Responsive image
博碩士論文 etd-0417118-115455 詳細資訊
Title page for etd-0417118-115455
論文名稱
Title
以表面聲波及體聲波元件研製高頻濾波器之特性研究
Characteristics investigation of high frequency filters using surface acoustic wave and bulk acoustic wave devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-05-02
繳交日期
Date of Submission
2018-05-17
關鍵字
Keywords
體聲波、表面聲波、階梯式濾波器、布拉格反射器、指叉式電極
Ladder type filter, Bragg reflector, Bulk acoustic wave, Surface acoustic wave, IDT
統計
Statistics
本論文已被瀏覽 5686 次,被下載 1
The thesis/dissertation has been browsed 5686 times, has been downloaded 1 times.
中文摘要
本研究以表面聲波及體聲波元件,分別研製成聲波濾波器之應用。由於表面聲波及體聲波元件係由不同的結構所構成,且聲波的傳遞方式也不同,故所製成的聲波濾波器其頻率響應特性也會有所不同。
在表面聲波濾波器中,係採用電子束微影法及乾式蝕刻法來製作奈米級IDT電極,以改善傳統黃光微影不易製作奈米級IDT線寬之缺點;且電子束微影法係搭配電子光罩,來進行電子束寫入,故具有不需實體光罩之優點。然而,本研究採用正光阻溶液,若以傳統IDT光罩圖層,則電子束在寫入時間會過長。因此,本研究採用反光罩圖層方式以減少電子束寫入的時間。此外,電子束之曝光量及乾蝕刻的時間皆會影響到完成後IDT之線寬,故在研究中也皆一併找出最佳製程參數。最後,本研究製作四組IDT線寬以完成SAW濾波器,分別為937 nm、750 nm、562 nm及375 nm,其中心頻率分別為1339 MHz、1801 MHz、2422 MHz及3745 MHz。
在體聲波濾波器中,係採用固態堆疊型體聲波元件分別以串並聯方式組成1.5階之階梯式濾波器。由於具有良好特性之共振器,其組成聲波濾波器時,也能獲得較佳的頻率特性。因此,本研究在固態堆疊型體聲波元件中,分別以Ti/Mo及SiO2/Mo來組成布拉格反射器,探討組成結構及表面粗糙度對於固態堆疊型體聲波元件之影響。此外,固態堆疊型體聲波元件之質量負載的不同也會使元件之頻率產生變化,在組成階梯式濾波器時,可透過質量負載效應方式,將串並聯元件之頻率進行調整,故可形成一濾波器。本研究在質量負載上,將透過不同頂電極之厚度,並計算質量與頻率之變化幅度,以應用於階梯式濾波器。最後,以SiO2/Mo所組成之布拉格反射器能擁有較低的表面粗糙度及明顯的薄膜分界,而在固態堆疊型體聲波元件之頻率特性表現上也較佳;透過質量負載方式,分別將元件組成1.5階之階梯式濾波器,其中心頻率為2452 MHz、3-dB頻寬為84 MHz、插入損失為-14.67 dB。
Abstract
The surface acoustic wave and bulk acoustic wave devices are fabricated for the acoustic wave filters applications. Due to the fact that the surface acoustic wave and bulk acoustic wave devices are consisted by various structures, also their acoustic wave and propagation behaviors are different. Therefore, the various frequency response properties can be obtained when surface acoustic wave and bulk acoustic wave filters devices are constructed.
For the purpose of overcoming the conventional photolithography, the nano-scale IDT electrodes are fabricated using E-beam lithography and dry-etching method. The photo-mask is unnecessary because the designed IDT pattern can be directly written on the photoresist by E-beam lithography system.
The positive photoresist and traditional photomask are used at the beginning to define the IDTs pattern, however, it is time-consuming. Therefore, the transparent and opaque pattern of traditional photomask is reversed to improve the process in this study. In addition, dose of E-beam lithography and etching time of dry-etching are key parameters for the assurance of IDTs line widths. This study designed four various line widths of IDTs and contributed the frequency of filters are 1339 MHz, 1801 MHz, 2422 MHz and 3745 MHz, respectively.
The ladder-type bulk acoustic wave filter consisted of solid mounted resonator with suitable serious and parallel arrangement. The solid mounted resonator is consisted of a sandwiched piezoelectric structure and a Bragg reflector. The better the characteristic of resonator, the better the bulk acoustic wave filter achieved.
In this study, the surface roughness and interface layer of the Bragg reflector consisted using Ti/Mo or SiO2/Mo are the key factor to avoid acoustic energy scattering. Therefore, the influences of Ti/Mo and SiO2/Mo structure on the frequency response have been investigated. Besides, the resonance frequency of resonator can be tuning with mass loading on it top electrode. The ladder-type filter performance is therefore controlled by serious and parallel resonators with various top electrode thicknesses.
Finally, the solid mounted resonator device fabricated with low surface roughness and clear interface layer of Bragg reflector comprised by SiO2/Mo structure shows a good frequency response. Besides, the 1.5 ladder-type filter with center frequency of 2452 MHz, 3-dB bandwidths of 84 MHz and insertion losses of -14.67 dB is obtained.
目次 Table of Contents
論文審定書 i
致謝 iii
摘要 iv
目錄 viii
表目錄 xiii
第一章 前言 1
第二章 理論分析 7
2.1 壓電理論 7
2.1.1 正壓電效應及逆壓電效應 8
2.1.2 壓電材料 10
2.2 表面聲波元件 (Surface Acoustic Wave, SAW) 11
2.3 固態微型諧振器 (Solidly Mounted Resonator, SMR) 16
2.4 氮化鋁薄膜結構與特性 20
2.5 電子束微影技術 21
第三章 實驗 23
3.1 奈米級IDT電極之SAW元件 25
3.1.1 奈米級IDT電極之SAW元件製作 25
3.1.2 AlN及Al薄膜之製作 27
3.1.3 電子束微影製程 28
3.1.4 乾式蝕刻製程 29
3.2 以低表面粗糙度之布拉格反射器研製SMR元件 30
3.2.1 布拉格反射器之材料選擇 32
3.2.2 布拉格反射器之製備 33
3.2.3 SMR元件之製備 34
3.2.4 黃光微影製程 35
3.2.5 Ladder type SMR濾波器 36
3.3 薄膜特性分析 36
3.3.1 X-ray繞射分析 37
3.3.2 掃描式電子顯微鏡 38
3.3.3 原子力顯微鏡 40
3.4 聲波元件之特性分析 40
第四章 結果與討論 42
4.1 奈米級IDT之SAW元件 42
4.1.1 高C軸優選取向AlN薄膜之製備 42
4.1.2 電子束微影製備奈米級IDT電極 48
4.1.3 奈米級IDT電極SAW元件之頻率響應 53
4.2 低粗糙度布拉格反射器之SMR元件及濾波器 55
4.2.1 不同聲阻抗比之布拉格反射器 55
4.2.2 SMR元件之AlN薄膜特性分析 63
4.2.3 以不同材料之布拉格反射器探討SMR元件之頻率響應 65
4.2.4 SMR元件之頻率調頻 67
4.2.5 SMR濾波器 70
第五章 結論 71
5.1 SAW元件之研究項目 71
5.2 SMR元件之研究項目 72
第六章 未來展望 74
參考文獻 75
參考文獻 References
[1] Judith Cheng編譯,“全球MEMS供應商Top10 TriQuint異軍突起”,EET電子工程專輯(感測器/MEMS),2011。
[2] Susan Hong編譯,“Yole:2018年行動裝置用MEMS商機達60億美元”,EET電子工程專輯(感測器/MEMS),2013。
[3] Joy Teng編譯,“誰是第三代iPad最大元件贏家”,EET電子工程專輯(嵌入式技術),2012。
[4] 3GPP技術規格報告,LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception,2015年。
[5] 王宏文,“淺談表面聲波感測器”,工業材料-精密陶瓷專輯(第89期),1994。
[6] 沈靜怡,“Sezawa模態表面聲波共振器應用於人類免疫球蛋白E感測器之研究”,國立中山大學電機工程學系碩士論文,2012。
[7] 葉威村,“製作於矽基板脂雙埠表面聲波紫外光感測元件”,樹德科技大學電腦與通訊研究所碩士論文,2013。
[8] C. Wen, C. Zhu, Y. Ju, H. Xu and Y. Qiu, “A novel NO2 gas sensor using dual track SAW device”, Sensors and Actuators A, vol. 159, pp. 168-173, 2010.
[9] S. Krishnamoorthy and A. A. Iliadis, “Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/100 Si substrates”, Solid-State Electronics, vol. 52, pp. 1710-1716, 2008.
[10] W. P. Jakubik, “Hydrogen gas-sensing with bilayer structures of WO3 and Pd in SAW and electric systems”, Thin Solid Films, vol. 517, pp. 6188-6191, 2009.
[11] J. Deboucq, M. Duquennoy, M. Ouaftouh, F. Jenot, J. Carlier and M. Ourak, “Development of interdigital transducer sensors for non-destructive characterization of thin films using high frequency Rayleigh waves”, Review of Scientific Instruments, vol. 82, no. 064905, pp. 1-7, 2011.
[12] D. T. Phan and G. S. Chung, “High sensitivity SAW UV sensor by using third harmonic based on ZnO/Si structure”, IEEE Sensors 2010 Conference, pp. 525-528, 2010.
[13] C. P. Laksana, M. R. Chen, Y. Liang, A. J. Tzou, H. L. Kao, E. S. Jeng, J. S. Chen and S. R. Jian, “Deep-UVsensors based on SAW oscillators using low-temperature-grown AlN films on sapphires”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, pp. 1688-1693, 2011.
[14] D. T. Phan and G. S. Chung, “Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode”, Current Applied Physics, vol. 12, pp. 210-213, 2012.
[15] K. J. Nordquist, D. J. Resnick and E. S. Ainley, “Comparison of negative resists for 100 nm electron-beam direct write and mask making applications”, Journal of Vacuum Science & Technology B, vol. 16, pp. 3289-3293, 1998.
[16] T. Ohshiro, C. Hotehama, K. Matsubara, K. Konda, H. Kowada, S. Murayama, R. Y. T. Kawase, M. Tsutsui, M. Furuhashi, M. Taniguchi, and T. Kawai, “Nano-scale reactive-ion dry-etching with electron-beam-baked resist”, 12th IEEE International Conference on Nanotechnology, pp. 1-4, 2012.
[17] A. Hülsmann, G. Kaufel, K. Köhler, B. Raynor, J. Schneider and T. Jakobus, “E-Beam direct-write in a dry-etched recess gate HEMT process for GaAs/AlGaAs circuits”, Japanese Journal of Applied Physics, vol. 29, pp. 2317-2320, 1990.
[18] J. Curie and P. Curie, “Development by pressure of polar electricity in hemihedral crystals with inclined faces”, Bulletin de la Societe mineralogique de France, vol. 3, pp. 90-93, 1880.
[19] W. G. Hankel and Abh. Sachs, “Piezoelectric”, Applied Sciences, vol. 12, pp. 547, 1881.
[20] 吳朗,“電子陶瓷: 壓電陶瓷”,全欣資訊,1994。
[21] Q. X. Su, P . Kirby, E. Komuro, M. Imura and Q. Zhang, and R. Whatmore “Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films”, IEEE Microwave Theory and Techniques Society, vol. 49, pp. 769-778, 2001.
[22] L. Rayleigh, “On waves propagated along the plane surface of an elastic solid”, London Mathematical Society, vol. 17, pp. 4-11, 1885.
[23] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Applied Physics Letters, vol.7, pp. 314-316, 1965.
[24] J. K. Elliott, R. L. Gunshor, R. F. Pierret and A. R. Day, “A wideband SAW convolver utilizing Sezawa waves in the metal/ZnO/SiO2/Si configuration”, Applied Physics Letters, vol. 32, pp. 515-516, 1978.
[25] C. L. Wei, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng and P. S. Cheng, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator”, Thin Solid Films, vol. 518, pp. 3059-3062, 2010.
[26] P. Sharma and K. Sreenivas, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter”, Applied Physics Letters, vol. 83, pp. 3617-3619, 2003.
[27] X. L. He, J. Zhou, W. B. Wang, W. P. Xuan, X. Yang, H. Jin and J. K. Luo, “High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing”, Journal of Micromechanics and Microengineering, vol. 24, no. 055014, pp. 1-8, 2014.
[28] W. S. Wang, T. T. Wu, T. H. Chou and Y. Y. Chen, “A ZnO nanorod-based SAW oscillator system for ultraviolet detection”, Nanotechnology, vol. 20, no. 135503, pp. 1-5, 2009.
[29] H. F. Pang, Y. Q. Fub, Z. J. Li, Y. Li, J. Y. Ma, F. Placido, A. J. Walton and X. T. Zu, “Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36◦ Y-cut LiTaO3”, Sensors and Actuators A, vol. 193, pp. 87-94, 2013.
[30] 高國陞,“表面聲波元件之頻率及溫度特性之研究”,國立中山大學電機工程學系博士論文,2004。
[31] C. L. Wei, Y. C. Chen, J. L. Fu, K. S. Kao, D. L. Cheng and C. C. Cheng, “UV detection based on a ZnO/LiNbO3 layered surface acoustic wave oscillator circuit”, Journal of Vacuum Science & Technology A, vol. 27, pp. 1343-1346, 2009.
[32] K. S. Kao, W. C. Shih, W. T. Ye and D. L. Cheng, “Photoluminescence of ZnO thin films deposited at various substrate temperatures”, Thin Solid Films, vol. 605, pp. 77-83, 2016.
[33] Y. C. Chen, W. T. Chang, C. C. Cheng, J. Y. Shen and K. S. Kao, “Development of human IgE biosensor using Sezawa-mode SAW devices”, Current Applied Physics, vol. 14, pp. 608-613, 2014.
[34] A. A. Mohanan, M. S. Islam, S. H. M Ali, R. Parthiban and N. Ramakrishnan, “Investigation into mass loading sensitivity of Sezawa wave mode-based surface acoustic wave sensors”, Sensors, vol. 13, pp. 2164-2175, 2013.
[35] X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, W. I. Milne, D. S. Lee, N. M. Park, J. Park, Y. J. Choi, S. H. Kim and S. Maeng, “ZnO film thickness effect on surface acoustic wave modes and acoustic streaming”, Applied Physics Letters, vol. 93, no. 094105, pp. 1-3, 2008.
[36] 簡俊謙,“表面聲波元件之設計及其在寬頻振盪器之應用”,國立交通大學電信工程研究所碩士論文,2000。
[37] 盧建彰,“應用微帶線結構於表面聲波濾波器之研究”,國立成功大學微電子所碩士論文,2003。
[38] S. H. Tsai, I. T. Tang, M. P. Houng, Y. H. Wang, “A Design Rule of Surface Acoustic Wave Filter”, Journal of Materials Science and Engineering, vol. 34, pp. 231-238, 2002.
[39] M. Hara, J. Kuypers, T. Abe and M. Esashi, “Surface micromachined AlN thin film 2 GHz resonator for CMOS integration”, Sensors and Actuators A, vol. 117, pp. 211-216, 2005.
[40] Y. C. Chen, W. C. Shih, W. T. Chang, C. H. Yang, K. S. Kao and C. C. Cheng, “Biosensor for human IgE detection using shear-mode FBAR devices”, Nanoscale Research Letters, vol. 10, pp. 1-8, 2015.
[41] R. C. Lin, K. S. Kao, C. C. Cheng and Y. C. Chen, “Deposition and structural properties of RF magnetron-sputtered ZnO thin films on Pt/Ti/SiNx/Si substrate for FBAR device”, Thin Solid Films, vol. 516, pp. 5262-5265, 2008.
[42] R. C. Lin, Y. C. Chen, W. T. Chang, C. C. Cheng, K. S. Kao, “Highly sensitive mass sensor using film bulk acoustic resonator”, Sensors and Actuators A, vol. 147, pp. 425-429, 2008.
[43] Y. C. Chen, W. T. Chang, K. S. Kao, C. H. Yang and C. C. Cheng, “The liquid sensor using thin film bulk acoustic resonator with c-axis tilted AlN films”, vol. 2013, Article ID 245095, 2013.
[44] C. C. Cheng, R. C. Lin, H. K. Lin, K. S. Kao and Y. C. Chen, “Frequency modulation and device repaired by laser surface treatment in film bulk acoustic filters”, Journal of Laser Micro/Nanoengineering, vol. 11, pp. 13-16, 2016.
[45] K. M. Lakin, “Development of miniature filters for wireless applications”, IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 2933-2939, 1995.
[46] K. M. Lakin, K. T. McCarron and R. E. Rose, “Solidly mounted resonators and filters”, IEEE Ultrasonics Symposium, pp. 905-908, 1995.
[47] W. E. Newell, “Face-mounted piezoelectric resonators”, Proceedings of the IEEE, vol. 53, pp. 575-581, 1965.
[48] C. L. Wei, Y. C. Chen, C. C. Cheng and K. S. Kao, “Solidly mounted resonators consisting of a molybdenum and titanium Bragg reflector”, Applied Physics A, vol. 90, pp. 501-506, 2008.
[49] 魏清梁,“固態微型諧振器之壓電層與反射層研製”,國立中山大學電機工程學系碩士論文,2005。
[50] 徐茂協,“以Mo/SiO2為布拉格反射層製作固態微型諧振器與濾波器之研究”,國立中山大學電機工程學系碩士論文,2006。
[51] J. B. Lee, J. P. Jung, M. H. Lee and J. S. Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, Thin Solid Films, vol. 447-448, pp. 610-614, 2004.
[52] T. Kamohara, M. Akiyama, N. Ueno and N. Kuwano, “Improvement in crystal orientation of AlN thin films prepared on Mo electrodes using AlN interlayers”, Ceramics International, vol. 34, pp. 985-989, 2008.
[53] M. Akiyama, K. Nagao, N. Ueno, H. Tateyama and T. Yamada, “Influence of metal electrodes on crystal orientation of aluminum nitride thin films”, Vacuum, vol. 74, pp. 699-703, 2004.
[54] R. Rodríguez-Clemente, B. Aspa, N. Azema, B. Armas, C. Combescure, J. Durand and A. Figueras, “Morphological properties of chemical vapour deposited AlN films”, Journal of Crystal Growth, vol. 133, pp. 59-70, 1993.
[55] E. Ruiz and S. Alvarez, “Electronic structure and properties of AIN”, Physical Review B, vol. 49, pp. 7115-7123, 1994.
[56] 周瓊茹,“以電子束微影及反應性離子蝕刻製作深次微米圓柱陣列”,國立中正大學物理研究所碩士論文,2006。
[57] 陳冠舟,“利用電子束微影製作奈米結構”,國立東華大學應用物理研究所碩士論文,2005。
[58] 許景翔,“利用電子束微影製作高密度石英柱狀結構”,國立中央大學機械工程研究所碩士論文,2013。
[59] K. Y. Hashimoto, “RF bulk acoustic wave filters for communications”, Artech House, pp. 98, 2009.
[60] 施維哲,“以多濺鍍槍系統研製多層透明導電薄膜之研究”,樹德科技大學電腦與通訊研究所碩士論文,2011。
[61] W. C. Shih, Y. C. Chen, W. T. Chan, C. C. Cheng, P. C. Liao and K. S. Kao, “Design and fabrication of nanoscale IDTs using electron beam technology for high-frequency SAW devices”, Journal of Nanomaterials, vol. 2014, Article ID 643672, 2014.
[62] 廖珮淳,“以AlN/Si3N4/Si結構製作第四代通訊用表面聲波元件”,國立中山大學電機工程學系碩士論文,2013。
[63] 魏清梁,“表面及塊體聲波元件應用於紫外光感測器之研究”,國立中山大學電機工程學系博士論文,2011。
[64] W. C. Shih, Y. C. Chen, P. W. Ting, K. S. Kao, C. C. Cheng and W. T. Chang, “Development of dual-mode SMR using off-axis deposition AlN thin films”, International Electron Devices and Materials Symposium 2015 (IEDMS 2015), Tainan, Taiwan, November 19-20, 2015.
[65] W. C. Shih, Y. C. Chen, W. T. Chang, C. C. Cheng, K. S. Kao, K. H. Cheng, C. M. Wang, C. Y. Wen, J. Y. Chang and P. W. Ting, “The Bragg reflector layer of low surface roughness based on solidly mounted resonators”, Proceedings of the 3rd International Conference on Industrial Application Engineering 2015, Kitakyushu, Japan, March 28-31, 2015.
[66] K. S. Kao, C. C. Cheng and Y. C. Chen, “Synthesis of c-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave”, Japanese Journal of Applied Physics, vol. 40, pp. 4969-4973, 2001.
[67] J. Yang, X. Jiao, R. Zhang, H. Zhong, Y. Shi and B. Du, “Growth of AlN films as a function of temperature on Mo films deposited by different techniques”, Journal of Electronic Materials, vol. 43, pp. 369-374, 2014.
[68] C. J. Chung, Y. C. Chen, C. C. Cheng and K. S. Kao, “Synthesis and bulk acoustic wave properties on the dual mode frequency shift of solidly mounted resonators”, IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, vol. 55, pp. 857-864, 2008.
[69] A. Müller, D. Neculoiu, G. Konstantinidis, G. Deligeorgis, A. Dinescu, A. Stavrinidis, A. Cismaru, M. Dragoman and A. Stefanescu, “SAW devices manufactured on GaN/Si for frequencies beyond 5 GHz”, IEEE Electron Device Letters, vol. 31, pp. 1398-1400, 2010.
[70] Q. J. Wang, C. Pflügl, W. F. Andress, D. Ham, F. Capasso and M. Yamanishi, “Gigahertz surface acoustic wave generation on ZnO thin films deposited by radio frequency magnetron sputtering on III-V semiconductor substrates”, Journal of Vacuum Science & Technology B, vol. 26, pp. 1848-1851. 2008.
[71] 丁柏瑋,“2.5 GHz固態微型體聲波元件模擬與製作”,國立中山大學電機工程學系碩士論文,2014。
[72] Y. C. Chen, W. T. Chang, K. S. Kao, C. H. Yang and C. C. Cheng, “The liquid sensor using thin film bulk acoustic resonator with c-axis tilted AlN films”, Journal of Nanomaterials, vol. 2013, Article ID 245095, 2013.
[73] 朱建寰,“2.5GHz頻段固態堆疊型體聲波濾波器及其雷射退火特性之研究”,國立中山大學電機工程學系碩士論文,2016。
[74] W. C. Shih, Y. C. Chen, C. C. Cheng, K. S. Kao, D. L. Cheng, P. W. Ting and H. H. Yeh, “Simulation of Solidly Mounted Resonator Using Mason Model and its Implementation”, Sensors and Materials, vol. 29, pp.405-410, 2017.
[75] A. A. Shirakawa, J. M. Pham, P. Jarry, E. Kerherve, F. Dumont, J. B. David and A. Cathelin, “A High Isolation and High Selectivity Ladder-Lattice BAW-SMR Filter”, Proceedings of the 36th European Microwave Conference, pp. 905-908, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code