Responsive image
博碩士論文 etd-0416113-151940 詳細資訊
Title page for etd-0416113-151940
論文名稱
Title
快速鎖定技術用於5GHz寬頻鎖相迴路頻率合成器設計
A Fast Lock Technique for the 5Ghz Wide band PLL Frequency Synthesizer Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-09
繳交日期
Date of Submission
2013-05-16
關鍵字
Keywords
連續時間頻率偵測器、電荷幫浦、鎖相迴路、相位頻率偵測器、壓控振盪器、自動選頻器、最佳頻帶選頻器
VCO, Charge Pump, ABS, PLL, PFD, Continuous-Time PFD, OBS
統計
Statistics
本論文已被瀏覽 5794 次,被下載 646
The thesis/dissertation has been browsed 5794 times, has been downloaded 646 times.
中文摘要
本論文提出了一個高調頻範圍,低相位雜訊與快速鎖定全積體化除整數之頻率合成器。此頻率合成器採用TSMC 0.18μm 1P6M CMOS製程並操作在1.8V供應電壓之下,主要應用於IEEE 802.11ac Wi-Fi,提供4.58GHz至5.68GHz的本地振盪器,並應用於射頻收發機的前端電路。本論文所提出的頻率合成器包含快速頻率偵測器及電荷幫浦(Fast-PFDCP)、雙模式低通迴路濾波器(Dual_Mode_LPF)、壓控振盪器(VCO)、自動選頻器(ABS)、最佳頻道選頻器(OBS)、鎖定偵測器(Lock Detector)以及含雙模數前置除頻器(dual-modulus prescaler)之pulse-swallow divider。在既有架構中使用自動選頻器來加快子頻道的選取並使用最佳頻道選頻器來產生一個具最小KVCO變化量之頻帶,此外,在壓控震盪器的設計上,利用switched capacitors技術降低VCO gain(KVCO)並能涵蓋原有所需頻帶,使得此頻率合成器能在製程、電壓、以及溫度的變化之下而能正常運作。但其缺點為需要進行兩次的鎖定動作,才能完成整個系統的運作,使得整個鎖相迴路的鎖定時間過於冗長。故本論文提出一個快速頻率偵測器及電荷幫浦(Fast-PFDCP),藉由改良後的連續時間頻率偵測器(Continuous-Time PFD)來控制3bits電流幫浦,以提升整個鎖相迴路的鎖定速度,再加入雙模式的迴路濾波器(Dual_Mode_LPF)來穩定鎖定過程中的迴路頻寬。藉由改良後的技術可以提升45%的鎖定速度。
Abstract
This thesis presents a wide tuning, low phase noise, and fast locking CMOS integer-N frequency synthesizer with 1.8V power supply. The frequency synthesizer is fabricated using the TSMC 0.18μm CMOS 1P6M technology. It can be used for IEEE 802.11ac unlicensed band of Wi-Fi (Wireless Fidelity). It provides one ration frequency ranged from 4.58GHz to 5.68GHz for the local oscillator in RF front-end circuits. The proposed frequency synthesizer consists of a fast-phase-frequency detector charge pump (Fast-PFDCP), a dual mode low-pass loop filter (Dual_Mode_LPF), a voltage control oscillator, an auto-band selection (ABS), an optimum-band selection (OBS), a Lock Detector, and a pulse-swallow divider. In the original design, used the ABS to reduce the calibration time by adopting the binary search algorithm to select the calibration word and used the OBS to find the optimum solution which has the minimum KVCOvariation. Furthermore, the architecture for voltage-controlled oscillator with switched capacitors technique which degrade the VCO gain (KVCO) and achieve wide tuning range and low phase noise in order to cover the desired operating frequency bands and to accommodate process, voltage, and temperature (PVT) variations. But in order to complete system operator there need twice locking action, it’s a disadvantage that PLL has large lock time. Hence, this paper presents a Fast phase frequency detector charge pump (Fast-PFDCP), control 3bits charge pump by proposed Continuous-Time PFD to enhance the locking speed of the PLL. And add Dual_Mode_LPF to stabilize the loop bandwidth in the locking process. By improved technology can enhance the locking speed of forty-five percent.
目次 Table of Contents
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Thesis Organization 4
CHAPTER 2 THE CONCEPTS OF PLLFREQUENCY SYNTHESIZER 6
2.1 General Concepts 6
2.2 Phase Frequency Detector (PFD) 7
2.2.1 Conventional Phase Frequency Detector (CPFD) 7
2.2.2 PLL with Conventional PFD 9
2.2.3 Nonlinear PFD 10
2.2.4 Piecewise-Linear PFD 12
2.2.5 Dual-Slope PFD 15
2.2.6 Summary 17
2.3 Continuous-Time Phase Frequency Detector 18
2.3.1 General Concepts 18
2.3.2 PLLs with Continuous-Time PFD 20
2.3.3 Design Considerations of Continuous-Time PFD 22
CHAPTER 3 The Proposed Frequency Synthesizer 23
3.1 Introduction 23
3.2 Fast Phase Frequency Detector Charge Pump (Fast PFDCP) 24
3.2.1 Proposed Continuous-PFD 26
3.2.2 CP_Bit_Counter 28
3.2.3 Charge Pump (CP) 29
3.3 Dual Mode Loop Filter (Dual Mode LPF) 30
3.4 Voltage Controlled Oscillator (VCO) 32
3.5 Frequency Divider 36
3.6 Auto Band Selection (ABS) 39
3.7 Optimum Band Selection (OBS) 45
3.7.1 OBS_CLK 48
3.8 Lock Detector 49
CHAPTER 4 SIMULATION RESULTS 51
4.1 RF Model and CMOS Process 51
4.2 Simulation results of PFD 52
4.3 Simulation results of VCO 54
4.4 Simulation results of Frequency Synthesizer 57
CHAPTER 5 LAYOUT AND MEASUREMENT 60
5.1 Layout 60
5.2 Measurement 61
CHAPTER 6 CONCLUSION AND FUTURE WORK 66
6.1 Conclusion 66
6.2 Future Work 66
Reference 67
參考文獻 References
[1] T.-H. Lin, and Y.-J. Lai, “A 10-GHz CMOS PLL with an Agile VCO Calibration,” IEEE Asian Solid-State Circuits Conference, pp. 213-216, November 2005.
[2] K. Shu, and E.-S. Sinencio, CMOS PLL Synthesizers—Analysis and Design. New York: Springer, 2005.
[3] C.-S. Vaucher, “An adaptive PLL tuning system architecture combining high spectral purity and fast settling time,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 490-502, April 2000.
[4] M. Keaveney, P. Walsh, M. Tuthill, C. Lyclen, and B. Hunt, “A 10μs fast switching PLL synthesizer for a GSM/EDGE base-station,” in IEEE ISSCC Dig. Tech. Papers, pp. 192-193, February 2004.
[5] X.-F. Kuang, and N.-J. Wu, “A fast-settling PLL frequency synthesizer with direct frequency presetting,” in IEEE ISSCC Dig. Tech. Papers, pp. 741-742, February 2006.
[6] S. Shin, K. Lee, and S.-M. Kang, “4.2 mW CMOS frequency synthesizer for 2.4 GHz ZigBee application with fast settling time performance,” in Microwave Symp. Dig, pp. 411-414, June 2006.
[7] M. Bayer, T. Chomicz, F. James, P. McEntarfer, D. Mijuskovic, and J. Porter, “A low noise CMOS frequency synthesizer with dynamic bandwidth control,” in Proc. CICC, pp. 8.5.1-8.5.4, May 1994.
[8] W.-H. Chiu, T.-S. Chang, and T.-H. Lin, “A 5.5-GHz 16-mW fast-locking frequency synthesizer in 0.18-μm CMOS,” in Proc. IEEE A-SSCC, pp. 456-459, November 2007.
[9] B. Memmler, E. Gotz, and G. Schonleber, “New fast-lock PLL for mobile GSM GPRS applications,” in Proc. ESSCIRC, pp. 468-471, September 2000.
[10] K. Woo, Y. Liu, E. Nam, and D. Ham, “Fast-lock hybrid PLL combining fractional-N and integer-N modes of differing bandwidths,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 379-389, February 2008.
[11] C.-S. Lin, T.-H. Chien, C.-L. Wey, C.-M. Huang, and Y.-Z. Juang, “An Edge Missing Compensator for Fast Settling Wide Locking Range Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3102-3110, November 2009.
[12] 劉深淵,楊清淵,鎖相迴路,滄海書局,2006。
[13] X. Liu, J. Jin, C. Mao, and J. Zhou” Linear range extensible Phase Frequency Detector and Charge Pump for fast frequency acquisition”, Circuits and Systems (ISCAS), pp. 985-988, May 2011.
[14] K.-S. Lee, B.-H. Park, H.-I. Lee, and M.-J. Yoh, "Phase frequency detectors for fast frequency acquisition in zero-dead-zone CPPLLs for mobile communication systems," in Proc. ESSCIRC, pp. 525-528, September 2003.
[15] “An analysis and performance evaluation of a passive filter design technique for charge pump PLLT's", National Semiconductor application note, July 2001.
[16] F.-M. Gardner, “Charge-pump phase-lock loops,” IEEE Trans. Commun, vol. 28, pp.1849-1858, November 1980.
[17] J. Lan, F. Lai, Z. Gao, H. Ma, and J. Zhang, “A Nonlinear Phase Frequency Detector for Fast-Lock Phase-Locked Loops,” IEEE Conference on ASIC and ASICON, pp.1117-1120, October 2009.
[18] J.-C. Chih, C.-T. Chiu, J.-M. Wu, S.-H. Hsu, and Y.-S. Hsu, “Piecewise-Linear Phase Frequency Detector for Fast-Lock Phase-Locked Loop,” International Midwest Symposium on Circuit and Systems (NWSCAS), pp1-4, August 2011.
[19] K.-H. Cheng, W.-B. Yang, and C.-M. Ying, “A dual–slope phase frequency detector and charge pump architecture to achieve fast locking of phase locked loop,” IEEE Trans. Circ. and Syst. II, vol.50, pp892-896, November 2003.
[20] B.-Y. Zhang, P.-E. Allen, and J.-M. Huard, “A fast switching PLL frequency synthesizer with an on-chip passive discrete-time loop filter in 0.25μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp.855-865, June 2003.
[21] C.-Y. Yang, and S.-I. Liu, “Fast-switching frequency synthesizer with a discriminator-aided phase detector,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp.1445-1452, October 2000.
[22] H.-O. Johansson, “A simple precharged CMOS phase frequency detector,” IEEE Journal of Solid-State Circuits, vol. 33, pp.295-299, February 1998.
[23] K.-H. Cheng, T.-I. Yao, S.-Y. Jiang, and W.-B. Yang, “A difference detector PFD for low jitter PLL,” in Proc. of ICECS, vol.1, pp.43-46, August 2001.
[24] M. Mansuri, D. Liu, and C.-K.-K. Yang, “Fast frequency acquisition phase-frequency detector for GSamples/s phase-locked loops,” IEEE Journal of Solid-State Circuits, vol.37, pp.1331-1334, October 2002.
[25] J. Pan, and Y. Inoue, “A fast lock phase-locked loop with a continuous-time phase frequency detector,” The 20th Workshop on Circuits and Systems in Karuizawa, pp.99-103, April 2007.
[26] J. Pan, T. Yoshihara, “A Fast Lock Phase-Locked Loop Using a Continuous-Time Phase Frequency Detector,” IEEE Conference on Electron Devices and Solid-State Circuits, pp.393-396, December 2007
[27] N.-H. E. Weste, and K. Eshragrian, “Principles of CMOS VLSI Design,” 2nd ed. Reading, MA: Addison Wesley, 1993.
[28] R.-E. Best, “phase-locked loops design, simulation, and applications,” 5th ed. New York, NY: McGraw-Hill, 2003.
[29] Y. Ge, W. Feng, Z. Chen, S. Jia, and L. Ji, “A fast locking charge-pump PLL with adaptive bandwidth,” IEEE Conference International Symposium on Integrated Circuits (ISIC), vol. 1, pp.383-386, October 2005.
[30] A. Rao, M. Mansour, G. Singh, C.-H. Lim, R. Ahmed, and D.-R. Johnson, “A
4-6.4 GHz LC PLL With Adaptive Bandwidth Control for a Forwarded Clock Link,” IEEE Journal of Solid-State Circuits, vol. 43, no. 9, pp.2099-2108, September 2008.
[31] S. Ying, W. Yuan, J. Song, and Z. Baoying, “A novel calibration technique applying to an adaptive-bandwidth PLL,” International Conference on Solid-State and Integrated-Circuit Technology, pp.1933-1936, October 2008.
[32] J. Rael, and A.-A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, Orlando, FL, USA, pp.21-242;569-572, May 2000.
[33] S. Levantino, C. Samori, A. Bonfanti, S.-L.-J. Gierkink, A.-L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5-GHz CMOS VCOs: impacts on tuning range and flicker noise upconversion,” IEEE Journal of Solid-State Circuits, vol. 37, no. 8, pp.1003-1011, August 2002.
[34] E. Hegazi, H. Sjoland, and A.-A. Abidi,“A filtering technique to lower LC oscillator phase noise,” IEEE Journal of Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, December 2001.
[35] D.-J. Young, S.-J. Mallin, and M. Cross, “2 GHz CMOS Voltage-Controlled Oscillator with Optimal Design of Phase Noise and Power Dissipation,” IEEE Radio Frequency Integrated Circuits Symposium, Honolulu, Hawhuwi, USA, 3-5 131-134, June 2007.
[36] C.-C. Boon, M.-A. Do, K.-S. Yeo, J.-G. Ma, and X.-L. Zhang, “RF CMOS low-phase-noise LC oscillator through memory reduction tail transistor,” IEEE Journal of Solid-State Circuits, vol. 39, no. 2 pp. 85-90, February 2004.
[37] E.-A.-M. Klumperink, S.-L.-J. Gierkink, A.-P. van der Wel, and B. Nauta, “Reducing MOSFET 1/f noise and power consumption by switch biasing,” IEEE Journal of Solid-State Circuits, vol. 35, no. 7, pp.994-1001, July 2000.
[38] S.-L.-J. Gierkink, E.-A.-M. Klumperink, A.-P.-Van der Wel, G. Hoogzaad, E.-A. -J.-M. van Tuikl, and B. Nauta, “Intrinsic 1/f device noise reduction and its effect on phase noise in CMOS ring oscillators,” IEEE Journal of Solid-State Circuits, vol. 34, no. 7, pp.1022-1025, July 1999.
[39] D. Ham, and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE Journal of Solid-State Circuits, vol. 36, no. 3, pp. 337-345, March 2001.
[40] J. Gil, and H. Shin, “A 2.4GHz fully integrated CMOS quadrature VCO,” IEEE Asia-Pacific SoC Conference 2002, vol. 5, pp. 207-210, May 2002.
[41] C. Lam, and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 788-794, May 2000.
[42] T.-H. Lin, and Y.-J. Lai, "An Agile VCOFrequency Calibration Technique for a 10-GHzCMOS PLL," IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp.340-349, February 2007.
[43] J.-G. Maneatis, J. Kim, I. McClatchie, J. Maxey, and M. Shankaradas, "Self-Biased High-Bandwidth Low-Jitter 1-to-4096Multiplier Clock Generator PLL," IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp.1795-1803, November 2003.
[44] A. Rossi, G. Fucilli, “Nonredundant successive approximation registerfor A/D converters,” IEEE on Electron Letters, vol. 32, no. 12, pp. 1055–1057, June 1996.
[45] M.-A. DO, X.-P. Yu, J.-G. Ma, K.-S. Yeo, R. Wu, and Q.-X. Zhang, “A 2GHz programmable counter with new re-loadable D flip-flop,” IEEE Electron Devices and Solid-State Circuits, pp. 269-272, December 2003.
[46] A. Hovsepyan, V. Melikyan, M. Ishkhanyan, T. Hakobyan, and G. Harutyunyan,
“Lock detector with stable parameters,” IEEE on Design and Test Workshop, pp. 1-4, November 2009.
[47] W.-H. Chiu, Y.-H. Huang, and T.-H. Lin, “A Dynamci Phase Error Compensation Technique for Fast-Locking Phase-Locked Loops,” IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp.1137-1149, June 2010.
[48] J. Jin, X. Liu, P. Qin, and J. Zhou, “A ΔΣ Fractional-N PLL with fast Auto-Frequency Calibration for CMMB tuners,” IEEE Conference International Symposium on Integrated Circuits(ISIC), pp.539-542, December 2011.
[49] S.-H. Yang, “An Optimized Loop Bandwidth Technique for the 5GHz Wide band PLL Frequency Synthesizer Design,” National Sun Yat-sen University, January 2011.
[50] J. Shin, and H. Shin, “A 1.9-3.8GHz ΔΣ Fractional-N PLL Frequency Synthesizer With Fast Auto-Calibration of Loop Bandwidth and VCO Frequency,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 665-675, March 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code