Responsive image
博碩士論文 etd-0420113-150115 詳細資訊
Title page for etd-0420113-150115
論文名稱
Title
2011年冬季及2012年夏季北南海碳化學參數之分布特徵
Distribution of Carbon Chemistry Parameters in the Northern South China Sea in Winter 2011 and Summer 2012
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-05-02
繳交日期
Date of Submission
2013-05-20
關鍵字
Keywords
珠江沖淡水、碳化學系統、北南海、陸棚、二氧化碳通量
north South China Sea, carbonate system, continental shelf, Pearl River, CO2 flux
統計
Statistics
本論文已被瀏覽 5707 次,被下載 1151
The thesis/dissertation has been browsed 5707 times, has been downloaded 1151 times.
中文摘要
本研究為大型研究計畫-「熱帶邊緣海的海洋學:北南海(Oceanography of tropical marginal seas: The northern South China Sea)」之子計畫。文中利用2011年冬季(12月21~24日;ORI-988航次)及2012年夏季(9月1~3日;ORI-1010航次)由珠江口沿伸至東南亞時間序列測站(Southeast Asia Time-series Study; SEATS)之測線進行海水樣品採集,分析酸鹼值(pH)、總溶解態無機碳(Dissolved Inorganic Carbon; DIC)及總鹼度(Total Alkalinity; TA),藉以瞭解北南海陸棚海域與深海間碳化學參數的分布特徵、控制因子及其生地化機制,並量化北南海冬、夏兩季二氧化碳通量之變化。
研究結果顯示,冬季混合層內,相對於斜坡區的南海水性質,內陸棚區因受珠江沖淡水的水體性質影響,呈現低溫、低鹽、低pH,高DIC及低TA之特徵。珠江沖淡水及南海水兩種性質不同之水團相互混合,影響了DIC、TA濃度之分布,而DIC濃度則同時控制了pH值的變化。夏季混合層內,內陸棚區DIC及TA濃度明顯偏低,主要是因珠江沖淡水帶入大量營養鹽滋養,而使內陸棚區產生旺盛的生物作用所致。於觀測期間,冬季除內陸棚測站外,表水fCO2皆低於大氣之二氧化碳分壓,平均CO2 Flux為-3.63±6.19 mmol m-2 day-1。夏季僅於內陸棚區測站呈現表水fCO2低於大氣二氧化碳分壓之情況,其餘測站幾乎呈現海氣平衡的狀態,平均CO2 Flux為-2.13±4.06 mmol m-2 day-1。
夏季南海內陸棚區並無二氧化碳累積的情況,儘管冬季水體垂直混合增強,內陸棚區fCO2變動範圍仍與夏季差距不大。冬季南海外陸棚區混合層深化,提高了冬季表水營養鹽之濃度,其基礎生產力便隨之增加,故外陸棚區fCO2呈現夏高冬低的季節性分布差異。
Abstract
This study is a part of the ongoing integrated research, “Oceanography of tropical marginal seas: The Northern South China Sea”. Comprehensive carbon chemistry parameters, including pH, dissolved inorganic carbon (DIC), total alkalinity (TA), and fugacity of CO2 (fCO2) were measured for water samples collected from the north South China Sea in November, 2011 (winter) and September, 2012 (summer). The main purposes of this project are to investigate the air-sea exchange of CO2 and the related controlling mechanism. Furthermore, the role of carbon dynamics in this margin was examined.
Results show that temperature, salinity, pH and TA all have the minimum around the inner shelf except for DIC due to the freshwater input form the Pearl River in winter. Both of DIC and TA have significant correlation with salinity owing to mixing freshwater with seawater in mixed layer. Meanwhile, the change in pH is mainly controlled by DIC concentration. The study area acts as a sink of atmospheric CO2 with a mean CO2 flux of -3.63 mmol m-2 day-1 in winter. High nutrient inputs enhanced biological effects from the Pearl River, resulting the minimal DIC and TA concentration of mixed layer in the inner shelf during summer. In general, this study area is a weak source of atmospheric CO2 with a mean CO2 flux of -2.12 mmol m-2 day-1 in summer.
The South China Sea does not appear to have accumulation of remineralized CO2 in bottom waters at the inner shelf in summer. Even though winter have strong vertical mixing, the fCO2 range is similar to summer at the inner shelf. At the outer shelf, the seasonal change is probably resulted from the strong vertical mixing, which brings nutrient-rich subsurface water to the surface and fuels the biological productivity, leading to the observed higher summer fCO2.
目次 Table of Contents
目錄

致謝 i
中文摘要 ii
英文摘要 iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章、緒論 1
1.1研究背景 1
1.2大陸邊緣及邊緣海域碳循環之重要性 4
1.3研究區域概況 7
1.4北南海陸棚區與邊界的交換機制 9
1.5研究目的 12
第二章、研究材料與方法 13
2.1採樣位置 13
2.2採樣方法 13
2.3分析方法 17
2.3.1海水中酸鹼值(pH)之測定 17
2.3.2海水中溶解態無機碳(DIC)測定 18
2.3.3海水中鹼度(TA)測定 20
2.3.4海水中溶解態無機碳之碳同位素組成(δ13CDIC)測定 21
2.4海水中二氧化碳分壓(fCO2)之計算 25
2.5表水fCO2變化之控制因子推估 25
2.6 CO2海氣交換通量(CO2 Flux)計算 27
第三章、結果與討論 29
3.1冬、夏兩季溫鹽圖之分布特徵 29
3.2內陸棚區之水文特性及碳化學參數特徵 32
3.2.1內陸棚區溫度、鹽度特徵與分布 32
3.2.2內陸棚區營養鹽(NO2-+NO3-、PO43-)、Chl-a與DO之分布 35
3.2.3內陸棚區碳化學參數(pH、DIC、TA)之分布 38
3.3外陸棚及斜坡區之水文特性及碳化學參數特徵 41
3.3.1外陸棚及斜坡區溫度、鹽度特徵與分布 41
3.3.2外陸棚及斜坡區營養鹽、Chl-a與DO之分 43
3.3.3外陸棚及斜坡區碳化學參數(pH、DIC、TA)之分布 50
3.4夏季溶解態無機碳的碳同位素(δ13CDIC)之分布 51
3.5內陸棚、外陸棚及斜坡區水文性質之比較 53
3.5.1冬季內陸棚、外陸棚及斜坡區水文性質之比較 53
3.5.2夏季內陸棚、外陸棚及斜坡區水文性質之比較 56
3.6表水fCO2與CO2 Flux分佈、變化之控制因素 59
3.6.1冬季表水fCO2與CO2 Flux分佈、變化之控制因子 59
3.6.2夏季表水fCO2與CO2 Flux分佈、變化之控制因子 62
3.7東海與南海陸棚之比較 64
3.7.1東海陸棚區冬、夏兩季二氧化碳之變化 65
3.7.2南海內陸棚區(水深小於200 m)冬、夏兩季fCO2之變化 66
3.7.3南海外區陸棚(水深大於200 m)冬、夏兩季fCO2之變化 69
第四章、結論 71
第五章、參考文獻 73
圖目錄

圖1.1現今至八十萬年前大氣二氧化碳濃度與溫度隨時間之變化圖
2
圖1.2全球海域二氧化碳淨通量之分布圖 5
圖1.3北南海陸棚海域示意圖 7
圖1.4南海四季表層風場圖 8
圖1.5西江梧州水文觀測站之月流量變化 9
圖1.6南海內波分布圖 11
圖2.1冬季航次(ORI-988)採樣站位圖 14
圖2.2夏季航次(ORI-1010)採樣站位圖 14
圖2.3 Gran titration 滴定終點判定示意圖 21
圖2.4真空製備系統全圖 22
圖2.5穩定同位素比值質譜儀之構造示意圖 22
圖3.1冬季航次(ORI-988)溫鹽圖(a)、溫度(b)與鹽度(c)隨深度變化圖 30
圖3.2夏季航次(ORI-1010)溫鹽圖(a)、溫度(b)與鹽度(c)隨深度變化圖 31
圖3.3冬季航次(ORI-988)之溫度(a)與鹽度(b)斷面圖 33
圖3.4夏季航次(ORI-1010)之溫度(a)與鹽度(b)斷面圖 34
圖3.5冬季上層200 m之NO2-+NO3- (a)、PO43- (b)、Chl-a (c)及DO (d)
之斷面圖 36
圖3.6夏季上層200 m之NO2-+NO3- (a)、PO43- (b)、Chl-a (c)及DO (d)
之斷面圖 37
圖3.7冬季航次(ORI-988)之pH(a)、DIC(b)與TA(c)斷面圖 39
圖3.8夏季航次(ORI-1010)之pH(a)、DIC(b)與TA(c)斷面圖 40
圖3.9東沙島2012年月降雨量圖 42
圖3.10冬季各測站之N/P ratio分布圖 45
圖3.11夏季各測站之N/P ratio分布圖 46
圖3.12冬、夏兩季混合層內溫度與溶氧之關係圖 49
圖3.13夏季航次(ORI-1010)13CDIC之斷面圖(a)及外陸棚區測站13CDIC之垂直分布圖(b).. 52
圖3.14冬季混合層內pH、DIC、TA與溫度、鹽度之關係圖 55
圖3.15冬季混合層內pH與DIC之關係圖 56
圖3.16夏季混合層內pH、DIC、TA與溫度、鹽度之關係圖 58
圖3.17冬季大氣與表水fCO2及TA/DIC ratio 59
圖3.18 CO2mean corrected for ∆T、fCO2 at 22℃及表水fCO2變化圖 60
圖3.19夏季大氣與表水fCO2及TA/DIC ratio 63
圖3.20 CO2mean corrected for ∆T、fCO2 at 29℃及表水fCO2變化圖 63
圖3.21 Zhai et al.(2005)、黃(2009)與本研究採樣位置示意圖 66
圖3.22南海與東海夏季(a)及冬季(b)之chl-a平均濃度圖 68

表目錄

表1.1大氣二氧化碳增加速率變化表 3
表2.1 ORI-988(冬季)航次各測站位置、探測日期、底深及採樣深度 15
表2.2 ORI-1010(夏季)航次各測站位置、探測日期、底深及採樣深度 16
表3.1冬季混合層內各測站之N/P ratio 45
表3.2冬季混合層內各測站之N/P ratio 46
表3.3南海夏、冬兩季於內陸棚及外陸棚區fCO2之比較 67
參考文獻 References
中文部分
彭宗仁、 劉滄棽、 林幸助,2006。穩定同位素在農業及生態環境上之應用。台灣農業研究,55,79-90。
李道季、張經、黃大吉、吳瑩、梁俊,2002。長江口氧的虧損。中國科學,32(8), 686-694。
林富晨,2009。東海夏季基礎生產力的年間變化:長江三峽大壩正式運轉前。國立臺灣海洋大學海洋環境化學與生態研究所碩士論文,60頁。
林艷慧,2002。南海海域中固氮藍綠藻Trichodesmium 及Richelia intracellularis之時空分布。國立中山大學海洋地質及化學研究所碩士論文,181頁。
林信吉,2003。澎湖水道南端化學水文之季節性變化。國立中山大學海洋地質及化學研究所碩士論文,95頁。
黃婷萱,2009。台灣海峽及南海北部二氧化碳變化。國立中山大學海洋地質及化學研究所碩士論文,114頁。
劉慧,董雙林,方建光,2002。全球海域營養鹽限制研究進展,海洋科学,26, 47-53。
韓舞鷹、吳林興、黃西能、容榮貴、王漢奎、李鵬程,1982。南海中部水化學要素的研究,南海海區綜合調查研究報告(一)。科學出版社,159-176。
韓舞鷹、王明彪、林洪瑛,1995。南沙群島海域深層海水氮垂直通量。海洋學報,17,118-121。
陳鎮東,2001。南海海洋學。國立編譯館。506頁。
王有傑,2005。高屏近岸與南海北部海域有機碳代謝之時空變化。國立中山大學海洋地質及化學研究所碩士論文,134頁。
袁梁英、戴民漢,2008。南海北部低濃度磷酸鹽的測定與分布。海洋與湖沼,39(3),202-208。

英文部分
Arrigo K. A. (2005), Marine microorganisms and global nutrient cycles, Nature, 437, 349-355.
Barnola, J. M., D. Raynaud, C. Lorius, and N. I. Barkov (2003), Historical CO2 record from the Vostok ice core, Trends: A Compendium of Data on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge National Lab., U.S. Dept. of Energy, Oak Ridge, Tenn.
Bindoff N. L., et al. (2007), Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
Broges, A. V., B. Delille, and M. Frankignoulle (2005), Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts, Geophys. Res. Lett., 32, L14601, doi:10.1029/2005GL02 3053.
Cavender-Bares K. K., D. M. Karl, and S. W. Chisholm (2001), Nutrient gradients in the western North Atlantic Ocean: relationship to microbial commuity structure and comparison to patterns in the Pacific Ocean, Deep Sea Res. Part I, 48, 2373-2395.
Cai,W. J., M. H. Dai, Y. C. Wang, W. D. Zhai., T. Huang., S. T. Chen., F. Zhang., Z. Z. Chen, and Z. H. Wang (2004), The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea, Cont. Shelf Res., 24, 1301-1319, doi:10.1016/j.csr.2004.04.005.
Cai, W. J., M. H., Dai, and Y. Wang (2006), Air-sea exchange of carbon dioxide in ocean margins: Aprovince-based synthesis, Geophys. Res. Lett., 33, L12603, doi:10.1029/2006GL 026219.
Cai W. J., et al. (2011), Acidification of subsurface coastal waters enhanced by eutrophication, Nature Geoscien., 4, 766-770, doi: 10.1038/ngeo1297.
Chen, C. T. A., and A. Borges (2009), Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2, Deep Sea Res. Part II, 56, 578-590, doi: 10.1016 /j.dsr2.2009.01.001.
Chen, C. C., G. C. Gong, and F. K. Shiah (2007), Hypoxia in the East China Sea: one of the largest coastal low-oxygen areas in the world, Mar. Environ. Res., 64, 399-408, doi:10.1016/j.marenvres.2007.01. 007.
Chen, C. T. A., and M. H. Huang (1996), A mid-depth front separating the South China Sea water and the Philippine Sea water, J. Oceanogr., 52, 17-25, doi:10.1016/j.dsr2.2009.01.001.
Chen, Z., Y. Li, and J. Pan (2004), Distribution of colored dissolved organic matter and dissolved organic carbon in the Pearl River Estuary, Cont. Shelf Res., 24(16), 1845-1856 .
Chou, W. C., G. C. Gong, C. M. Tseng, D. D. Sheu, C. C. Hung, L. P. Chang, and L. W. Wang (2011), The carbonate system in the East China Sea in winter, Mar. Chem., 123, 44-55, doi: 10.1016/j.marc hem.2010.09.004.
Chou, W. C., G. C. Gong, D. D. Sheu, S. Jan, C. C. Hung, and C. C. Chen (2009), Reconciling the paradox that the heterotrophic waters of the East China Sea shelf act as a significant CO2 sink during the summertime: Evidence and implications, Geophys. Res. Lett., 36, L15607, doi:10.1029/2009GL038475.
Chu, P. C., S. Lu, and Y. Chen (1997), Temporal and spatial variability of the South China Sea surface temperature anomaly, J. Geophys. Res., 102, C9, 20937-20955.
Clark, I., and P. Fritz (2000), Isotope ratio mass spectrometry, Environmental Isotopes in Hydrogeology, Lewis Publishers, Boca Raton, Florida.
Denman, K. L., and T. M. Powell (1984), Effects of physical processes on planktonic ecosystems in the coastal ocean, Oceanogr. Mar. Biol. Ann. Rev., 22, 125-168.
Dickson, A. G. (1993), pH buffers for sea water media based on the total hydrogen ion concentration scale, Deep Sea Res. Part I, 40, 107-118.
Dickson, A. G., and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res. Part I, 34, 1733-1743.
DOE(1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater, edited by A. G. Dickson and C. Goyet, Carbon Dioxide Inf. Anal. Cent., Oak Ridge National Lab.
Gan, J., H. Li, E. N. Curchitser, and D. B. Haidvogel (2006), Modeling South China Sea circulation: Response to seasonal forcing regimes, J. Geophys. Res., 111, C06034, doi:10.1029/2005JC 003298.
Goericke, R., and B. Fry (1994), Variations of marine plankton 13C with latitude, temperature and dissolved CO2 in the world ocean, Global Biogeochem. Cycles, 8, 85-90.
Gong, G. C., J. Chang, K. P. Chiang, T. M. Hsiung, C. C. Hung, S. W. Duan, and L. A. Codispoti (2006), Reduction of primary production and changing of nutrient ratio in the East China Sea: Effect of the Three Gorges Dam?, Geophys. Res. Lett., 33, L07610, doi:10.1029/ 2006GL025800.
Gong, G. C., K. K. Liu, C. T. Liu, and S. C. Pai (1992), The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea, Terr. Atmos. Oceanic Sci., 3, 587-602.
Gong, G. C., Y. H. Wen, B. W. Wang, and G. J. Liu (2003), Seasonal variation of chlorophyll a concentration primary production and environmental conditions in the subtropical East China Sea, Deep Sea Res. Part II , 50, 1219-1236.
Gran, G. (1952), Determination of the equivalence point in potentiometric titrations, Part II, Analyst, 77, 661-671.
Guggenheim, E. A. (1967), Thermodynamics: An advanced treatment for chemists and physicists, Amsterdam, North-Holland.
Guo, X., W. J. Cai, W. Zhai, M. H. Dai, Y. Wang, and B. Chen (2008), Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary, Cont. Shelf Res., 28, 1424-1434.
Hong, H., S. Qiu, W. Ruan, and G. Hong (1991). Minnan-Taiwan Bank Fishing Ground Upwelling Ecosystem Study, Science press, Beijing.
Hönisch, D., N. G. Hemming, D. Archer, M. Siddall, and J. F. McManus (2009), Atmospheric carbon dioxide concentration across the mid-Pleistocene transition, Science, 304, 1551-1553.
Hsu, M. K., A. K. Liu, and C. Liu (2000), A study of internal waves in the China Seas and Yellow Sea using SAR, Cont. Shelf Res., 20, 389-410.
Kropnick, P. (1974), The dissolved O2-CO2-13C system in the eastern equatorial Pacific, Deep Sea Res., 21,211-227.
Kroopnick, P. (1980), The distribution of 13C in the Atlantic ocean, Earth and Planetary Sci. Lett., 49, 469-484.
Kroopnick, P. (1985), The distribution of 13C of ΣCO2 in the world oceans, Deep Sea Res., 32, 57-84.
Kropnick, P., R. F. Weiss, and H. Craig (1972), Total CO2, 13C and dissolved oxygen-18O at GEOSECS II in the North Atlantic, Earth and Planetary Sci. Lett., 16, 103-110.
Lewis, E., and D. Wallace (1998), Program developed for CO2 system calculations, Carbon Dioxide Inf. Anal. Cen., Oak Ridge Natl. Lab., U.S. Dept. of Energy, Rep.ORNL/CDIAC- 105, Oak Ridge, Tenn.
Lin, I. I., J. P. Chen, G. T. F. Wong, C. W. Huang, and C. C. Lien (2007), Aerosol input to the South China Sea: Results from the MODerate Resolution Imaging Spectro-radiometer, the Quick Scatterometer, and the Measurements of Pollution in the Troposphere Sensor, Deep Sea Res. Part II, 54, 1589-1601, doi:10.1016/j.dsr2.2007. 05.013.
Lin, I. I, G. T. F. Wong, C. W. Huang, and C. C. Lien (2009), Aerosol impact on the South China Sea biogeochemistry-an early assessment from remote sensing, Geophys. Res. Lett., 36, L17605, 1-5, doi:10. 1029GL037484.
Liu, K. K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen, and T. Y. Tang (2002), Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study, Deep Sea Res. Part II, 49, 1387-1412.
Lu, Z. G., J. P. Gana, and M. H. Dai (2012), Modeling seasonal and diurnal pCO2 variations in the northern South China Sea, J. Mar. Sys., 92, 30-41.
Lueker, T. J., A. G. Dickson, and C. D. Keeling (2000), Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105-119.
Lynch-Stieglitz, J., T. F. Stocker, W. S. Broecker, and R. G. Fairbanks (1995), The influence of air-sea exchange on the isotope composition of oceanic carbon: observations and modeling, Global Biogeochem. Cycles, 9, 653-665.
Mehrbach, C., C. H. Culberson, J. E. Hawley, and R. M. Pytkowicz, (1973), Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897-907.
Peng, T. H., J. J. Hung, R. Wanninkhof, and F. J. Millero (1999), Carbon budget in the East China Sea, Tellus, 51B, 531-540.
Petit, J. R., et al. (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436.
Rabouille, C., F. T. Mackenzie, and L. M. Ver (2001), Influence of the human perturbation on carbon, nitrogen, and oxygen biogeochemical cycles in the global coastal ocean, Geochim. et Cosmochim. Acta., 65, 3615-3641.
Redfield, A. C., B. H. Ketchum, and F. A. Richards (1963), The influence of organisms on the composition of sea water, The Sea : ideas and observations on progress in the study of the seas, edited by M. N. Hill, 2, 26-77, Interscience Press, N. Y.
Sabine. C. S., et al. (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367-371.
Sarmiento, J., and N. Gruber (2006), The ocean carbon cycle, Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, N. J.
Sengers, J. M. H., M. Klein, and J. S. Gallagher (1971), Pressure-volume- temperature relationships of gases: virial coefficients, National Bureau of Standards Washington D. C., Heat Div.
Sheu, D. D., W. C. Chou, C. L. Wei, W. P. Hou, G. T. F. Wong, and C. W. Hsu (2010), Influence of El Niño on the sea‐to‐air CO2 flux at the SEATS time‐series site, northern South China Sea, J. Geophys. Res., 115, C10021, doi:10.1029/2009JC006013.
Sheu, D. D., W. Y. Lee, C. H. Wang, C. L. Wei, C. T. A. Chen, and M. H. Huang (1996), Depth distribution of δ13C of dissolved ΣCO2 in seawater off eastern Taiwan:effects of the Kuroshio current and associated upwelling phenomenon, Cont. Shelf Res., 16, 12, 1609- 1619.
Shim, J., D. Kim, Y. C. Kang, J. H. Lee, S. T. Jang, and C. H. Kim (2007), Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea, Cont. Shelf Res., 27, 2623-2636.
Siegenthaler, U., and J. L. Samiento (1993), Atmospheric carbon dioxide and the ocean, Nature, 365, 119-125.
Siegenthaler, U., et al. (2005), Stable carbon cycle-climate relationship during the last Pleistocene, Science, 310, 1313-1317.
Smith, S. V., W. J. Kimmerer, and T. W. Walsh (1986), Vertical flux and biogeochemical turnover regulate nutrient limitation of net organic production in the North Pacific gyre, Limnol. Oceanog., 31, 161- 167.
Smayda T. J. (1974), Bioassay of the growth potential of the surface water of lower Nagragansett Bay over an amual cycle suing the diatom halassiosira pseudonana, Limnol. Oceanogr., 19, 889-901.
Takahashi, T., J. Olafsson, and J. G. Goddard (1993), Seasonal variation of CO2 and nutrients in the high-latitude surface: a comparative study, Global Biogeochem. Cycles, 7, 843-78.
Takahashi, T., et al. (2002), Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep Sea Res. Part II, 49, 1601-1622.
Takahashi, T., et al. (2009), Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans, Deep Sea Res. Part II , 56, 554-577.
Thomas, H., Y. Bozec, K. Elkaley, and H. J. W. de Baar (2004), Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304, 1005-1008.
Tsunogai, S., S. Watanabe, J. Nakamura, T. Ono, and T. Sato (1997), A preliminary study of carbon system in the East China Sea, J. Oceanogr., 53, 9-17.
Tsunogai, S., S. Watanabe, and T. Sato (1999), Is there a “continental shelf pump” for the absorption of atmospheric CO2?, Tellus 51B, 701-712.
Wang, B. (2006), Cultural eutrophication in the Changjiang (Yangtze river) plume: history and perspective. Estuar. Cont. Shelf Sci., 69, 471-477.
Wang, S. L., C. T. A. Chen, G. H. Hong, and C. S. Chung (2000), Carbon dioxide and related parameters in the East China Sea, Cont. Shelf Res., 20, 525-544.
Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, C5, 7373-7382.
Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2, 203-215.
Wyrtki, K. (1961), Physical oceanography of the southeast Asian waters: Scientific results of marine investigation of the South China Sea and the Gulf of Thailand, NAGA Report, 2, Scripps institution of oceanography, La Jolla, California.
Yin, K., Z. Lin, and Z. Ke (2004), Temporal and spatial distribution of dissolved oxygen in the Pearl River Estuary and adjacent coastal waters, Cont. Shelf Res., 24, 1935-1948.
Yool, A., and M. J. R., Fasham (2001), An examination of the “continental shelf pump” in an open ocean generally circulation model, Global Biogeochem. Cycles, 15, 831-844.
Zhang, J. (1995), Geochemistry of trace metals from Chinese river/estuary systems: an overview, Estuar. Cont. Shelf Sci., 41, 631-658.
Zhang, J., Z., G., Yu, J. T. Wang, J. L., Ren, H. T. Chen, H. Xiong, L. X. Dong, and W. Y. Xu (1999), The subtropical Zhujiang (Pearl River) estuary: nutrient, trace species and their relationship to photosynthesis, Estuar. Coast. Shelf Sci., 49, 385-400.
Zhai W. D., M. H. Dai, W. J. Cai, Y. C. Wang, and H. S. Hong (2005), The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn, Mar. Chem., 96, 87-97.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code