Responsive image
博碩士論文 etd-0419116-220050 詳細資訊
Title page for etd-0419116-220050
論文名稱
Title
高效能/光響應聚氧代氮代苯并環己烷之設計與應用探討
High Performance/Photoresponsive Polybenzoxazines: Studies on Design Strategies and Usages
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
181
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-19
繳交日期
Date of Submission
2016-05-19
關鍵字
Keywords
光感應型分子、奈米碳管、非共價鍵作用力、氧代氮代苯并環己烷、聚氧代氮代苯并環己烷
Non-covalent interactions, Carbon nanotubes (CNTs), Benzoxazine monomer, Polybenzoxazine, Photo-responsive units
統計
Statistics
本論文已被瀏覽 5873 次,被下載 264
The thesis/dissertation has been browsed 5873 times, has been downloaded 264 times.
中文摘要
本研究中我們主要聚焦在四種主題,皆是關於合成帶有azobenzene和coumarin分子之高效能光感應型polybenzoxazine。Polybenzoxazine(PBZs)是一種典型的的熱塑型高分子,不需要任何催化劑便可在加熱的環境下開環形成高分子。我們經由縮合反應成功地製備出帶有azobenzene和pyridine分子及coumarin和pyrene分子地benzoxazine單體,azobenzene和coumarin分子扮演著以下角色:(i) 於光異構作用下azobenzene可以在平面的trans結構和非平面的cis結構間交互轉換,而coumarin分子可以經由〔2π+2π〕形式做環加成反應,(ii) 並且做為一種催化劑可以加速benzoxazine開環且降低所需的curing溫度。之後,我們利用benzoxazinec單體可以和Zn(ClO4)2、MWCNTs或是SWCNTs間有非共價鍵作用力(金屬-配位鍵、分子間氫鍵和π-π堆疊作用力),這些複合材料有著很高的熱穩定性和玻璃轉移溫度(Tg),從DSC、TGA和DMA分析中得知因為交聯密度提升所致,並且從TEM結果得知可以有效地分散奈米碳管(CNTs)。
Abstract
In this study, we focus on four major subjects which based on synthesis of high performance/photoresponsive polybenzoxazines containing azobenzene and coumarin units. As known Polybenzoxazines (PBZs) are class of thermosetting polymers which could be synthesized through thermally activated ring-opening polymerization of benzoxazine monomers in the absence of catalyst. In this study, we have successfully prepared benzoxazine monomers that features azobenzene, pyridine, coumarin, and pyrene units through the condensation reaction. The azobenzene, pyridine and coumarin units in the benzoxazine play the following roles: (i) allowing the photoisomerization between the planar trans and the nonplanar cis form for azobenzene units; formation the photodimerization of coumarin units through [2π+2π] cycloaddition and (ii) serving as catalyst to accelerate the ring-opening polymerization benzoxazine monomer to reduce the higher curing temperature. Then, we used the noncovalent interactions (such as, metal-ligand bonding mode, intermolecular hydrogen-bonding and π-π stacking interactions) between benzoxazine monomers and Zn(ClO4)2, MWCNTs and SWCNTs. Those hybrid materials exhibit higher thermal stability and glass transition temperatures (Tg) due to the increasing physical crosslinking density according to DSC, TGA, and DMA analyses, and well uniformly dispersed carbon nanotubes (CNTs) according to TEM images.
目次 Table of Contents
Pages
論文審定書 i
Acknowledgements ii
Abstract (in Chinese) iii
Abstract (in English) iv
Outline of Contents v
List of Schemes ix
List of Figures x

Chapter 1 Introduction 1
1.1 Overview on Benzoxazines and Polybenzoxazines 1
1.2 Effect of Intra and Intermolecular Hydrogen Bonding on Low Surface Free-Energy Materials 3
1.3 Catalytic Effect on the Ring-Opening Polymerization of 1,3-Benzoxazine monomer 4
1.4 Photoresponsive Groups 5
1.5 Carbon Nanotubes (CNTs) 6
1.6 Motivation 8
1.7 References 9

Chapter 2 Azopyridine-functionalized benzoxazine with Zn(ClO4)2 form high-performance polybenzoxazine stabilized through metal-ligand coordination 13
2.1 Background 13
2.2 Experimental 15
2.2.1 Materials 15
2.2.2 Synthesis of Azopy-OH 16
2.2.3 Synthesis of Azopy-BZ 16
2.2.4 Measurements 17
2.3 Results and Discussion 18
2.3.1 Synthesis of Azopy-BZ through Mannich reaction of Azopy-OH with aniline and paraformaldehyde 18
2.3.2 Thermal Polymerization of Azopy-OH 20
2.3.3 Photoisomerization of azopyridine chromophore in Azopy-BZ 21
2.3.4 Thermal Polymerization of Azopy-BZ blended with Zn(ClO4)2 22
2.4 Summery 26
2.5 References 27

Chapter 3 Supramolecular functionalized polybenzoxazines from azobenzene carboxylic acid/azobenzene pyridine complexes: synthesis, surface properties, and specific interactions 46
3.1 Background 46
3.2 Experimental 49
3.2.1 Materials 49
3.2.2 Measurements 49
3.2.3 Preparation of 4-(4-Hydroxphenylazo)benzoic acid (Azo-COOH) 50
3.2.4 Synthesis of Azo-COOH BZ 51
3.2.5 Preparation of Azo-COOH BZ/Azopy-BZ Complexes 52
3.3 Results and Discussion 52
3.3.1 Synthesis of Azo-COOH BZ through Mannich reaction of Azo-COOH with aniline and paraformaldehyde 52
3.3.2 Thermal Polymerization of Azo-COOH BZ 53
3.3.3 Photoisomerization of azobenzene chromophore in Azo-COOH BZ 55
3.3.4 Supramolecular azobenzene-containing benzoxazine complexes stabilized through carboxylic acid-pyridine hydrogen bonds 56
3.4 Summery 58
3.5 References 59

Chapter 4 High Performance Bifunctional Polybenzoxazine Nanocomposites from Photo-Induced Crosslinking Coumarin and Single-Walled Carbon Nanotube Stabilized through Non-Covalent Bonding Interactions 77
4.1 Background 77
4.2 Experimental 80
4.2.1 Materials 80
4.2.2 Synthesis of Pyrene-1-amine (Py-NH2) 80
4.2.3 Synthesis of 4-Methyl-7-hydroxycoumarin (Coumarin-OH) 81
4.2.4 Synthesis of (Coumarin-Py BZ) 81
4.2.5 Photodimerization of Coumarin-Py benzoxazine 82
4.2.6 Measurements 82
4.3 Results and Discussion 83
4.3.1 Preparation of Coumarin-Py BZ monomer 83
4.3.2 Thermal Polymerization of Coumarin-Py BZ 85
4.3.3 Photodimerization through [2π+2π] cycloaddition coumarin moiety 86
4.3.4 The preparation and thermal properties of coumarin-Py BZ/SWCNT nanocomposites 89
4.3.5 Thermal properties of di-coumarin-Py BZ/SWCNT nanocomposites 90
4.4 Summery 92
4.5 References 94

Chapter 5 Multifunctional Polybenzoxazine Nanocomposites Containing Photoresponsive Azobenzene Units, Catalytic Carboxylic Acid Groups, and Pyrene Units Capable Dispersing Carbon Nanotubes 122
5.1 Background 122
5.2 Experimental 125
5.2.1 Materials 125
5.2.2 Synthesis of Pyren-1-amine (Py-NH2) 125
5.2.3 Synthesis of 4-(4-Hydroxyphenylazo) benzoic acid (Azo-COOH-Py BZ) 126
5.2.4 Synthesis of Azo-COOH-Py BZ 127
5.2.5 Photoisomerization of Azo-COOH-Py BZ 127
5.2.6 Preparation of poly(AzoPy-COOH BZ) films 128
5.2.7 Azo-COOH-Py BZ/CNT Nanocomposites 128
5.2.8 Measurements 128
5.3 Results and Discussion 129
5.3.1 Synthesis of Azo-COOH-Py BZ Monomer 129
5.3.2 Thermal Curing Behavior of Azo-COOH-Py BZ Monomer 131
5.3.3 Photoisomerization of Azobenzene Chromophore in Azo-COOH-Py BZ Monomer 133
5.3.4 Poly(Azo-COOH-Py BZ)/CNTs Nanocomposites 134
5.4 Summery 138
5.5 References 140

Chapter 6 Conclusions 160

Resume 162
參考文獻 References
1.7 Reference
1. W. F. Holly and C. A. Cope, J. Am. Chem. Soc., 1944, 66, 1895.
2. H. G. Scheriber, offen. 1973, 2225504.
3. G. Riess, M. J. Schwob, G. Guth, M. Roche and B. Lande, Advances in Polymer Science; (Eds.: B. M. Culbertson and E. J. Mcgrath), Plenum Press: New York, 1986.
4. X. Ning, and H. Ishida, J. Polym. Sci, Part B: Polym. Phys., 1994, 32, 921-927.
5. H. Ishida, J. Appl. Polym. Sci., 1995, 58, 1751-1760.
6. W. J. Burke, C. K. Murdoch and G. Ec, J. Am. Chem. Soc., 1954, 76, 1677-1679.
7. W. J. Burke, E. L. M. Glennie, and C. Weatherbee, J. Org. Chem., 1964, 24, 909.
8. W. J. Burke, J. Am. Chem. Soc., 1949, 71, 609-612.
9. W. J. Bruke, A. J. Kolbenze, and C. W. Stephens, J. Am. Chem. Soc., 1952, 74, 3601-3605.
10. H. Ishida, US 5543516, 1996.
11. H. Ishida and D.P. Sanders, Macromolecules, 2000, 33, 8149-8157.
12. A. Laobuthee, S. Chirachanchai, H. Ishida and K. Tashiro, J. Am. Chem. Soc., 2001, 123, 9947-9955.
13. X.J. Wang, F. Chen and J. Gu, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 1443-1452.
14. W. J. Burke, R. P. Smith, R. P and C. Weatherbee, J. Am. Chem. Soc., 1952, 74, 602-605.
15. W. J. Burke and C. Weatherbee, J. Am. Chem. Soc., 1950, 72, 4691-4694.
16. K. Zhong, J. Liu and H. Ishida, RSC Adv., 2014, 4, 62550-62556.
17. R. C. Lin, M. G. Mohamed, Y. W. Jia, J. R. Yu and S. W. Kuo, RSC Adv., 2016, 6, 10683-10696.
18. Y. Yagci, B. Kiskan and N. N. Ghosh, J. Polym. Sci., Part A: Polym. Chem., 2008, 47, 5565-5576.
19. X. Liu and Y. Gu, J. Appl. Polym. Sci., 2002, 84, 1107-1113.
20. H. Ishida and D. Allen, J. Polym. Sci., Part B: Polym. Phys., 1996, 34, 1019-1030.
21. C. H. Lin, Y. R. Feng, K. H. Dai, K. H. C. Chang and Y. Y. Juang, J. Polym. Sci.; Part A: Polym. Chem., 2013, 51, 2686-2694.
22. H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang and D. Zhu, Angew. Chem. Int., Ed., 2001, 40, 1743-1746.
23. P. Aussillous and D. Quere, Nature, 2001, 411, 924-927.
24. N. J. Shirtcliffe, G. McHale, M. I. Newton and C.C. Perry, Langmuir, 2005, 21, 937-943.
25. H. Hillborg, N. Tomczak, A. Olah, H. Schonherr, G. Vancso, Langmuir, 2004, 20, 785-794.
26. C. F. Wang, Y. C. Su, S. W. Kuo, C. F. Huang, Y. C. Sheen and F. C. Chang, Angew. Chem., Int. Ed., 2006, 45, 2248-2251.
27. C. H. Lu, Y. C. Su, C. F. Wang, C. F, C. F. Huang, Y. C. Sheen and F. C. Chang, Polymer, 2008, 49, 4852-4860.
28. C. S. Liao, C. F. Wang, H. C. Lin, H. Y. Chou and F. C. Chang, J. Phys. Chem. C., 2008, 112, 16189-16191.
29. C. Liu, D. Shen, R. M. Sebastián, J. Marquet and R. Schönfeld, Macromolecules, 2011, 44, 4616-4622.
30. M. Irie, Chem. Rev., 2000, 100, 1685-1716.
31. H. M. D. Bandara and S. C. Burdette, Chem. Soc. Rev., 2012, 41, 1809-1825.
32. F. D. Jochum and P. Theato, Chem. Soc. Rev., 2013, 42, 7468-7483.
33. M. Ouyang, J. L. Huang, C. L. Cheung and C.M. Lieber, Science, 2001, 291, 97-100.
34. H. W. Kroto, J. R. Health, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature, 1985, 318, 162-163.
35. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie and M. L. Cohen, Phys. Rev. Lett., 1996, 76, 971-974.
36. S. Iijima and T. Ichihashi, Nature, 1993, 363, 603-605.
37. M. J. Yacaman, M. M. Yoshida, L. Rendon and J. G. Santiesteban, Appl. Phys. Lett., 1993, 62, 202-204.
38. S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354, 56-58.
39. P. X. Hou, S. Bai, Q. H. Yang, C. Liu and H. M. Cheng, Carbon, 2002, 40, 81-85.
40. B. Q. Wei, R. Vajtai and P. M. Ajayan, Appl. Phys. Lett., 2001, 79, 1172-1174.
41. M. J. O’Connell, S. M.Bachilo, C. B.Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, R.E. Smalley, Science, 2002, 297, 593-596.
42. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, Nature, 1996, 382, 54-56.
43. M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, Nature, 1996, 381, 678-680.
44. J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier and L. Forró, Adv. Mater., 1999, 11, 161-165.
45. M. F. Yu, B. S. Files, S. Arepalli and R.S. Ruoff, Phys. Rev. Lett., 2000, 84, 5552–5555.
46. A. Hirsch, Angew. Chem., Int. Ed., 2002, 41, 1853-1859.
47. K. Balasubramanian and M. Burghard, Small, 2005, 1, 180-192.
48. A. Star, J. F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E. W. Wong, X. Yang, S. W. Chung, H. Choi and J.R. Heath, Angew. Chem., Int. Ed., 2001, 40, 721-1725.
49. A. Star, Y. Liu, K. Grant, L. Ridvan, J. F. Stoddart, D. W. Steuerman, M. R. Diehl, A. Boukai and J.R. Heath, Macromolecules, 2003, 36, 553-560.
50. Y. L. Zhao, L. Hu, J. F. Stoddart and G. Gruner, Adv. Mater., 2008, 20, 1910-1915.
2.5 References
1. 1. H. Ishida, “Handbook of Benzoxazine Resins”, ed. Ishida, H. and Agag, T., Elsevier, Amsterdam 2011, ch. 1, p. 1.
2. 2. X. Li and Y. Gu, Polym. Chem., 2011, 2, 2778-2781.
3. H. Ishida and D. J. Allen, J. Polym. Sci., Part B: Polym. Phys., 1996, 34, 1019-1030.
4. T. Takeichi, T. Kawauchi and T. Agag, Polym. J., 2008, 40, 1121-1131.
5. N. N. Ghosh, B. Kiskan and Y. Yagci, Prog. Polym. Sci., 2007, 32, 1344-1391.
6. C. P. R. Nair, Prog. Polym. Sci., 2004, 29, 401-498.
7. J. W. Burke, J. Am. Chem. Soc., 1949, 71, 609-612.
8. T. Agag and T. Takeichi, Macromolecules, 2003, 36, 6010-6017.
9. H. Oie, A. Saudo and T. Endo, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 5357-5363.
10. M. Ergin, B. Kiskan, B. Gacal and Y. Yagci, Macromolecules, 2007, 40, 4724-4727.
11. A. Nagai, Y. Kamei, S. Wang, M. Omura, A. Suda, H. Nishida, E. Kawamoto and T. Endo, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 2316-2325.
12. B. Kiskan, G. Demirary and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 3512-3518.
13. A. Chernykh, T. Agag and H. Ishida, Polymer, 2009, 50, 3153-3157.
14. Y. L. Liu and C. I. Chou, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5267–5282.
15. R. Andreu, M. A. Espinosa, M. Galia, V. Cadiz, J. C. Ronda and J. A. Reina, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1529-1540.
16. R. Kudoh, A. Sudo and T. Endo, Macromolecules, 2010, 43, 1185-1187.
17. B. Kiskan, Y. Koz and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 6955-6961.
18. F. C. Wang, C. Y. Su, W. S. Kuo, F. C. Huang, Y. C. Sheen and F. C. Chang, Angew. Chem., Int. Ed., 2006, 45, 2248-2251.
19. W. S. Kuo, C. Y. Wu, F. C. Wang and U. K. Jeong, J. Phys. Chem. C., 2009, 113, 20666-20673.
20. L. Qu and Z. Xin, Langmuir, 2011, 27, 8365-8370.
21. F. C. Wang; C. F. Chang and W. S. Kuo “Handbook of Benzoxazine Resins”, ed. Ishida, H. and Agag, T., Elsevier, Amsterdam 2011, ch. 33, p. 579.
22. H. C. Lin, L. S. Chang, Y. T. Shen, S. Y. Shih, T. H. Lin and F. C. Wang, Polym. Chem., 2012, 3, 935-945.
23. C. Y. Wu and S. W. Kuo, Polymer, 2010, 51, 3948-3955.
24. A. Raza, Y. Si, X. Wang, T. Ren, B. Ding, J. Yu and S. S. Al-Deyab, RSC Adv., 2012, 2, 12804-12811.
25. S. C. Liao, F. C. Wang, C. H. Lin, Y. H. Chou and C. F. Chang, J. Phys. Chem. C., 2008, 112, 16189-16191.
26. F. C. Wang, F. S. Chiou, H. F. Ko, K. J. Chen, T. C. Chou, F. C. Huang, W. S. Kuo and C. F. Chang, Langmuir, 2007, 23, 5868-5871.
27. S. C. Liao, S. J. Wu, F. C. Wang and C. F. Chang, Macromol. Rapid Commun., 2008, 29, 52-56.
28. S. W. Kuo and W. C. Liu, J. Appl. Polym. Sci., 2010, 117, 3121-3127.
29. W. K. Huang and W. S. Kuo, Polym. Compos., 2011, 32, 1086-1089.
30. T. Takeichi, Y. Guo and T. Agag, J. Appl. Polym. Sci., 2000, 38, 4165-4176.
31. T. Takeichi and Y. Guo, Polym. J 2001, 33, 437-443.
32. T. Takeichi, Y. Guo and S. Rimdusit, Polymer, 2005, 46, 4909- 4916.
33. Z. Brunovska and H. Ishida, J. Appl. Polym. Sci., 1999, 73, 857-862.
34. J. H. Kim, Z. Brunovska and H. Ishida, Polymer, 1999, 40, 1815-1822.
35. Z. Brunovska, R. Lyon and H. Ishida, Thermochim. Acta, 2000, 357, 195-207.
36. T. Agag and T. Takeichi, Macromolecules, 2001, 34, 7257-7263.
37. T. Agag and T. Takeichi, Macromolecules, 2003, 36, 6010-6017.
38. C. Y. Yen, C. C. Cheng, L. Y. Chu and C. F. Chang, Polym. Chem., 2011, 2, 1648-1653.
39. H. W. Hu, K. W. Huang and S. W. Kuo, Polym. Chem., 2012, 3, 1546-1554.
40. Y. Yagci, B. Kiskan, L. A. Demirel and O. Kamer, J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 6780-6788.
41. K. D. Demir, M. A. Tasdelen, T. Uyar, A. W. Kawaguchi, A. Sudo, T. Endo and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 4213-4220.
42. K. H. Fu, F. C. Huang, S. W. Kuo, C. H. Lin, R. D. Yei and C. F. Chang, Macromol. Rapid. Commun., 2008, 29, 1216-1220.
43. S. W. Kuo and C. F. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
44. Q. Chen, R. Xu, J. Zhang and D. Yu, Macromol. Rapid Commun., 2005, 26, 1878-1882.
45. Y. Liu and S. Zheng, J. Polym. Sci., Part A: Polym., 2006, 44, 1168-1181.
46. M. J. Huang, S. W. Kuo, J. H. Huang, X. Y. Wang and Y. T. Chen, J. Appl. Polym. Sci., 2009, 111, 628-634.
47. H. W. Hu, W. K. Huang, W. C. Chiou and S. W. Kuo, Macromolecules, 2012, 45, 9020-9028.
48. “Handbook of Polybenzoxazine Resins,” ed. Xu, R.; Zhang, P.; Wang, J.; Yu, D.; Ishida, H. and Agag, T., Elsevier, Amsterdam 2011, ch. 31, p. 541.
49. C. C. Yang, I. P. Wang, C. Y. Lin, J. D. Liaw and S. W. Kuo, Polymer, 2014, 55, 2044-2050.
50. F. Meng, H. Ishida and X. Liu, RSC Adv., 2014, 4, 9471-9475.
51. A. W. Kawaguchi, A. Sudo and T. Endo, J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 410-416.
52. W. Szymanski, M. J. Beierle, V. A. H. Kistemaker, A. W. Velema and L. B. Fering, Chem. Rev., 2013, 113, 6114-6178.
53. D. F. Jochum and P. Theato, Chem. Soc. Rev., 2013, 42, 7468-7483.
54. D. H. Kim and H. Ishida, J. Phys. Chem. A., 2002, 106, 3271-3280.
55. W. Jiang, G. Wang, Y. He, X. Wang, Y. An, Y. Song and L. Jiang, Chem. Commun., 2005, 3550-3552.
56. Y. H. Low and H. Ishida, Polym. Degrad. Stab., 2006, 91, 805-815.
57. O. T. Lekesiz and J. Hacaloglu, Polymer, 2014, 55, 3533-3542.
58. S. W. Kuo, H. C. Wu and C. F. Chang, Macromolecules, 2004, 37, 192-202.
59. T. A. Pires, C. Cheng and A. L. Belfiore, ACS. Proc. Div., Polym. Mater. Sci. Eng., 1989, 61, 466-470.

3.5 References
1. A. Chernykh, J. P. Liu and H. Ishida, Polymer, 2006, 47, 7664-7669.
2. Y. Cheng, J. Yang, Y. Jin, D. Deng and F. Xiao, Macromolecules, 2012, 45, 4085-4091.
3. C. F. Wang, S. W. Kuo, C. Lin, H. G. Chen, C. S. Liao and P. R. Hung, RSC Adv., 2014, 4, 36012-36016.
4. C. C. Yang, P. I. Wang, Y. C. Lin and S. W. Kuo, Polymer, 2014, 55, 2044-2050.
5. H. Ishida and D. J. Allen, J. Polym. Sci., Part B: Polym. Phys., 1996, 34, 1019-1030.
6. Y. Yagci, B. Kiskan and N. N. Ghosh, J. Polym. Sci., Part A: Polym. Chem., 2008, 47, 5565-5576.
7. L. Qu and Z. Xin, Langmuir, 2011, 27, 8365-8370.
8. B. Kiskan, A. L. Demirel, O. Kamer and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6780-6788.
9. C. I. Chou and Y. L. Liu, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6509-6517.
10. T. Agag, J. Liu, R. Graf, H. W. Spiess and H. Ishida, Macromolecules, 2012, 45, 8991-8997.
11. W. H. Hu, K. W. Huang and S. W. Kuo, Polym. Chem., 2012, 3, 1546-1554.
12. H. Ishida and H. Y. Low, Macromolecules, 1997, 30, 1099-1106.
13. W. C. Chu, J. G. Li and S. W. Kuo, RSC Adv., 2013, 3, 6485-6498.
14. W. H. Hu, K. W. Huang, C. W. Chiou and S. W. Kuo, Macromolecules, 2012, 45, 9020-9028.
15. X. Ning and H. Ishida, J. Polym. Sci., Part B: Polym. Phys., 1994, 32, 921-927.
16. X. Ning and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 1994, 32, 1121-1129.
17. H. Y. Low and H. Ishida, J. Polym. Sci., Part B: Polym. Phys., 1998, 36, 1935-1946.
18. K. Hemvichian, A. Laobuthee, S. Chirachanchai and H. Ishida, Polym. Degrad. Stab., 2002, 76, 1-15.
19. K. W. Huang and S. W. Kuo, Macromol. Chem. Phys., 2010, 211, 2301-2311.
20. H. J. Kim, Z. Brunovska and H. Ishida, Polymer, 1999, 40, 1815-1822.
21. Z. Brunovska and H. Ishida, J. Appl. Polym. Sci., 1999, 73, 2937-2949.
22. T. Agag and T. Takeichi, Macromolecules, 2001, 34, 7257-7263.
23. L. Y. Liu, M. J. Yu and I. C. Chou, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 5954-5963.
24. H. Ishida and H. Y. Lee, Polymer, 2001, 42, 6971-6979.
25. Y. C. Su, S. W. Kuo, D. R. Yei, H. Xu and F. C. Chang, Polymer, 2003, 44, 2187-2191.
26. B. Kiskan, Y. Yagci and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 414-420.
27. H. Y. Liu, W. Zhang, Y. Chen and X. S. Zheng, J. Appl. Polym. Sci., 2006, 99, 927-936.
28. J. Zhang, R. Xu and D. Yu, Eur. Polym. J., 2007, 43, 743-752.
29. B. Kiskan, D. Colak, E. A. Muuoglu, I. Cianga and Y. Yagci, Macromol. Rapid Commun., 2005, 26, 819-824.
30. B. Kiskan and Y. Yagci, Polymer, 2005, 46, 11690-11697.
31. Y. C. Wu and S. W. Kuo, Polymer, 2010, 51, 3948-3955.
32. S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
33. Y. Yagci, B. Kiskan, L. A. Demirel and O. Kamer, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6780–6788.
34. D. K. Demir, A. M. Tasdelen, T. Uyar, W. A. Kawaguchi, A. Sudo, T. Endo and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 4213-4220.
35. J. Dunkers and H. Ishida, J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 1913-1921.
36. R. Andreu, J. A. Reina and J. C. Ronda, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 6091-6101.
37. H. Zhang and J. Ruehe, Macromolecules, 2005, 38, 4855-4860.
38. T. Tanaka, H. Ogino and M. Iwamoto, Langmuir, 2007, 23, 11417-11420.
39. A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4139-4176.
40. T. Asano, T. Yano and T. Okada, J. Am. Chem. Soc ., 2002, 124, 8398-8405.
41. T. Asano, T. Yano and T. Okada, J. Org. Chem., 1984, 49, 4387-4391.
42. H. Lee, J. Pietrasik and K. Matyjaszewski, Macromolecules, 2006, 39, 3914-3920.
43. C. J. Barrett, J. Mamiya, G. K. Yagar and T. Ikeda, Soft Matter, 2007, 3, 1249-1261.
44. Y. Yu and T. Ikeda, Macromol. Chem. Phys., 2005, 206, 1705-1708.
45. C. F. Wang, Y. C. Su, S. W. Kuo, C. F. Huang, Y. C. Sheen and F. C. Chang, Angew. Chem., Int. Ed., 2006, 45, 2248-2251.
46. C. S. Liao, J. S. Wu, C. F. Wang and F. C. Chang, Macromol. Rapid Commun., 2008, 29, 52-56.
47. W. Jiang, G. Wang, Y. He, X. Wang, Y. An, Y. Song and L. Jiang, Chem. Commun ., 2005, 3550-3552.
48. M. G. Mohamed, W. C. Su, Y. C. Lin, C. F. Wang, J. K. Chen, K. U. Jeong and S. W. Kuo, RSC Adv., 2014, 4, 50373-50385.
49. H. D. Kim and H. Ishida, J. Phys. Chem. A., 2002, 106, 3271-3280.
50. H. Ishida, Handbook of Benzoxazine Resins 2011, vol. 1, pp. 1-69.
51. Y. H. Deng, Y. B. Li and X. G. Wang, Macromolecules, 2006, 39, 6590-6598.
52. L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang and D. Zhu, Angew. Chem., Int. Ed., 2003, 115, 824-826.
53. J. Y. Lee, P. C. Painter and M. M. Coleman, Macromolecules, 1988, 21, 954-960.

4.5 References
1. N. N. Ghosh, B. Kiskan and Y. Yagci, Prog. Polym. Sci., 2007, 32, 1344-1391.
2. G. Lligads, A. Tuzun, J. C. Ronda, M. Galis and V. Cadiz, Polym. Chem., 2014, 5, 6636-6644.
3. X. Li, Y. Xia, W. Xu, Q. Ran and Y. Gu, Polym. Chem., 2012, 3, 1629-1633.
4. Y. Yagci, B. Kiskan and N. N. Ghosh, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 5565-5576.
5. C. F. Wang, Y. C. Su, S. W. Kuo, C. F. Huang, Y. C. Sheen and F. C. Chang, Angew. Chem., Int. Ed., 2006, 45, 2248-2251.
6. S. W. Kuo, Y. C. Wu, C. F. Wang and K. U. Jeong, J. Phys. Chem. C., 2009, 113, 20666-20673.
7. C. F. Wang, S. F. Chiou, F. H. Ko, J. K. Chen, C. T. Chou, C. F. Huang, S. W. Kuo and F. C. Chang, Langmuir, 2007, 23, 5868-5871.
8. C. F. Wang, F. C. Chang and S. W. Kuo, in Handbook of Benzoxazine Resins, ed. H. Ishida and T. Agag, Elsevier, Amsterdam, 2011, ch. 33, p. 579.
9. Q. Li and X. Zhong, Langmuir, 2011, 27, 8365-8369.
10. W. H. Hu, K. W. Huang and S. W. Kuo, Polym. Chem., 2012, 3, 1546-1554.
11. Y. X. Wang and H. Ishida, Polymer, 1999, 40, 4563-4570.
12. A. Sudo, R. Kudo, H. Nakayama, K. Arima and T. Endo, Macromolecules, 2008, 41, 9030-9034.
13. H. Ishida, in Handbook of Benzoxazine Resins, ed. H. Ishida and T. Agag, Elsevier, Amsterdam, 2011, ch. 1, p. 1.
14. H. M. Qi, G. Y. Pan and Q. Y. Zhuang, Polym. Eng. Sci., 2010, 50, 1751-1757.
15. C. Sawaryan, K. Landfester and A. Taden, Macromolecules, 2010, 43, 8933-8941.
16. (a) A. Chernykh, T. Agag and H. Ishida, Polymer, 2009, 50, 3153-3157; (b) T. Agag and T. Takeichi, Macromolecules, 2001, 34, 7257-7263; (c) T. Agag and T. Takeichi, Macromolecules, 2003, 36, 6010-6017; (d) B. Kiskan and Y. Yagci, Polymer, 2008, 49, 2455-2460; (e) B. Kiskan, B. Aydogan and Y. Yagci, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 804-811; (f ) A. Chernykh, T. Agag and H. Ishida, Macromolecules, 2009, 42, 5121-5127; (g) S. W. Kuo and W. C. Liu, J. Appl. Polym. Sci., 2010, 117, 3121-3127.
17. Y. C. Su, S. W. Kuo, H. Y. Xu and F. C. Chang, Polymer 2003, 44, 2187–2191.
18. (a) T. Agag and T. Takeichi, Polymer, 2000, 41, 7083-7090; (b) P. Phirivawirut, R. Magaraphan and H. Ishida, Mater. Res. Innovations, 2001, 4, 187-196; (c) H. K. Fu, C. F. Huang, S. W. Kuo, H. C. Lin, D. R. Yei and F. C. Chang, Macromol. Rapid Commun., 2008, 29, 1216-1220; (d) H. W. Cui and S. W. Kuo, Appl. Clay Sci., 2014, 91-92.
19. (a) J. Zhang, R. Xu and D. Yu, Eur. Polym. J., 2007, 43, 743-752; (b) Q. Chen, R. Xu, J. Zhang and D. Yu, Macromol. Rapid Commun., 2005, 26, 1878-1882; (c) Y. Liu and S. Zheng, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1168-1181; (d) Y. C. Wu and S. W. Kuo, Polymer, 2010, 51, 3948-3955; (e) K. W. Huang and S. W. Kuo, Macromol. Chem. Phys., 2010, 211, 2301-2311; (f) S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696; (g) W. H. Hu, K. W. Huang, C. W. Chiou and S. W. Kuo, Macromolecules, 2012, 45, 9020-9028.
20. (a) C. H. Frey, Polymer, 2013, 54, 5443-5455; (b) P. D. Petrov, G. L. Georgiev and A. H. E. Muller, Polymer, 2012, 53, 5502-5506; (c) Y. Y. Liang, J. Z. Xu, X. Y. Liu, G. J. Zhong and Z. M. Li, Polymer, 2013, 54, 6479-6488; (d) Q. Chen, R. Xu and D. Yu, Polymer, 2006, 47, 7711-7719; (e) C. M. Chang and Y. L. Liu, ACS Appl. Mater. Interfaces, 2011, 3, 2204-2208; (f ) M. Chapartegui, J. Barcena, X. Irastorza, C. Elizetxea, M. Fernandez and A. Santamaria, Comp. Sci. Tech., 2012, 72, 489-497; (g) L. Dumas, L. Bonnaud, M. Olivier and P. Dubois, Chem. Commun., 2013, 49, 9543-9545.
21. C. C. Yang, C. Y. Lin, P. I. Wang, J. D. Liaw and S. W. Kuo, Polymer, 2014, 55, 2044-2050.
22. (a) G. B. Xing, W. C. Yu, H. K. Chow, L. P. Ho, G. D. Fu and B. Xu, J. Am. Chem. Soc., 2002, 124, 14846-14847; (b) K. J. Klosterman, Y. Yamauchi and M. Fujita, Chem. Soc. Rev., 2009, 38, 1714-1725; (c) S. Lena, S. Masiero, S. Pieraccini and P. G. Spada, Chem. Eur. J., 2009, 15, 7792-7806.
23. (a) Q. Cao and J. A. Rogers, Adv. Mater., 2009, 21, 29-53; (b) S. M. Bachilo, M. S. Strano, C. Kitterll, R. H. Hauge, R. E. Smalley and K. B. Weisman, Science, 2002, 298, 2361-2366.
24. Y. Huang, R. Dong, X. Zhu and D. Yan, Soft Matter, 2014, 10, 6121-6138.
25. (a) J. Babin, M. Lepage and Y. Zhao, Macromolecules, 2008, 41, 1246-1253; (b) J. Jiang, B. Qi, M. Lepage and Y. Zhao, Macromolecules, 2007, 40, 790-792.
26. Y. Yagci and B. Kiskan, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1670-1676.
27. H. Ishida, in Handbook of Polybenzoxazine, ed. H. Ishida and T. Agag, Elsevier, Amsterdam, 2011, ch. 1, p. 1.
28. (a) A. T. Moore, L. M. Harter and S. P. Song, J. Mol. Spectrosc., 1971, 40, 144-157; (b) D. Kehrloesser, J. Traegar, C. H. Kim and N. Hampp, Langmuir, 2010, 26, 3878-3882.
29. (a) C. M. Chang and Y. L. Liu, ACS Appl. Mater. Interfaces, 2011, 3, 2204-2208; (b) M. Chapartegui, J. Barcena, X. Irastorza, C. Elizetxea, M. Fernandez and A. Santamaria, Compos. Sci. Technol., 2012, 72, 489-497.
30. K. Kaleemullah, S. U. Khan and J. K. Kim, Compos. Sci. Technol., 2012, 72, 1968-1976.
5.5 References
1. C. P. R. Nair, Prog. Polym. Sci., 2004, 29, 401-498.
2. N. N. Ghosh, B. Kiskan, and Y. Yagci, Prog. Polym. Sci., 2007, 32, 1344-1391.
3. H. Ishida, “Handbook of Benzoxazine Resins”, H. Ishida, and T. Agag Eds, Elsevier,
Amsterdam 2011; Chapter 1, 1.
4. C. F. Wang, Y. C. Su, S. W. Kuo, C. F. Wang, Y. C. Sheen, and F. C. Chang, Angew.
Chem. Int. Ed., 2006, 45, 2248-2251.
5. A. Sudo, R. Kudo, H. Nakayama, K. Arima, and T. Endo, Macromolecules, 2008, 41,
9030-9034.
6. Y. Yagci, B. Kiskan, and N. N. Ghosh, J. Polym. Sci. Part A: Polym. Chem., 2009,
47, 5565-5576.
7. Q. Li, and X. Zhong, Langmuir, 2007, 27, 8365-8369.
8. M. R. Vengatesan, S. Devaraiu, K. Dinkaran, and Alagar, J. Mater. Chem., 2012, 22,
7559-7566.
9. S. W. Kuo, Y. C. Wu, F. C. Wang, and K. U. Jeong, J. Phys. Chem. C., 2009, 113,
20666-20673.
10. G. Ligadas, A. Tuzun, J. C. Ronda, M. Galia, and V. Cadiz, Polym. Chem., 2014, 5,
636-6644.
11. C. F. Wang, S. F. Chiou, F. H. Ko, J. K. Chen, C. T. Chou, C. T. Huang, S. W. Kuo,
and F. C. Chang, Langmuir, 2007, 23, 5868-5871.
12. S. C. Lin, C. S. Wu, J. M. Yeh and Y. L. Liu, Polym. Chem., 2014, 5, 4235-4244.
13. C. H. Lin, S. L. Chang, T. Y. Shen, Y. S. Shih, H. T. Lin and C. F. Wang, Polym.
Chem., 2012, 3, 935-945.
14. H. Ishida and H. Y. Low, J. Appl. Polym. Sci., 1998, 69, 2559-2567.
15. J. Jang and H. Yang, J. Mater. Sci., 2000, 35, 2297-2303.
16. S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 2011, 36, 1649-1696.
17. M. C. Tseng and Y. L. Liu, Polymer, 2010, 51, 5567-5575.
18. K. W. Huang and S. W. Kuo, Macromol. Chem. Phys., 2010, 211, 2301-2311.
19. Y. C. Wu and S. W. Kuo, Polymer, 2010, 51, 3948-3955.
20. C. R. Arza, H. Ishida and F. H. J. Maurer, Macromolecules, 2014, 47, 3685-3692.
21. Q. Chen, R. Xu and D. Yu, Polymer, 2006, 47, 7711-7719.
22. N. G. Sahoo, S. Rana, J. W. Cho, L. Li and S. H. Chan, Prog. Polym. Sci., 2010, 35,
837-867.
23. Y. P. Sun, K. F. Fu, Y. Lin and W. J. Huang, Acc. Chem. Res., 2002, 35, 1096-1104.
24. J. M. Huang, M. F. Tsai, S. J. Yang and W. M. Chiu, J. Appl. Polym. Sci., 2011, 122,
1898-1904.
25. C. F. Wang, S. W. Kuo, C. H. Lin, H. G. Chen, C. S. Liao and P. R. Hung, RSC
Adv., 2014, 4, 36012-36016.
26. L. Dumas, L. Bonnaud, M. Olivier and P. Dubois, Chem. Commun., 2013, 49, 9543.
27. C. C. Yang, Y. C. Lin, P. I. Wang, D. J. Liaw and S. W. Kuo, Polymer, 2014, 55,
2044-2050.
28. M. G. Mohamed, K. C. Hsu and S. W. Kuo, Polym. Chem., 2015, 6, 2423-2433.
29. C. Zuniga, L. Bonnaud, G. Ligadas, J. C. Ronda, M. Galia, V. Cadiz and P. Dubois,
J. Mater. Chem. A., 2014, 2, 6814-6822.
30. S. Iijima, Nature, 1991, 354, 56-58.
31. E. Thostenson, Z. Ren and T. W. Chou, Compos. Sci. Technol., 2001, 61,
1899-1912.
32. P. C. Ma, N. A. Siddiqui, G. Marom and J. K. Kim, Composites Part A., 2010, 41,
1345-1367.
33. D. Tasis, N. Tagmatarchis, A. Biano and M. Prato, Chem. Rev., 2006, 106,1105-1136.
34. M. G. Mohamed, C. H. Hsiao, K. C. Hsu, F. H. Lu, H. K. Shih and S. W. Kuo, RSC
Adv., 2015, 5, 12763-12772.
35. T. Asano, T. Yano and T. Okada, J. Am. Chem. Soc., 2002, 124, 8398-8405.
36. H. Lee, J. Pietrasik and K. Matyiaszewski, Macromolecules, 2006, 39, 3914-3920.
37. C. J. Barrett, J. Mamiaya, G. K. Yagar and T. Ikeda, Soft. Matter, 2007, 3,
1249-1261.
38. B. Kiskan and Y. Yagci, Polymer, 2005, 46, 11690-11697.
39. R. Andreu, J. A. Reina, and J. C. Ronda, J. Polym. Sci. Part A: Polym. Chem., 2008,
46, 6091-6101.
40. A. Natansohn and P. Rochon, Chem. Rev., 2002, 102, 4139-4175.
41. G. S. Kumar, and D. C. Neckers, Chem. Rev., 1989, 89, 1915-1925.
42. W. Jiang, G. Wang, Y. He, X. Wang, Y. An, Y. Song and L. Jiang, Chem. Commun.,
2005, 3550-3552.
43. H. Murakami, T. Nomura and N. Nakashima, Chem. Phys. Lett., 2003, 378,
481-485.
44. M. Chapartegui, J. Barcena, X. Irastorza, C. Elizetxea, M. Fernandez and A.
Santamaria, Comp. Sci. Tech., 2012, 72, 489-497.
45. M. Kaleemullah, S. W. Khan and J. K. Kim, Comp. Sci. Tech., 2012, 72, 1968-1976.
46. J. Che, T. Cagin and W. A. Goddard III, Nanotechnology, 2000, 11, 65-69.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code