental WE variation during DCMU treatment - 69
3.4. Experiment IV. The diurnally variable transcriptome of a reef coral - 70
3.4.1. Illumina sequencing and de novo assembly - 70
3.4.2. Functional annotation of the transcriptome - 71
3.4.3. KEGG pathways annotation of the lipidomic transcriptome - 72
3.4.4. Cluster analysis of transcriptome involved in lipid metabolism - 73
3.4.5. Expression of genes involved in lipid metabolism and ER stress pathways over the diel cycle - 74

Chapter 4. Discussion - 77
4.1. Comparison of lipid profile and fatty acid moiety among the LBs, host tissue and Symbiodinium - 77
4.1.1. Methodological quality control - 78
4.1.2. Inter-compartmental lipid differences - 79
4.1.3. Fatty acid pool distribution - 81
4.1.4. The role of the host coral in LB lipid synthesis - 83
4.1.5. Lipid profiles of in hospite vs. cultured Symbiodinium - 84
4.1.6. Conclusion - 87
4.2. Diel fluctuations in the lipidomes of three cellular compartments of a reef coral. - 89
4.2.1. Temporal dynamic of endosymbiosis status - 89
4.2.2. Temporal lipogenesis changes result in diel rhythmicity of LB formation - 92
4.2.3. LBs as a lipid exchange point for lipid metabolites in endosymbiosis - 95
4.2.4. Conclusion - 96
4.3. The lipidomes of multiple cellular compartments of a reef-building coral exposed to a photosynthetic inhibitor - 99
4.3.1. DCMU arrest of Symbiodinium photosynthesis - 100
4.3.2. Effects of DCMU on lipid bodies - 101
4.3.3. The decrease in storage lipid levels in response to DCMU treatment - 103
4.3.4. Coral metabolic imbalance - 105
4.3.5. Conclusion - 106
4.4. The diel transcriptome of lipid metabolism in multi-cellular compartments - 108
4.4.1. Transcriptome assembly and annotation - 108
4.4.2. The diel dynamics of the lipidomic transcriptome - 109
4.4.3. Endoplasmic reticulum stress and lipid metabolism - 110
4.4.4. Conclusion - 112

Chapter 5. Summary - 115
5.1. The individual character of coral host, LBs and Symbiodinium in LB biogenesis and lipogenesis during the interactions of coral–Symbiodinium - 115
5.2. The variation of temporal lipid profiles and fatty acid moieties in diel rhythmicity of LB formation - 116
5.3. The lipidomic and related genomic could provide direct insight to understand the stable relationship of coral-Symbiodinium endosymbiosis - 116

References - 117
Figures - 153
Tables - 203
Appendixes - 245
參考文獻 References
References
1. Abrego D, Van Oppen MJ & Willis BL (2009) Highly infectious symbiont dominates initial uptake in coral juveniles. Mol Ecol 18, 3518–3531.
2. Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J & Asher G (2014) Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 19, 319–330.
3. Alboresi A, Perin G, Vitulo N, Diretto G, Block MA, Jouhet J & Morosinotto T (2016) Light remodels lipid biosynthesis in nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiol, pp. 00599.2016. USA: American Society of Plant Biologists.
4. Albright R, Benthuysen J, Cantin N, Caldeira K & Anthony K (2015) Coral reef metabolism and carbon chemistry dynamics of a coral reef flat. Geophys Res Lett 42, 3980–3988.
5. Al-Moghrabi S, Allemand D, Couret JM & Jaubert J (1995) Fatty acids of the scleractinian coral Galaxea fascicularis: effect of light and feeding. J Comp Physiol B 165, 183–192.
6. Aronson RB, Precht WF, Macintyre IG & Murdoch TJ (2000) Ecosystems: Coral bleach-out in Belize. Nature 405, 36–36.
7. Athenstaedt K & Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63, 1355–1369.
8. Bachok Z, Mfilinge P & Tsuchiya M (2006) Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs 25, 545–554.
9. Baird AH, Bhagooli R, Ralph PJ & Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24, 16–20.
10. Ball EE, Hayward DC, Saint R & Miller DJ (2004) A simple plan--cnidarians and the origins of developmental mechanism. Nat Rev Genet 5, 567–577.
11. Banaś A, Carlsson AS, Huang B, Lenman M, Banaś W, Lee M, Noiriel A, Benveniste P, Schaller H, Bouvier-Navé P & Stymne S (2005) Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid: sterol acyltransferase) different from the yeast and mammalian acyl-CoA: sterol acyltransferases. J Biol Chem 280, 34626–34634.
12. Banin E, Israely T, Fine M, Loya Y & Rosenberg E (2001) Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol Lett 199, 33–37.
13. Battey JF & Patton JS (1984) A reevaluation of the role of glycerol in carbon translocation in zooxanthellae-coelenterate symbiosis. Mar Biol 79, 27–38.
14. Barott KL, Venn AA, Perez SO, Tambutté S & Tresguerres M (2015) Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis. Proc Natl Acad Sci 112, 607–612.
15. Bé AWH, Spero HJ & Anderson OR (1982) Effects of symbiont elimination and reinfection on the life processes of the planktonic foraminifer Globigerinoides sacculifer. Mar Biol 70, 73–86.
16. Benayahu Y & Schleyer MH (1998) Reproduction in Anthelia glauca (Octocorallia: Xeniidae). II. Transmission of algal symbionts during planular brooding. Mar Biol 131, 433–442.
17. Bernlohr DA, Coe NR & LiCata VJ (1999) Fatty acid trafficking in the adipocyte. Semin Cell Dev Biol 10, 43–49.
18. Bergmann W, Creighton SM & Stokes WM (1956) Contributions to the study of marine products. XL. Waxes and triglycerides of sea anemones. J Org Chem 21, 721–728.
19. Biel KY, Gates RD & Muscatine L (2007) Effects of free amino acids on the photosynthetic carbon metabolism of symbiotic dinoflagellates. Russ J Plant Physiol 54, 171–183.
20. Bishop DG, Bain JM & Downton WJS (1976) Ultrastructure and lipid composition of zooxanthellae from Tridacna maxima. Aust J Plant Physiol 3, 33–40.
21. Bishop DG & Kenrick JK (1980) Fatty acids composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15, 799–804.
22. Bishop WR & Bell RM (1988) Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. Annu Rev Cell Biol 4, 579–606.
23. Blank RJ & Trench RK (1986) Nomenclature of endosymbiotic dinoflagellates. Taxon 35, 286–294.
24. Blanquet RS, Nevenzel JC & Benson AA (1979) Acetate incorporation into the lipids of the anemone Anthopleura elegantissima and its associated zooxanthellae. Mar Biol 54, 185–194.
25. Bligh EG & Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.
26. Brasaemle DL, Dolios G, Shapiro L & Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279, 46835–46842.
27. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW & Cummings DG (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18, 99–105.
28. Bridge D, Cunningham CW, Desalle R & Buss LW (1995) Class-level relationships in the phylum Cnidaria: Molecular and morphological evidence. Mol Biol Evol 12, 679–689.
29. Brusca RC & Brusca GJ (1990) Invertebrates. USA: Sinauer Associates.
30. Burriesci MS, Raab TK & Pringle JR (2012) Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol 215, 3467–3477.
31. Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142, 592–599.
32. Carter S (1995) Pachycerianthus (Anthozoa: Ceriantharia: Cerianthidae), two newly described species from Port Jackson, Australia. Records of the Australian Museum 47, 1–6.
33. Carman GM & Han GS (2011) Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu Rev Biochem 80, 859–883.
34. Cavanaugh GM (1975) Formulae and methods VI. The marine biological laboratory. USA: Marine Biological Laboratory.
35. Cavenagh MM, Whitne JA, Carroll K, Zhang CJ, Boman AL, Rosenwald AG, Mellman I & Kahn RA (1996) Intracellular distribution of Arf proteins in mammalian cells Arf6 is uniquely localized to the plasma membrane. J Biol Chem 271, 21767–21774.
36. Chalker BE & Barnes DJ (1990) Gamma densitometry for the measurement of skeletal density. Coral Reefs, 9, 11–23.
37. Chang TY, Chang CCY & Cheng D (1997) Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 66, 613–638.
38. Chauton MS, Winge P, Brembu T, Vadstein O & Bones AM (2012) Gene regulation of carbon fixation, storage and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Plant Physiol, pp. 112.206177. USA: American Society of Plant Biologists.
39. Chen WNU, Kang HJ, Weis VM, Anderson BM, Jiang PL, Fang LS & Chen CS (2011) Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31, 521–534.
40. Chen HK, Song SN, Wang LH, Mayfield AB, Chen YJ. Chen WNU & Chen CS (2015) A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies. PLOS ONE 10, e0132519.
41. Chen Q, Wynne RJ, Goulding P & Sandoz D (2000) The application of principal component analysis and kernel density estimation to enhance process monitoring. Control Eng Pract 8, 531−543.
42. Cheng JB & Russell DW (2004a) Mammalian wax biosynthesis. I. Identification of two fatty acyl-Co enzyme A reductases with different substrate specificities and tissue distributions. J Biol Chem 279, 37789–37797.
43. Cheng JB & Russell DW (2004b) Mammalian wax biosynthesis. II. Expression cloning of wax synthase cDNAs encoding a member of the acyltransferase enzyme family. J Biol Chem 279, 37798–37807.
44. Christiansen K & Jensen PK (1972) Membrane-bound lipid particles from beef heart chemical composition and structure. Biochim Biophys Acta Lipids Lipid Metab 260, 449–459.
45. Christie WW, Gill S, Nordbäck J, Itabashi Y & Sanda S (1998) New procedures for rapid screening of leaf lipid components from Arabidopsis. Phytochem Anal 9, 53–57.
46. Civen M, Leeb J & Morin RJ (1982) Relationships between circadian cycles of rat adrenal cholesterol ester metabolizing enzymes, cholesterol, ascorbic acid, and corticosteroid secretion. J Steroid Biochem 16, 817–822.
47. Clausen MK, Christiansen K, Jensen PK & Behnke O (1974) Isolation of lipid particles from baker's yeast. FEBS Lett 43, 176–179.
48. Clavier CGJ & Boucher G (1992) The use of photosynthesis inhibitor (DCMU) for in situ metabolic and primary production studies on soft bottom benthos. Hydrobiologia 246, 141–145.
49. Coles SL & Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. Adv Mar Biol 46, 183–223.
50. Coleman RA & Lee DP (2004) Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res 43, 134-176.
51. Connor WE & Neuringer M (1988) The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. Prog Clin Biol Res 282, 275–294.
52. Cooper TF, Gilmour JP & Fabricius KE (2009) Bioindicators of changes in water quality on coral reefs: review and recommendations for monitoring programmes. Coral reefs 28, 589–606.
53. Cretenet G, Le Clech M & Gachon F (2010) Circadian Clock-Coordinated 12Hr Period Rhythmic Activation of the IRE1a Pathway Controls Lipid Metabolism in Mouse Liver. Cell Metab 11, 47–57.
54. Crossland CJ, Barnes DJ & Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol 60, 81–90.
55. Crossland CJ (1987) in situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6, 35–42
56. Crumeyrolles-Duclaux G (1969) Premieres observations ultrastructurales sur les zooxanthelles de Viguieriotes edwardsii (Lacaze-Duthiers 1888). Protistologia 4, 471–479.
57. Czabany T, Athenstaedt K & Daum G (2007) Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta Mol Cell Biol L 1771, 299–309.
58. Dalsgaard J, John MS, Kattner G, Muller-Navarra D & Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv Mar Biol 46, 225–340.
59. Davy SK & Cook CB (2001) The relationship between nutritional status and carbon flux in the zooxanthellate sea anemone Aiptasia pallida. Mar Biol 139, 999–1005.
60. Davy SK, Lucas IAN & Turner JR (1996) Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol 126, 773–783.
61. Demel RA & De Kruyff B (1976) The function of sterols in membranes. Biochim Biophy Acta 457, 109–132.
62. Dewick PM (2001) The acetate pathway: fatty acids and polyketides. Medicinal Natural Products: A Biosynthetic Approach, 2nd ed., pp. 35–120. USA: John Wiley & Sons.
63. Díaz-Almeyda E, Thomé PE, El Hafidi M & Iglesias-Prieto R (2011) Differential stability of photosynthetic membranes and fatty acid composition at elevated temperature in Symbiodinium. Coral Reefs 30, 217–225.
64. Dove SG & Hoegh‐Guldberg O (2006) The cell physiology of coral bleaching. Coral Reefs and Climate Change: Science and Management, pp. 55–71. USA: American Geophysical Union.
65. Douglas AE (2003) Coral bleaching-how and why. Mar Poll Bull 46, 385–392.
66. Dron A, Rabouille S, Claquin P, Le Roy B, Talec A, Sciandra A (2012) Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle. Environ Microbiol 14, 967–981.
67. Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E & Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27, 79–101.
68. Dunn SR, Thomas MC, Nette GW & Dove SG (2012) A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis. PLOS ONE 7, e46801.
69. Eastmond PJ, Quettier AL, Kroon JT, Craddock C, Adams N & Slabas AR (2010). Phosphatodic acid phosphohydrolase 1 and 2 regulate phospholipid synthesis at the endoplasmic reticulum in Arabidopsis. Plant Cell 22, 2796–2811.
70. Fagone P & Jackowski S (2009) Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res 50, 311–316.
71. Falkowski PG, Dubinsky Z, Muscatine L & McCloskey L (1993) Population control in symbiotic corals: ammonium ions and organic molecules maintain the density of zooxanthellae. BioScience 43, 606–611.
72. Farazi TA, Waksman G & Gordon JI (2001) The biology and enzymology of proteinn-myristoylation. J Biol Chem 276, 39501-39504.
73. Farmer MA, Fitt WK & Trench RK (2001) Morphology of the symbiosis between Corculum cardissa (Mollusca: Bivalvia) and Symbiodinium corculorum (Dinophyceae). Biol Bull 200, 336–343.
74. Fine M, Meroz-Fine E & Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208, 75–81.
75. Fitt WK (2000) Cellular growth of host and symbiont in a cnidarian-zooxanthellar symbiosis. Biol Bull 198, 110–120.
76. Franklin DJ, Cedrés CMM & Hoegh-Guldberg O (2006) Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo-Pacific coral Stylophora pistillata (Esper) after summer bleaching. Mar Biol 149, 633–642.
77. Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a Zooxanthella: Taxonomy, Life Cycle, and Morphology. J Protozool 9, 45–52.
78. Furla P, Galgani I, Durand I & Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203, 3445–3457.
79. Gates RD, Bagiidasarian G & Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182, 324–332.
80. Garrett TA, Schmeitzel JL, Klein JA, Hwang JJ & Schwarz JA (2013) Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont. PLOS ONE 8, e57975.
81. Grant AJ, Starke-Peterkovic T, Withers KJT & Hinde R (2004) Aposymbiotic Plesiastrea versipora continues to produce cell-signalling molecules that regulate the carbon metabolism of symbiotic algae. Comp Biochem Physiol A 138, 253–259.
82. Grottoli AG, Rodrigues LJ & Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals Porites compressa and Montipora verucosa, following a bleaching event. Mar Biol 145, 621–631.
83. Grunwald C (1971) Effects of free sterols, steryl ester, and steryl glycoside on membrane permeability. Plant Physiol 48, 653–655.
84. Guschina IA & Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45, 160–186.
85. Hammond EW (1986) Packed-column gas chromatography. Analysis of oils and fats, pp. 113–135. UK: Elsevier Applied Science Publishers
86. Hammer Ø, Harper DAT & Ryan PD (2001) PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontolia Electronica 4.
87. Harland AD, Davies PS & Fixter LM (1992) Lipid content of some Caribbean corals in relation to depth and light. Mar Biol 113, 357–361.
88. Harland AD, Fixer LM, Davies PS & Anderson RA (1991) Distribution of lipids between the zooxanthellae and animal compartment in the symbiotic sea anemone Anemonia viridis: Wax esters, triglycerides and fatty acids. Mar Biol 110, 13–19.
89. Harland AD, Navarro JC, Davies PS & Fixter LM (1993) Lipids of some Caribbean and Red Sea corals: total lipid, wax esters, triglycerides and fatty acids. Mar Biol 117, 113–117.
90. Hashimoto N, Fujiwara S, Watanabe K, Iguchi K & Tsuzuki M (2003) Localization of clavulones, prostanoids with antitumor activity, within the Okinawan soft coral Clavularia viridis (Alcyonacea, Clavulariidae): preparation of a high-purity Symbiodinium fraction using a protease and a detergent. Lipids 38, 991–997.
91. Hendershot LM (2004) The ER function BiP is a master regulator of ER function. Mt Sinai J Med 71, 289–297.
92. Hidaka M (2016) Life History and Stress Response of Scleractinian Corals. Coral Reef Science, pp. 1–24. Japan: Springer.
93. Hinde R (1988) Factors produced by symbiotic marine invertebrates which affect translocation between the symbionts. Cell to Cell Signals in Plant, Animal and Microbial Symbioses, pp. 311–324. Germany: Springer.
94. Hinrichs S, Patten NL & Waite AM (2013) Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera–implications for monitoring projects. PLOS ONE 8, e63693.
95. Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Bio Ecol 37, 105–125.
96. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50, 839–866.
97. Hoegh-Guldberg O, Fine M, Skirving W, Johnstone R, Dove S & Strong A (2005) Coral bleaching following wintry weather. Limnol Oceanogr 50, 265–271.
98. Huston M (1985) Variation in coral growth rates with depth at Discovery Bay, Jamaica. Coral Reefs 4, 19–25.
99. Imbs AB, Latyshev NA, Zhukova NV & Dautova TN (2007a) Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species. Comp Biochem Physiol B Biochem Mol Biol 148, 314–321.
100. Imbs AB, Demidkova DA, Latypov YY & Pham LQ (2007b) Application of fatty acids for chemotaxonomy of reef-building corals. Lipids 42, 1035–1046.
101. Imbs AB, Yakovleva IM & Pham LQ (2010a) Distribution of lipids and fatty acids in the zooxanthellae and host of the soft coral Sinularia sp. Fish Sci 76: 375–380.
102. Imbs AB, Latyshev NA, Dautova TN & Latypov YY (2010b) Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae. Mar Ecol Prog Ser 409, 65–75.
103. Imbs AB, Yakovleva IM, Latyshev NA & Pham LQ (2010c) Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals. Russ J Mar Biol 36, 452–457.
104. Imbs AB & Yakovleva IM (2012) Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs 31, 41–53.
105. Imbs AB (2013) Fatty acids and other lipids of corals: composition, distribution, and biosynthesis. Russ J Mar Biol 39, 153–168.
106. Imbs AB, Yakovleva IM, Dautova TN, Bui LH & Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101, 76–82.
107. Jones RJ (2004) Testing the ‘photoinhibition’model of coral bleaching using chemical inhibitors. Mar Ecol Prog Ser 284, 133–145.
108. Jayaram S & Bal AK (1991) Oleosomes (lipid bodies) in nitrogen‐fixing peanut nodules. Plant Cell Environ 14, 195–203.
109. Jeffrey SW & Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanz 167, 191–194
110. Jiang PL, Pasaribu B & Chen CS (2014) Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLOS ONE 9: e87416.
111. Jones RJ & Hoegh‐Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoinactivation and the relationship to coral bleaching. Plant Cell Environ 24, 89–99.
112. Jones RJ & Yellowlees D (1997) Regulation and control of intracellular algae (=zooxanthellae) in hard corals. Phil Trans R Soc Lond B 352, 457–468.
113. Kadono T, Kawano T, Hosoya H & Kosaka T (2004) Flow cytometric studies of the host-regulated cell cycle in algae symbiotic with green paramecium. Protoplasma 223, 133–141.
114. Kanehisa M (2002) The KEGG database. Novartis Found Symp 247, 91–101; discussion 101–103, 119–128, 244–152.
115. Kawaguti S (1944) Zooxanthellae as a factor of positive phototropism in those animals containing them. Palao Trop Biol Stn Stud 2, 681–682.
116. Kellogg RB & Patton JS (1983) Lipid droplets, medium of energy exchange in the symbiotic anemone Condylactis gigantean: a model coral polyp. Mar Biol 75, 137–149.
117. Khotimchenko SV, Vaskovsky VE & Titlyanova TV (2002) Fatty acids of marine algae from the Pacific coast of North California. Botanica Marina 45, 17–22.
118. Kis M, Zsiros O, Farkas T, Wada H, Nagy F & Gombos Z (1998) Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci 95, 4209–4214.
119. Kopischke M, Westphal L, Schneeberger K, Clark R, Ossowski S, Wewer V, Fuchs R, Landtag J, Hause G, Dörmann P, Lipka V, Weigel D, Schulze-Lefert P, Scheel D & Rosahl S (2013) Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. Plant J 73, 456–468.
120. Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M & Meibom A (2015) Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio 6, e02299.
121. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
122. Latyshev NA, Naumenko NV, Svetashev VI & Latypov YY (1991) Fatty acids of reef-building corals. Mar Ecol Progr Ser 76, 295–301.
123. Leal MC, Nunes C, Kempf S, Reis A, Da Silva TL, Serôdio J, Cleary DFR & Calado R (2013) Effect of light, temperature and diet on the fatty acid profile of the tropical sea anemone Aiptasia pallida. Aquacult Nutr 19, 818–826.
124. Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Bio Ecol 300, 217–252.
125. Leuzinger S, Anthony KRN & Willis BL (2003) Reproductive energy investment in corals: scaling with module size. Oecologia 136, 524–531.
126. Leventis PA & Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39, 407–427.
127. Lewin RA & Cheng L (1989) Some lipogenic, eukaryotic, picopleuston algae from the Caribbean region. Phycologia, 28, 96–108.
128. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu CC, Zallot R & Ohlrogge J (2010) Acyl-lipid metabolism. The Arabidopsis Book, pp. 1–65. USA: The American Society of Plant Biologists
129. Li R, Wu X, Lam P, Bird D, Zheng H, Samuels L, Jetter R & Kunst L (2008) Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol 148, 97–107.
130. Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M & Anderson RGW (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279, 3787–3792.
131. Logan DDK, LaFlamme AC, Weis VM & Davy SK (2010) Flow cytometric characterization of the cell surface glycans of symbiotic dinoflagelaltes (Symbiodinium spp.). J Phycol 46, 525–533.
132. Loram J, Trapido-Rosenthal H & Douglas A (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16, 4849–4857.
133. Lu DP & Christopher DA (2008) Light enhances the unfolded protein response as measured by BiP2 gene expression and the secretory GFP‐2SC marker in Arabidopsis. Physiol Plant 134, 360–368.
134. Luo YJ, Wang LH, Chen WNU, Peng SE, Tzen JTC, Hsiao YY, Huang HJ, Fang LS & Chen CS (2009) Ratiometric imaging of gastrodermal lipid bodies in coral–dinoflagellate endosymbiosis. Coral Reefs 28, 289–301.
135. Martin S & Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol 7, 373–378.
136. Mastro R & Hall M (1999) Protein delipidation and precipitation by tri-n-butylphosphate, acetone, and methanol treatment for isoelectric focusing and twodimensional gel electrophoresis. Anal Biochem 273, 313–315.
137. Masoro EJ (1977) Lipids and lipid metabolism. Annu Rev Physiol 39, 301–321.
138. Mayfield AB & Gates RD (2007) Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp Biochem Physiol A Mol Integr Physiol 147, 1–10.
139. Mayfield AB, Hsiao YY, Chen HK & Chen CS (2014). Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. Mar Biotechnol 16, 371–384.
140. Maxfield FR & Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438, 612–621.
141. Meyers PA (1977) Fatty acids and hydrocarbons of Caribbean corals. Proc 3rd int coral Reef Symp 1, 529–535
142. Meyers PA (1979) Polyunsaturated fatty acids in coral: indicators of nutritional sources. Mar Biol Lett 1, 69–75.
143. Michael IG, John LH & Keith NF (2002) Functional roles of lipids in membranes. Lipid Biochemistry: An Introduction, 5th Edition, pp. 2–36. USA: Wiley-Blackwell.
144. Mortillaro JM, Pitt KA, Lee SY & Méziane T (2009) Light intensity influences the production and translocation of fatty acids by zooxanthellae in the jellyfish Cassiopea sp. J Exp Mar Biol Ecol 378, 22–30.
145. Muller-Parker G, D'Elia CF & Cook CB (2015) Interactions between corals and their symbiotic algae. Coral Reefs in the Anthropocene, pp. 99–116. Netherlands: Springer.
146. Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res 40, 325–438.
147. Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249, 541–585.
148. Murphy DJ & Leech RM (1981) Photosynthesis of Lipids from 14CO2 in Spinacia oleracea. Plant Physiol 68, 762–765.
149. Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156, 516–519.
150. Muscatine L (1973) Nutrition of corals. Biol Geol Coral Reefs 2, 77–115.
151. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. Ecosyst world 25, 75–87.
152. Muscatine L & Hand C (1958) Direct evidence for the transfer of materials from symbiotic algae to the tissues of a coelenterate. Proc Natl Acad Sci USA 44, 1259–1263.
153. Muscatine L & Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137, 506–523.
154. Muscatine L, Poll RR & Trench RK (1975) Symbiosis of algae and invertebrates: aspects of the symbiont surface and the host-symbiont interface. Trans Amer Micros Soc 94, 450–469.
155. Muscatine L, McCloskey LR & Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26, 601–611.
156. Muscatine L, Falkowski PG, Porter JW & Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222, 181–202.
157. Muscatine L, Falkowski PG, Dubinsky Z, Cook PA & McCloskey LR (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc Lond B 236, 311–324.
158. Muscatine L, Ferrier-Pagès C, Blackburn A, Gates RD, Baghdasarian G & Allemand D (1998) Cell-specific density of symbiotic dinoflagellates in tropical anthozoans. Coral Reefs 17, 329–337.
159. Muscatine L, Gates RD & LaFontaine I (1994) Do symbiotic dinoflagellates secrete lipid droplets? Limnol Oceanogr 39, 925–929.
160. Mehr SFP, DeSalle R, Kao HT, Narechania A, Han Z, Tchernov D & Gruber D F (2013) Transcriptome deep-sequencing and clustering of expressed isoforms from Favia corals. Bmc Genomics 14, 546.
161. Nakamura Y, Andrés F, Kanehara K, Liu YC, Coupland G & Dörmann P (2014) Diurnal and circadian expression profiles of glycerolipid biosynthetic genes in Arabidopsis. Plant Signal Behav 9, e29715.
162. Nakamura Y & Yamada M (1975) Fatty acid synthesis by spinach chloroplasts I. Property of fatty acid synthesis from acetate. Plant Cell Physiol 16, 139–149.
163. Neuringer M, Anderson GJ & Connor WE (1988) The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr 8, 517–541.
164. Norton JH, Shepherd MA, Long HM & Fitt WK (1992) The zooxanthellal tubular system in the giant clam. Biol Bull 183, 503–506.
165. Ohlrogge J & Browse J (1995) Lipid biosynthesis. The Plant Cell 7, 957–970.
166. Ohlrogge J & Jaworski J (1997) Regulation of fatty acid synthesis. Ann Rev Plant Biol 48, 109–136.
167. Oku H, Yamashiro H, Onaga K, Iwasaki H & Takara K (2002) Lipid distribution in branching coral Montipora digitata. Fish Sci 68, 517–522.
168. Oku H, Yamashiro H & Onaga K (2003) Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fish Sci 69, 625–631.
169. Oku H, Yamashiro H, Onaga K, Sakai K, Iwasaki H (2003) Seasonal changes in the content and composition of lipids in the coral Goniastrea aspera. Coral Reefs 22, 83–85.
170. Olofsson SO, Bostrom P, Andersson L, Rutberg M, Perman J & Boren J (2009) Lipid droplets as dynamic organelles connecting storage and efflux of lipids. Biochim Biophys Acta Mol Cell Biol Lipids 1791, 448–458.
171. Ooe E, Tsuruma K, Kuse Y, Kobayashi S, Shimazawa M & Hara H (2017) The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light. Mol Vis 23, 52.
172. Papina M, Meziane T & Van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comp Biochem Physiol B Biochem Mol Biol 135, 533–537.
173. Papina M, Meziane T & van Woesik R (2007) Acclimation effect on fatty acids of the coral Montipora digitate and its symbiotic algae. Comp Biochem Physiol B Biochem Mol Biol 147, 583–589.
174. Patton JS, Battey JF, Rigler MW, Porter JW, Black CC & Burris JE (1983) A comparison of the metabolism of bicarbonate 14C and acetate 1–14C and the variability of species lipid composition in reef corals. Mar Biol 75, 121–130.
175. Patton JS & Burris JE (1983) Lipid synthesis and extrusion by freshly isolated zooxanthellae (symbiotic algae). Mar Biol 75, 131–136.
176. Patton JS, Abraham S & Benson AA (1977) Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Mar Biol 44, 235–247.
177. Paredes JF, Vera LM, Martinez-Lopez FJ, Navarro I & Sánchez Vázquez FJ (2014) Circadian rhythms of gene expression of lipid metabolism in Gilthead Sea bream liver: Synchronisation to light and feeding time. Chronobiol Int 31, 613–626.
178. Pasaribu B, Lin IP, Tzen JT, Jauh GY, Fan TY, Ju YM, Cheng JO, Chen CS & Jiang PL (2014) SLDP: a novel protein related to caleosin is associated with the endosymbiotic Symbiodinium lipid droplets from Euphyllia glabrescens. Mar Biotech 16, 560–571.
179. Peng SE, Luo YJ, Huang HJ, Lee IT, Hou LS, Chen WNU, Fang LS & Chen CS (2007) Isolation of tissue layers in hermatypic corals by N-acetylcysteine: morphological and proteomic examinations. Coral Reefs 27, 133–142.
180. Peng SE, Wang YB, Wang LH, Chen WNU, Lu CY, Fang LS & Chen CS (2010) Proteomic analysis of symbiosome membranes in cnidarian-dinoflagellate endosymbiosis. Proteomics 10, 1002–1016.
181. Peng SE, Chen WNU, Chen HK, Lu CY, Mayfield AB, Fang LS & Chen CS (2011) Lipid bodies in coral-dinoflagellate endosymbiosis: proteomic and ultrastructural studies. Proteomics 17, 3540–3555.
182. Peng SE, Chen CS, Song YF, Huang HT, Jiang PL, Chen WNU, Fang LS & Lee YC (2012) Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Bio Let 23, 434–437.
183. Pereira SL, Leonard AE & Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids 68, 97–106.
184. Pochon X & Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56, 492–497.
185. Polunin NVC & Klumpp DW (1992) Algal food supply and grazer demand in a very productive coral-reef zone. J Exp Mar Biol Ecol 164, 1–15.
186. Ramos R & González-Solís J (2012) Trace me if you can: the use of intrinsic biogeochemical markers in marine top predators. Front Ecol Environ 10, 258–266.
187. Rands ML, Loughman BC & Douglas AE (1993) The symbiotic interface in an alga-invertebrate symbiosis. Rroc R Soc Lond B 253, 161–165.
188. Rajkumar R & Parulekar AH (2001) Biology of corals and coral reefs. The Indian Ocean—a perspective. USA: CRC Press.
189. Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41, 182–196
190. Rees TAV (1991) Are symbiotic algae nutrient deficient? Proc R Soc Lond B 243, 227–233.
191. Renkonen O, Gahmberg CG, Simons K & Kääriäinen L (1972) The lipids of the plasma membranes and endoplasmic reticulum from cultured baby hamster kidney cells (BHK21) Biochim Biophys Acta 255, 66–78.
192. Renne MF (2014) Endoplasmic Reticulum Stress and lipid metabolism. Master's thesis.
193. Revel J, Massi L, Mehiri M, Boutoute M, Mayzaud P, Capron L & Sabourault C (2016) Differential distribution of lipids in epidermis, gastrodermis and hosted Symbiodinium in the sea anemone Anemonia viridis. Comp Biochem Physiol A Mol Integr Physiol 191, 140–151.
194. Ritchie RJ, Eltringham K & Hinde R (1993) Glycerol uptake by zooxanthellae of the temperate hard coral, Plesiastrea versipora (Lamarck). Proc R Soc Lond B 253, 189–195.
195. Rodrigues LJ, Grottoli AG & Pease TK (2008) Lipid class composition of bleached and recovering Porites compressa Dana, 1846 and Montipora capitata Dana, 1846 corals from Hawaii. J Exp Mar Bio Ecol 358, 136–143.
196. Rodriguez-Lanetty M, Phillips WS & Weis VM (2006) Transcriptome analysis of a cnidarian–dinoflagellate mutualism reveals complex modulation of host gene expression. Bmc Genomics 7, 23.
197. Rowan ROB & Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251, 1348–1351.
198. Rohwer F, Seguritan V, Azam F & Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243, 1–10.
199. Ryland JS, Brasseur MM & Lancaster JE (2004) Use of cnidae in taxonomy: implications from a study of Acrozoanthus australiae (Hexacorallia, Zoanthidea). J Nat Hist 38, 1193–1223.
200. Sahu A, Pancha I, Jain D, Paliwal C, Ghosh T, Patidar S, Bhattacharya S & Mishra S (2013) Fatty acids as biomarkers of microalgae. Phytochemistry 89, 53–58.
201. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V & Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374.
202. Sang A (2002) ARF1 regulatory factors and COPI vesicle formation. Curr Opin Cell Biol 14, 423–427.
203. Saunders SM, Radford B, Bourke SA, Thiele Z, Bech T & Mardon J (2005) A rapid method for determining lipid fraction ratios of hard corals under varying sediment and light regimes. Environ Chem 2, 331–336.
204. Schneider CA, Wayne SR & Kevin WE (2012) NIH Image to ImageJ: 25 years of image analysis. Nat methods 9.7, 671–675.
205. Schoenberg DA & Trench RK (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of Symbiodinium microadriaticum. Proc R Soc Lond B 207, 445–460.
206. Schreiber U, Schliwa U & Bilger W (1986) Continuous recordings of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometry. Photosynth Res 10, 51–62.
207. Schreiber U & Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Progress in Botany/Fortschritte der Botanik, pp. 151–173. Germany: Springer.
208. Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In Chlorophyll a Fluorescence, pp. 279–319). Netherlands: Springer.
209. Schröder M & Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74, 739–789.
210. Schlichter D, Kremer BP & Svoboda A (1984) Zooxanthellae providing assimilatory power for the incorporation of exogenous acetate in Heteroxenia fuscescens (Cnidaria: Alcyonaria). Mar Biol 83, 277–286.
211. Shenkar N, Fine M, Kramarsky-Winter E & Loya Y (2006) Population dynamics of zooxanthellae during a bacterial bleaching event. Coral Reefs 25, 223–227.
212. Shen X, Zhang K & Kaufman RJ (2004) The unfolded protein response-a stress signaling pathway of the endoplasmic reticulum. J Chem Neuroanat 28, 79–92.
213. Shinzato C, Inoue M & Kusakabe M (2014) A snapshot of a coral “holobiont”: a transcriptome assembly of the scleractinian coral, Porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLOS ONE 9, e85182.
214. Shindou H & Shimizu T (2009) Acyl-CoA: lysophospholipid acyltransferases. J Biol Chem 284, 1–5.
215. Smith DC (1979) From extracellular to intracellular: the establishment of a symbiosis. Proc R Soc Lond B 204, 115–130.
216. Smith GJ & Muscatine L (1999) Cell cycle of symbiotic dinoflagellates: variation in G1 phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella-Symbiodinium pulchrorum symbiosis. Mar Biol 134, 405–418.
217. Soccio RE & Breslow JL (2004) Intracellular cholesterol transport. Arterioscler Thromb Vasc Biol 24, 1150–1160.
218. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 1486, 219–231.
219. Stat M, Morris E & Gates RD (2008) Functional diversity in coral-dinoflagellate symbiosis. Proc Natl Acad Sci 105, 9256–9261.
220. Steen RG & Muscatine L (1984) Daily budgets of photosynthetically fixed carbon in symbiotic zoanthids. Biol Bull 167, 477–487.
221. Stimson JS (1987) Location, quantity and rate of change in quantity of lipids in tissue of Hawaiian hermatypic corals. Bull Mar Sci 41, 889–904.
222. Stochaj WR & Grossman AR (1997) Differences in the protein profile of cultured and endosymbiotic Symbiodinium sp. (Pyrrophyta) from the anemone Aiptasia pallida (Anthozoa). J Phycol 33, 44–53.
223. Streamer M, McNeil YR & Yellowlees D (1993) Photosynthetic carbon dioxide fixation in zooxanthellae. Mar Biol 115, 195–198.
224. Sturley S (1997) Molecular aspects of intracellular cholesterol esterification: the acyl coenzyme A: cholesterol acyl transferase reaction. Curr Opin Lipidol 8, 167–173.
225. Sukenik A & Carmeli Y (1990) Lipid synthesis and fatty acid composition in Nannochloropsis Sp. (Eustigmatophyceae) grown in a light-dark cycle. J Phycol 26, 463–469.
226. Sullivan JC, Reitzel AM & Finnerty JR (2008) Upgrades to Stella Base facilitate medical and genetic studies on the starlet sea anemone, Nematostella vectensis. Nucleic Acids Res 36, 607–611.
227. Swanson R & Hoegh-Guldberg O (1998) Amino acid synthesis in the symbiotic sea anemone Aiptasia pulchella. Mar Biol 131, 83–93.
228. Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R & Fujimoto T (2002) The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277, 44507–44512.
229. Taylor DL (1969) The nutritional relationship of Anemonia sulcata (Pennant) and its dinoflagellate symbiont. J Cell Sci 4, 751–762.
230. Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. Symbiosis in the Sea, pp. 245–262. USA: University of South Carolina Press.
231. Teece MA, Estes B, Gelsleichter E & Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals Montastrea faveolata and Porites astreoides. Limnol Oceanogr 56, 1285–1296.
232. Traylor-Knowles N, Granger BR, Lubinski TJ, Parikh JR, Garamszegi S, Xia Y & Finnerty JR (2011) Production of a reference transcriptome and transcriptomic database (Pocillopora Base) for the cauliflower coral, Pocillopora damicornis. Bmc genomics 12, 585.
233. Treignier C, Grover R, Ferrier-Pages C & Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53, 2702–2710.
234. Tremblay P, Grover R, Maguer JF, Legendre L & Ferrier-Pagès C (2012) Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol 215, 1384–1393.
235. Towbin H, Staehelin T & Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76, 4350–4354.
236. Udvardi MK & Day DA (1997) Metabolite exchange across symbiosome membranes of legume nodules. Annu Rev Plant Physiol Plant Mol Biol 48, 493–523.
237. Umlauf E, Csaszar E, Moertelmaier M, Schuetz GJ, Parton RG & Prohaska R (2004) Association of stomatin with lipid bodies. J Biol Chem 279, 23699–23709.
238. Vandermeulen JH, Davis ND & Muscatine L (1972) The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar Biol 16, 185–191.
239. Vercauteren FGG, Arckens L & Quirion R (2007) Application and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids 33, 405–414.
240. Wallis JG & Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41, 254–278.
241. Walther TC & Farese JrRV (2009) The life of lipid droplets. Biochim Biophys Acta Mol Cell Biol L 179, 459–466.
242. Walther TC & Farese JrRV (2012) Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81, 687–714.
243. Wang LH, Lee HH, Fang LS, Mayfield AB & Chen CS (2013) Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones. PLOS ONE 8, e72486.
244. Wang LH, Liu YH, Ju YM, Hsiao YY, Fang LS & Chen CS (2008) Cell cycle propagation is driven by light–dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs 27, 823.
245. Wang LH, Chen HK, Jhu CS, Cheng JO, Fang LS & Chen CS (2015) Different strategies of energy storage in cultured and freshly isolated Symbiodinium sp. J Phycol 51, 1127–1136.
246. Wang JT, Chen YY, Tew KS, Meng PJ & Chen CA (2012) Physiological and biochemical performances of menthol-induced aposymbiotic corals. PLOS ONE 7, e46406.
247. Wang JT & Douglas AE (1999) Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis? J Exp Biol 201, 2445–2453.
248. Warner ME, Lesser MP & Ralph PJ (2010) Chlorophyll fluorescence in reef building corals. Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, pp. 209–222. Netherlands: Springer.
249. Ward S (1995) Two patterns of energy allocation for growth, reproduction and lipid storage in the scleractinian coral Pocillopora damicornis. Coral Reefs 14, 87–90.
250. Weng LC, Pasaribu B, Lin IP, Tsai CH, Chen CS & Jiang PL (2014) Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella. Sci Rep 4: 5777.
251. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211, 3059–3066.
252. Weis VM & Levine RP (1996) Differential protein profiles reflect the different lifestyles of symbiotic and aposymbiotic Anthopleura elegantissima, a sea anemone from temperate waters. J Exp Biol 199, 883–892.
253. Whitehead LF & Douglas AE (2003) Metabolite comparisons and the identity of nutrients translocated from symbiotic algae to an animal host. J Exp Biol 206, 3149–3157.
254. Wicks LC, Gardner JPA & Davy SK (2012) Host tolerance, not symbiont tolerance, determines the distribution of coral species in relation to their environment at a Central Pacific atoll. Coral reefs 31, 389–398.
255. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A & Liu X (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24, 384–399.
256. Yamashiro H, Oku H, Higa H, Chinen I & Sakai K (1999) Composition of lipids, fatty acids and sterols in Okinawan corals. Comp Biochem Physiol B 122, 397–407.
257. Yamashiro H, Oku H, Onaga K, Iwasaki H & Takara K (2001) Coral tumors store reduced level of lipids. J Exp Mar Biol Ecol 265, 171–179
258. Yellowlees D, Dionisio-Sese ML, Masuda K, Maruyama T, Abe T, Baillie B, Tsuzuki M & Miyachi S (1993) Role of carbonic anhydrase in the supply of inorganic carbon to the giant clam-zooxanthellate symbiosis. Mar Biol 115, 605–611.
259. Yellowlees D, Rees TAV & Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31, 679–694.
260. Zhao YG, Tang HX & Ye YZ (2012) RAPSearch2: a fast and memory-efficient protein similarity search tool for next generation sequencing data. Bioinformatics 28, 125–126.
261. Zhou H, Zhang K, Janciauskiene S & Li X (2012) Endoplasmic reticulum stress and lipid metabolism. Biochemistry research international.
262. Zhukova NV & Titlyanov EA (2003) Fatty acid variations in symbiotic dinoflagellates from Okinawan corals. Phytochemistry 62, 191–195.
263. Zhukova NV &Titlyanov EA (2006) Effect of light intensity on the fatty acid composition of dinoflagellates symbiotic with hermatypic corals. Botanica Marina 49, 339–346.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code