Responsive image
博碩士論文 etd-0416118-173240 詳細資訊
Title page for etd-0416118-173240
論文名稱
Title
以複合式碳電極與膠態高分子電解質製備超級電容器之研究
Study of supercapacitor fabricated with composite electrodes and gel polymer electrolyte
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-02
繳交日期
Date of Submission
2018-05-16
關鍵字
Keywords
能量密度、複合式電極、超級電容器、氧化鎢、中間相微碳球
Supercapacitor, Tungsten oxide, Mesocarbon microbeads, Energy density, Composite electrode
統計
Statistics
本論文已被瀏覽 5735 次,被下載 123
The thesis/dissertation has been browsed 5735 times, has been downloaded 123 times.
中文摘要
本研究以調配醋酸鎳與鎢酸溶液並分別混合於高比表面積的中間相微碳球(Mesocarbon microbeads, MCMB),藉由濾紙過濾,經熱處理製程製作複合式碳粉,再將碳粉與黏著劑混合成碳膏並塗佈於導電碳(Conductive carbon, CC)/ITO玻璃基板,完成製備超級電容器之複合式電極。使用LiClO4和LiBOB之鋰鹽與碳酸丙烯(PC)溶劑來製備膠態高分子電解質,以交流阻抗頻譜分析和恆電流充放電測試(Charge-discharge tests)來討論不同鋰鹽製備膠態高分子電解質對電容特性之影響。最後對超級電容進行充放電效率、不同環境溫度與壽命測試。
研究結果顯示,溶液濃度為0.75 M之H2O4W於熱處理溫度100℃製作複合式碳粉,並添加25 wt.%的碳黑及2 wt.%的黏著劑可製備出最佳電容特性的複合式電極,其比電容值於非水系電解質(1 M LiClO4)中為249 F∙g-1。本研究鋰鹽以8 wt.% LiClO4及30 wt.% 離子溶液(Ionic liquid, IL)製作超級電容器之膠態電解質(Sample 4)有較佳本體阻抗、與碳電極之介面阻抗、元件衰退率及元件之比電容值。由充放電分析得知,WO3/MCMB電極在電壓範圍為0 ~ 2.5 V及充放電電流在2 mA下,有最佳的比電容值為234.22 F∙g-1,並計算出能量密度值為293 Wh∙kg-1,功率密度值為105.4 kW∙kg-1 (放電電流@0.03 A),顯示本研究製備之複合式電極具有優良的電容特性,並在恆電流充放電效率與壽命測試中,複合式電極在經過連續1000次的充放電後,其充放電效率可接近100%,且電極材料與基板間仍具有良好的附著性。
Abstract
This study separately mixed Ni(CH3COO)2 and H2O4W solutions with mesocarbon microbeads (MCMBs), filtered the resulting solution, and then subjected the carbon paste to heat treatments to give rise to composite carbon powder. The powder was then mixed with an adhesive and then applied to a conductive carbon (CC)/ITO glass substrate, which completed the fabrication of a composite electrode for supercapacitors. Gel polymer electrolytes (GPEs) were made using lithium salts LiClO4 and LiBOB in propylene carbonate (PC) solvent. The resulting electrolytes were tested using AC impedance spectroscopy and galvanostatic charge-discharge efficiency tests to determine the influence of the lithium salt used on the capacitance properties of the GPE. Finally, charge-discharge efficiency tests, ambient temperature tests, and lifetime tests were conducted on the supercapacitor.
The results show that a 0.75-M H2O4W solution paired with a 100C heat treatment to produce a composite-structured carbon powder in addition to 25 wt.% carbon black and 2 wt.% adhesive results in a composite electrode with the best capacitance properties. Its specific capacitance in a electrolyte (1 M LiClO4) was 249 F∙g-1. The GPE (Sample 4) made with 8 wt.% LiClO4 and 30 wt.% Ionic liquid (IL) presented lower bulk impedance, lower electrolyte-electrode interface impedance, a lower device decline rate, and a higher specific capacitance. The charge-discharge tests revealed that within the voltage range of 0 V to 2.5 V and a charge/discharge current density of 0.3 A∙g-1, the WO3/MCMB presented the optimal specific capacitance of 234.22 F∙g-1. From this results, It could be calculated that the energy density was 293 Wh∙kg-1, and the power density was 105.4 kW∙kg-1 (discharge current @0.03 A). The results therefore demonstrate that the composite electrode fabricated in this study exist good performance capacitance. Furthermore, the composite electrode presented near-100% charge-discharge efficiency and good adhesion between the electrode materials and the substrate after 1,000 charge-discharge cycles in the galvanostatic charge-discharge efficiency tests and service-life tests.
目次 Table of Contents
中英文論文審定書 i
誌謝 iii
中文摘要 iv
Abstract vi
Contents viii
Figures captions xii
Tables captions xv
Chapter 1 Introduction 1
1-1 Overview 1
1-2 Objective 4
1-3 Supercapacitor literature review 5
1-3-1 Carbon-based capacitors 6
1-3-2 Composite capacitors 8
1-4 Motivation 11
Chapter 2 Theory 13
2-1 Brief introduction to supercapacitors 13
2-2 Electrode fabrication methods 16
2-2-1 Carbon electrode fabrication 16
2-2-2 Metal oxide electrode fabrication 16
2-2-3 Composite electrode fabrication 16
2-3 Structure of supercapacitors 18
2-3-1 Carbon electrode layer 18
2-3-2 Metal oxide layer 19
2-3-2-1 Nickel oxide 19
2-3-2-2 Tungsten oxide 20
2-3-3 Collector plates 22
2-3-4 Electrolyte 22
2-3-5 Separator 25
2-4 Energy storage principles of supercapacitors 25
2-4-1 The energy storage principle of EDLCs 25
2-4-2 The energy storage principle of pseudocapacitors 28
2-5 Electrochemical theories 31
2-5-1 Two-electrode and three-electrode capacitors 31
2-5-2 Capacitance measurement of electrochemical capacitors 33
2-6 Impedance spectroscopy analysis theorie 37
2-6-1 AC impedance spectroscopy theory 37
2-6-2 Equivalent circuit and simulation 39
2-6-3 Electrochemical and physical meaning of common circuit components 41
Chapter 3 Experiments 46
3-1 Preparation of transition metal oxide solutions 47
3-1-1 Starting materials 47
3-1-2 Preparation of Ni(CH3COO)2 and H2O4W solutions 48
3-2 Fabrication of composite carbon powder 48
3-2-1 Preparation of composite solution 48
3-2-2 Heat treatment to produce composite carbon powder 48
3-3 Fabrication of composite electrode 49
3-3-1 Materials for carbon paste 49
3-3-2 Preparation of carbon paste 50
3-3-3 Substrate selection and washing 50
3-3-4 Coating of composite electrode 51
3-4 Preparation of electrolyte 52
3-5 Analysis of physical properties of composite carbon powder and
electrodes 54
3-5-1 X-ray diffraction (XRD) 54
3-5-2 Field emission scanning electron microscope (FE-SEM) 54
3-5-3 Energy dispersive spectrometry (EDS) 55
3-5-4 AC impedance spectroscopy 56
3-6 Electrochemical analysis 56
3-6-1 Cyclic voltammogram (CV) 57
3-6-2 Charge-discharge efficiency 57
3-6-3 Energy density and power density 58
Chapter 4 Results and Discussion 59
4-1 Analysis of supercapacitors with composite electrodes 59
4-1-1 Preparation of composite carbon powder 59
4-1-2 XRD analysis of crystal strength of composite carbon powder 60
4-1-3 SEM observations of composite carbon powder surface and
cross-section 63
4-1-4 EDS analysis of composite carbon powder 65
4-1-5 Cyclic voltammetric and charge-discharge analysis 66
4-2 Properties of gel polymer electrolyte 68
4-2-1 AC impedance spectroscopy analysis of GPEs 68
4-2-2 SEM analysis of GPE (LiClO4) 70
4-2-3 Influence of ambient temperature on AC impedance of GPE
(Sample 4) 71
4-2-4 Electrical properties of GPE (Sample 4) 74
4-2-5 Long-term stability of the GPE (Sample 4) 74
4-3 Supercapacitor using GPE 75
4-3-1 Charge-discharge and specific capacitance tests 75
4-3-2 Charge-discharge efficiency of SC with different electrolytes 77
4-3-3 Charge-discharge tests of SC at different ambient temperatures 78
4-3-4 Calculation of energy and power densities 79
Chapter 5 Conclusions 82
References 85

Figures captions
Fig. 1-1 Growth analysis of global population and income per person [1]. 1
Fig. 1-2 Relationship between global GDP and consumption of primary energy [2]. 2
Fig. 1-3 Power density and energy density distributions of various energy storage elements [7-8]. 4
Fig. 2-1 Schematic of electrical double-layer capacitor. 14
Fig. 2-2 Metal oxides commonly used in supercapacitors. 15
Fig. 2-3 Doping and dedoping phenomena in conducting polymers. 15
Fig. 2-4 Comparison of composite electrode structures resulting from different fabrication methods. 17
Fig. 2-5 Schematic of supercapacitor. 18
Fig. 2-6 NiO crystal structure. 19
Fig. 2-7 WO3 crystal structure: (a) unit cell; (b) non-stoichiometric crystalline phase of octahedral. 20
Fig. 2-8 Four different crystal structures of WO3 [63]. 21
Fig. 2-9 Helmholz model and potential distribution [34]. 26
Fig. 2-10 Stern model and potential distribution [10]. 27
Fig. 2-11 Schematic of electrical double-layer structure [10]. 28
Fig. 2-12 Electrical double-layer capacitors and equivalent circuits: (a) three-electrode;
(b) two electrode [69]. 33
Fig. 2-13 Equivalent circuit of potentiostatic experiment. 35
Fig. 2-14 Equivalent circuit of galvanostatic experiment. 35
Fig. 2-15 E-t graph of galvanostatic experiment. 36
Fig. 2-16 E-t graph of linear cyclic voltammetric scan. 37
Fig. 2-17 i-E graph of linear cyclic voltammetric scan. 37
Fig. 2-18 Phase graph of current and voltage. 38
Fig. 2-19 Equivalent circuit of electrochemical system. 40
Fig. 2-20 Nyquist plot. 41
Fig. 2-21 Impedance spectra analysis. 44
Fig. 2-22 Equivalent circuit of Warburg impedance. 45
Fig. 3-1 Composite electrode fabrication process. 47
Fig. 3-2 Composite carbon fabrication process. 49
Fig. 3-3 Configuration for electrochemical measurement [71]. 57
Fig. 4-1 XRD graphs of different composite carbon powders. 61
Fig. 4-2 Ni(CH3COO)2 composite MCMB (a) surface morphology; (b) coated-
structures; (c) cross-section. 64
Fig. 4-3 H2O4W composite MCMB (a) surface morphology; (b) coated
structures; (c) cross-section. 65
Fig. 4-4 EDS composition of composite electrodes. 66
Fig. 4-5 Cyclic voltammograms of different composite carbon electrodes. 67
Fig. 4-6 Charge-discharge graph of different composite carbon electrodes. 68
Fig. 4-7 AC impedance of GPEs using different lithium salts. 69
Fig. 4-8 AC impedance of supercapacitors using different lithium salts. 70
Fig. 4-9 SEM images of GPE surface morphology: (a) Sample 1 (PC+LiClO4+PVB);
(b) Sample 2 (PC+EC+LiClO4+PVB);
(c) Sample 3 (PC+EC+LiClO4+plasticizer+PVB). 71
Fig. 4-10 AC impedance of GPE using ambient temperature (-20C ~ 0C). 72
Fig. 4-11 AC impedance of GPE using ambient temperature (RT ~ 120C). 72
Fig. 4-12 Ion conductivity rate of GPE at different ambient temperatures. 73
Fig. 4-13 IV properties of GPE. 74
Fig. 4-14 Influence of GPE on long-term ion conductivity rates. 75
Fig. 4-15 Relationship between charge-discharge efficiency and specific capacitance. 76
Fig. 4-16 Influence of electrolyte on charge-discharge properties. 77
Fig. 4-17 Charge-discharge analysis of SC at different ambient temperatures. 78

Table captions
Table 2-1 WO3 crystal structures at different temperatures [63]. 21
Table 2-2 Categories and properties of common electrolytes [3]. 24
Table 3-1 Specifications of transparent conductive glass substrates. 51
Table 4-1 Parameters of composite electrodes. 60
Table 4-2 JCPDS card of carbon (No.22-1069). 62
Table 4-3 JCPDS card of NiO (No.47-1049). 63
Table 4-4 Properties resulting from different composite carbon electrodes. 68
Table 4-5 Ion conductivity analysis of GPE at different ambient temperatures. 73
Table 4-6 Results of supercapacitor at different ambient temperatures. 79
Table 4-7 Summary of the electrochemical properties of the composite electrodes
in supercapacitors. 81
參考文獻 References
[1] 國際能源署 (IEA),2012能源展望資料。
[2] 英國石油公司 ( British Petroleum, BP ),世界能源展望2030 。
[3] 鄧梅根,“電化學電容器電極材料研究”,中國科學技術大學出版社,(2009)。
[4] D. H. Fritts, J. Electrochem. Soc., 144 (1997) 2233.
[5] 高志勇、陳耿陽、吳富其、江萬爵、賴志坤,“超高電容器製程技術簡介”,工業材料,第166期,民國八十九年,p.113。
[6] 何嘉瑋,“以中間相微碳球製備複合式電擊應用於超級電容器之研究”,國立中山大學電機工程所碩士論文,(2012)。
[7] 材料世界網,材料最前線,石墨烯最新技術研發現況,(2012)。
[8] 陳元杰、廖秋峰,“電雙層電容簡介”,工業材料,第176期,2000,p.16。
[9] C. H. Hamann, A. Hamnett and W. Vielstich, “Electrochemistry”, Wiley-Vch, New York (1998).
[10] H. D. Young, “Physics”, Addison-Wesley Publishing Co., New York (1992).
[11] H. L. Becker, U. S. Patent, 2800616 (1957).
[12] H. Shi, Electrochim. Acta, 41 (1995) 1633.
[13] IUPAC Mannal of Symbols and Terminoligy, Appendix 2, Pt. 1, Collid and Surface Chemistry, Pure Appl. Chem., 31 (1972) 578.
[14] G. Salitra, A. Soffer, L. Eliad, Y. Cohen and D. Aurbach, J. Electrochem. Soc., 147 (2000) 2486.
[15] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin and F. Beguin, J. Phys. Chem. Solids, 65 (2004) 287.
[16] D. Qu, J. Power Sources, 109 (2002) 403.
[17] D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara and A. Oya, Carbon, 41 (2003) 1765.
[18] M. J. Bleda-Martinez, J. A. Maciá-Agulló, D. Lozano-Castelló, E. Morallón, D.Cazorla- Amorós and A. Linares-Solano, Carbon, 43 (2005) 2677.
[19] T. Momma, J. Power Sources, 60 (1996) 249.
[20] M. Nakamura, M. Nakanishi and K. Yamamoto, J. Power Sources, 60 (1996) 225.
[21] N. L. Wu and S. Y. Wang, J. Power Sources, 110 (2002) 233.
[22] I. J. Kim, S. Yang, S. I. Moon and H. S. Kim, J. Power Sources, 164 (2007) 964.
[23] A. I. Beliakov and A. M. Brintsev, in Proceedings of the 7th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, (1997) Dec 8-10.
[24] A. I. Beliakov and A. M. Brintsev, Presented at the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach Florida, (1999) Dec 6-8.
[25] J. P. Zheng, Electrochem. Solid State Lett., 2 (1999) 359.
[26] H. F. Li, R. D. Wang, R. Cao, Microporous and Mesoporous Materials, 111 (2008) 32.
[27] A. M. Polaczyk, C. M. Ghimbeu, C. V. Guterl, E. Frackowiak, Journal of Solid State Chemistry, 183 (2010) 969.
[28] G. H. Yuan, Z. H. Jiang, A. Aramata and Y. Z. Gao, Carbon, 43 (2005) 2913.
[29] Q. H. Huang, X. Y. Wang, J. Li, C. L. Dai, S. Gamboa, P.J. Sebastian, Journal of Power Sources, 164 (2007) 425.
[30] S. R. P. Gnanakan, K. Karthikeyan, S. Amaresh, S. J. Cho, G. J. Park and Y. S. Lee, J. Alloy. Compd., 509 (2011) 9858.
[31] H. C. Chang, H. Y. Chang, W. J. Su, K. Y. Lee, W. C. Shih, Applied Surface Science, 258 (2012) 8599.
[32] Y. Jiang, D. D. Chen, J. S. Song, Z. Jiao, Q. L. Ma, H. J. Zhang, L. L. Cheng, B. Zhao, Y. L. Chu, Electrochimica Acta, 91 (2013) 173.
[33] I. Tanahashi, A. Yoshida and A. Nishino, Carbon, 28 (1990) 477.
[34] B. Xu, F. Wu, R. Chen, G. Cao, S. Chen and Y. Yang, J. Power Sources, 195 (2010) 2118.
[35] Y. J. Lee, H. W. Park, S. Y. Park, I. K. Song. Current Applied Physics, 12 (2012) 233.
[36] Y. J. Lee, J. C. Jung, J. H. Yi, S. H. Baeck, J. R. Yoon, I. K. Song. Current Applied Physics, 10 (2010) 682.
[37] H. Y. Chang, H. C. Chang and K. Y. Lee. Vacuum, 87 (2013) 164.
[38] H. J. Zheng, J. X. Wang, Y. Jia, Chun’an Ma. Journal of Power Sources, 216 (2012) 508.
[39] X. Du, P. Guo, H. H. Song, X. H. Chen. Electrochimica Acta, 55 (2010) 4812.
[40] L. J. Deng, G. Zhu, J. F. Wang, L. P. Kang, Z. H. Liu, Z. P. Yang, Z. L. Wang, Journal of Power Sources, 196 (2011) 10786.
[41] J. P. Zheng and T. R. Jow, J. Electrochem. Soc., 142 (1995) L6.
[42] D. W. Wang, F. Li, H. M. Cheng, J. Power Sources, 185 (2008) 1563.
[43] S. J. Kim, G. J. Park, B. C. Kim, J. K. Chung, G. G. Wallace, S.-Y. Park, Synthetic Metals, 161 (2012) 2641.
[44] C. Lin, J. A. Ritter and B. N. Popov, J. Electrochem. Soc., 145 (1998) 4097.
[45] V. Srinivasan and J. W. Weidner, J. Power Sources, 108 (2002) 15.
[46] H. Y. Lee and J. B. Goodenough, J. Solid State Chem., 148 (1999) 81.
[47] T. Kudo, Y. Ikeda, T. Watanabe, M. Hibino, M. Miyayama, H. Abe and K. Kajita, Solid State Ion., 152-153 (2002) 833.
[48] Qiang Li, Jordan M. Anderson, Yiqing Chen and Lei Zhai, Electrochimica Acta, 59 (2012) 548.
[49] Y. Xue, Y. Chen, M. L. Zhang, Y. D. Yan, Materials Letters, 62 (2008) 3884.
[50] W. Zhu, C. Bower, O. Zhou, G. Kochanski and S. Jin, Appl. Phys. Lett., 75 (1999) 873.
[51] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett., 70 (1997) 1480.
[52] J. Cheng, G. P. Cao, Y. S. Yang, Journal of Power Sources, 159 (2006) 734.
[53] C. M. Wang, S. Y. Lin and Y. C. Chen, J. Chem. Phys., 69 (2008) 451.
[54] K. C. Liu and M. A. Anderson, J. Electrochem. Soc., 143 (1996) 124.
[55] Y. J. Lee, H. W. Park, S. Y. Park, I. K. Song. Current Applied Physics, 12 (2012) 233.
[56] B. Tao, J. Zhang, F. Miao, S. Hui and L. Wan, Electrochim. Acta, 55 (2010) 5258.
[57] 黃可龍、王兆翔、劉素琴,“鋰離子電池原理與關鍵技術”,化學工業出版社,2007。
[58] N. Ohshima, M. Nakada and Y. Tsukamoto, Jpn. J. Appl. Phys., 35 (1996) L1585.
[59] O. Kohmoto, H. Nakagawa, F. Ono and A. Chayahara, J. Magn. Magn. Mater., 1627 (2001) 226.
[60] I. Hotovy and D. Buc, Vacuum, 50 (1998) 41.
[61] X. Chen, X. Hu and J. Feng, Nanostruct. Mater., 6 (1995) 309.
[62] K. Bange, Sol. Energy Mater. Sol. Cells, 58 (1999) 29.
[63] P. M. Woodward and A. W. Sleight, J. Sol. State Chem., 131(1997)9.
[64] 溫治宇,“氧化鎢-氧化鎳互補式電致色變元件及新穎式膠態電解質之研究”,正修科技大學電機工程研究所碩士論文,2010。
[65] M. Ue, K. Ida and S. Mori, J. Electrochem. Soc., 141 (1994) 2989.
[66] R. Xue and I. Chen, Solid State Ion., 18-49 (1986) 1134.
[67] A. J. Bard and L. R. Faulkner, “Electrochemical Principles, Methods, and applications”, Oxford University, Britain (1996).
[68] D. Qu and H. Shi, J. Power Sources, 74 (1998) 99.
[69] 柯賢文,“表面與薄膜處理技術”,全華科技圖書股份有限公司,2005,p.1。
[70] A. J. Bard and L. R. Faulkner, “Electrochemical methods, fundamentals and applications”, second edition, John Wiley & Sons, Inc (1998).
[71] 黃建禎,“以氧化鎳披覆中間相微碳球製備複合式電極應用於超級電容器之研究”,國立中山大學電機工程所碩士論文,(2013)。
[72] 陳盈霖,“膠態電解質應用於超級電容器之研究”,國立中山大學電機工程所碩士論文,(2013)。
[73] 范錦松,“以碳黑披覆中間相微碳球製備碳電極於超級電容器之研究”,國立中山大學電機工程所碩士論文,(2014)。
[74] 陳錦皇,“以氧化鎢披覆中間相微碳球製備複合式電極應用於超級電容器之研究”,正修科技大學 電機工程研究所碩士論文,(2014)。
[75] B. D. Cullity, “Elements of X-ray Diffraction", (1978) p.102.
[76] 汪建民,“材料分析”,中國材料科學學會,1998
[77] S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 109.
[78] E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 73 (1951) 373.
[79] N. L. Wu and S. Y. Wang, J. Power Sources, 110 (2002) 233.
[80] R. D. Armstrong, M. D. Clarke, Solid State Ionics, 11 (1984) 305.
[81] 黃國瑜,“膠態高分子電解質之研製及其應用於電致色變元件之開發”,國立中山大學電機工程所碩士論文,(2013)。
[82] T. A. Luther, F. F. Stewart, J. L. Budzien, R. A. LaViolette, W. F. Bauer, M. K. Harrup, C. W. Allen, and A. Elayan, J Phys Chem B, 107 (2003) 3168.
[83] M. Sônego, L. C. Costa, J. D. Ambrósio, Polímeros, 25 (2015) 175–180.
[84] H. Y. Lee, S. W. Kim, H. Y. Lee, Electrochem. Solid-State Lett., 4 (2001) A19.
[85] J. P. Zheng, Electrochem. Solid-State Lett., 2 (1999) 359.
[86] J. P. Zheng, T. R. Jow, J. Power Sources, 62 (1996) 155.
[87] L. J. Deng, G. Zhu, J. F. Wang, L. P. Kang, Z. H. Liu, Z. P. Yang, Z. L. Wang, J. Power Sources, 196 (2011) 10782.
[88] Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, R. Han, Y. Wang, Ceram Int, 40 (2014) 4109.
[89] H. Yu, J. Wu, L. Fan, Y. Lin, K. Xu, Z. Tang, C. Cheng, S. Tang, J. Lin, M. Huang, Z. Lan, J. Power Sources,198 (2012) 402.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code