Responsive image
博碩士論文 etd-0420115-145024 詳細資訊
Title page for etd-0420115-145024
論文名稱
Title
在氧化鎂基板上成長立方晶系的氧化鋅和摻鎂氧化鋅磊晶之研究
Epitaxial growth and characterizations of cubic ZnxMg1-xO and ZnO on MgO substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
244
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-26
繳交日期
Date of Submission
2015-05-22
關鍵字
Keywords
磊晶層、摻鎂氧化鋅、氧化鋅、岩鹽礦結構、分子束磊晶
Rock-salt, Molecular beam epitaxy, ZnxMg1-xO, Epilayer, ZnO
統計
Statistics
本論文已被瀏覽 5759 次,被下載 129
The thesis/dissertation has been browsed 5759 times, has been downloaded 129 times.
中文摘要
本論文的核心在於提供了以分子束磊晶法成長岩鹽礦結構的氧化鋅及摻鎂氧化鋅之成長參數、分析方法及重要結果。研究裡先是提供成長岩鹽礦結構的氧化鋅及摻鎂氧化鋅的參數,並且把岩鹽礦結構的氧化鋅及摻鎂氧化鋅關鍵的物理性質和材料性質量化。綜合研究的結果,歸納出益於岩鹽礦結構的氧化鋅及摻鎂氧化鋅的成長參數,這些成長參數被侷限於低的鋅等效流量比和低的成長速率。此外,針對不同鋅含量的岩鹽礦結構氧化鋅及摻鎂氧化鋅磊晶層,將其晶格常數、能隙、磊晶的品質等物理性質和材料性質特徵量測,並予以討論。論文中另有一部分從岩鹽礦結構氧化鋅及摻鎂氧化鋅磊晶層的臨界厚度、應力釋放、鋅含量極限等的理論和計算,討論了可能的成長模型。因此,接下來的三段為此論文最重要的結果與發現。
首先,在論文的第一部分,探討以分子束磊晶法在(100)面的氧化鎂基板上成長氧化鋅磊晶的磊晶成長行為。結果顯示在600 oc,氧化鋅磊晶層以(10-10)方位的非極性纖鋅礦成長。此磊晶層由四個變種的晶域組成,其磊晶關係為:(10-10)ZnO//(100)MgO和 <1-213>ZnO~//<011>MgO差異約為+/-1.5o。磊晶中發現有相當高密度的缺陷。因此在基板上先成長一層Zn0.6Mg0.4O的岩鹽礦結構摻鎂氧化鋅磊晶層後,其晶格失配可降低幾乎至零,在其上成長的纖鋅礦氧化鋅磊晶中缺陷密度大幅下降,因此,其光致發光的特性則大幅改善。
第二部分的實驗主要變數為磊晶成長的鋅鎂流量比。當鋅鎂流量比在0.94以下時,磊晶層維持為岩鹽礦結構,而其鋅含量可達0.83;反之,鋅鎂流量比在0.95以上時,磊晶層則為纖鋅礦結構。此部分的亮點,在於(100)面的氧化鎂基板上成功以分子束磊晶法成長的高鋅含量的岩鹽礦結構礦摻鎂氧化鋅磊晶層,其中一個試片鋅含量可高達0.83。此外,藉由X光繞射方法的鑑定,確定了不同鋅含量摻鎂氧化鋅磊晶層,始終保持岩鹽礦結構,並且得知鋅含量為0.5及0.83的晶格參數分別為0.4256及0.4278奈米,並從(200)面的X光搖擺曲線半高寬介於0.30o ~ 0.47o。磊晶的表面擁有原子級的平坦度,其方均根粗糙值約為1奈米。利用X光倒格子空間分析和穿透式電子顯微鏡的分析,顯示110 ~ 130奈米厚的磊晶層,晶格已呈現部分應力鬆弛的現象。除此之外,鋅含量達0.83的磊晶層在製備穿透式電子顯微鏡試片時,在削薄的過程中,磊晶層即從岩鹽礦結構相變化成纖鋅礦結構。在能隙方面,鋅含量0.5和0.83的岩鹽礦結構摻鎂氧化鋅磊晶層分別為5.33及4.73電子伏特。
最後一個部分是在(100)面的氧化鎂基板上成長岩鹽礦結構氧化鋅、摻鎂氧化鋅及氧化鎂異質結構的研究。結果顯示在七組異質結構試片中,除了H-ZMO-5之外,其餘試片上均有部分區域在成長異質結構階段相變態成纖鋅礦結構,而且量測到的能隙與模擬計算的結果十分相近。這些試片當中,有一項非常值得關注的是H-ZnO-30的試片,其岩鹽礦結構氧化鋅磊晶,它成功地和氧化鎂的互相堆疊成三十個週期的異質接面,並以大約在數個原子層的厚度存在著;此外,纖鋅礦氧化鋅及氧化鎂交互堆疊的異質結構也被觀察到,纖鋅礦氧化鎂穩定的被氧化鋅夾在其中,而其中可能有互擴散發生在這些磊晶層中。這兩種結構的異質結構同時存在於同一片試片但不同位置,其互相接合的介面,可推得與第一個部分相同的結果,關係式如下:(10-10)wurtzite//(100)rock-salt和 <1-213>wurtzite ~//<011>rock-salt。更重要的是,針對異質結構能隙的調變,讓能隙更降低到4.5電子伏特左右,增加了在紫外光區的範圍。
Abstract
This thesis provides an overall experiments and discussions of depositing rock-salt (RS) type ZnO/ZnxMg1-xO epilayers and heterostructures in a plasma assisted molecular beam epitaxy system. The experiments support regardless of processing and characterizing the RS type ZnO/ZnxMg1-xO. A discussion of the processing was given, the growth of RS type ZnO/ZnxMg1-xO films is limited to low beam equivalent pressure ratios of Zn and growth rates. The ZnO/ZnxMg1-xO films are characterized to have specific lattice parameters, band gap energies, and the film quality with different Zn contents. In addition, several models are proposed to discuss the RS type ZnO/ZnxMg1-xO, such as critical thicknesses, strain relaxation, limitation of the Zn content. The total phenomena are then summarized to give a simple growth model. This thesis therefore reports three major results.
In the first part, the growth were focused on the ZnO on (100)MgO substrate at 600 oC by plasma-assisted molecular beam epitaxy. Nonpolar (10-10)-oriented ZnO was grown epitaxially which was composed of four variant domains having an orientation relationship with the substrate as: (10-10)ZnO//(100)MgO and <1-213>ZnO~//<011>MgO with a +/-1.5o deviation. By introducing a RS type Zn0.6Mg0.4O buffer layer, the lattice mismatch was eliminated almost completely based on the extended coincidence lattice model. The crystal quality is therefore improved and the epilayer reveal better photoluminescence characteristics.
Following, the ZnxMg1-xO epitaxial layers were prepared with different beam equivalent pressure ratios by plasma-assisted molecular beam epitaxy on MgO (100) substrate. X-ray diffraction characterization revealed that both samples retain the RS structure and the lattice parameters are 0.4256 and 0.4278 nm for x = 0.52 and 0.83, respectively. In addition, the epilayers are with low FWHM values (0.30o ~ 0.47o) of the (200) rocking curves. The epilayer surfaces are flat having a root mean square roughness of 1.0 nm. According to reciprocal space map and transmission electron microscopy analyses, the epitaxial strains have been partly relaxed at film thicknesses of 110 ~ 130 nm. In fact, a further relaxation of the strain when preparing the TEM specimen from the Zn0.8Mg0.2O epitaxial layer triggers back transformation of the RS to the wurtzite structure. The band gap energy of the Zn0.8Mg0.2O epitaxial layer was found to be as low as 4.73 eV.
In the last part, RS type ZnO/ZnxMg1-xO/MgO heterostructures are deposited on lattice-matched MgO substrates. The results revealed six heterostructure samples (excluding sample H-ZMO-5) are facing phase transformation from rock-salt to wurtzite phase during the heterostructure or capping layer growth. In addition, the energy gaps that measured are similar to the values from the simulations. It is worth noting that RS type ZnO is obtained by embedded MgO layers to form a periodic heterojunctions in very thin layers. Besides, the wurtzite ZnO/MgO alternative layers are observed in the heterostructures. The wurtzite MgO sandwiched between ZnO layers was to stabilize as very thin layers. The dual phase of ZnO/MgO epilayers occurred in different areas within a sample. The interface of these areas provide a good opportunity to solve the orientation relationship between wurtzite structure and rock-salt structure, which has the same results as that derived in the (10-10)-oriented ZnO/MgO epilayer as: (10-10)wurtzite//(100)rock-salt and <1-213>wurtzite ~//<011>rock-salt. In addition, the band gap engineering by the present process has narrowed down the energy to 4.5 eV, i.e. extending toward lower UV region.
目次 Table of Contents
Dissertation Examination Report i
Acknowledgement ii
中文摘要 iv
English Abstract vi
Contents ix
List of Tables xiv
List of Figures xvi
List of Abbreviations xxvi
List of Symbols xxviii
Chapter I Introduction and Motivation 1
1.1 Introduction 1
1.2 Organization of the dissertation 4
Chapter II Literature Review 6
2.1 Zinc Oxide (ZnO) 6
2.1.1 Zinc blende structure ZnO 7
2.1.2 Epitaxial growth of zinc blende ZnO 8
2.1.3 Rock-salt structure ZnO 8
2.2 Magnesium oxide (MgO) 10
2.3 ZnxMg1-xO (ZMO) Alloy 11
2.3.1 Epitaxial growth of rock-salt structure ZMO 12
2.3.2 Stability of rock-salt structure ZMO 14
2.4 Epitaxial growth mechanism 16
2.4.1 Nucleation and growth modes 17
2.4.2 Lattice mismatch between epitaxial films and substrates 20
2.4.3 Lattice mismatch and the growth model 20
2.4.4 Growth modes and kinetic considerations 22
2.4.5 Critical thickness 23
2.5 Molecular Beam Epitaxy (MBE) 24
2.5.1 Introduction of MBE 24
2.5.2 MBE system 25
2.5.3 Conditions in MBE 27
2.5.4 Growth mechanisms in MBE 29
2.6 Optical and electrical properties of rock-salt ZnO/ZnxMg1-xO 30
2.6.1 Band gap of rock-salt ZnO 31
2.6.2 Band gap of rock-salt ZnxMg1-xO 33
2.6.3 Band gap of rock-salt ZnO/ZnxMg1-xO heterostructures 34
2.6.4 Electrical properties of rock-salt ZnO/ZnxMg1-xO 35
Chapter III Experimental Procedures 38
3.1 Substrate preparation 38
3.2 Growth parameters 39
3.2.1 Growth of SL samples 39
3.2.2 Growth of ML (ZnO) samples 39
3.2.3 Growth of Heterostructure samples 40
3.3 Material Characterization 40
3.3.1 Composition 40
3.3.2 Surface Morphology 42
3.3.3 Crystal Structure 42
3.3.4 Microstructure 46
3.3.5 Optical properties 46
3.3.6 Electrical properties 48
Chapter IV Epitaxial growth of ZMO/ZnO thin films 51
4.1 Substrate pretreatment 51
4.2 Growth of SL and ML samples at 600 oC 52
4.2.1 Surface morphology 52
4.2.2 Crystal structure and orientation relationship 53
4.2.3 Microstructure and Defects 55
4.3 Epilayer growth of single-layer ZMO at 400 oC 58
4.3.1 Composition 58
4.3.2 Surface morphology 59
4.3.3 Crystal structure and orientation relationship 60
4.3.4 Microstructure 61
4.3.5 Strain relaxation 64
4.4 Optical and electrical properties of ZMO/ZnO epilayer 66
4.4.1 Optical properties 66
4.4.2 Electrical properties 68
4.5 Discussion 70
4.5.1 MBE growth of RS type ZMO films 70
4.5.2 Characteristics of RS type ZnO/ZMO epilayer 74
4.5.3 Stability of the RS type ZMO 75
4.5.4 Characteristics of mixed ZMO films 80
4.5.5 WZ ZnO epilayer 81
4.6 Conclusions 82
Chapter V Epitaxial growth of ZMO/ZnO heterostructures 84
5.1 Epitaxial growth of ZMO/ZnO heterostructures 84
5.1.1 In-situ RHEED pattern 85
5.1.2 Surface morphology 86
5.2 Microstructure analysis of ZMO/ZnO heterostructures 88
5.2.1 Composition 89
5.2.2 Crystal structure 89
5.2.3 Phase identification 90
5.2.4 Microstructure 92
5.2.5 Periodicity and thickness in the heterostructures 96
5.3 Simulations of the real-space energy band structure of ZMO/ZnO heterostructure 97
5.4 Optical and electrical properties of ZMO/ZnO heterostructure 100
5.4.1 Optical properties 100
5.4.2 Electrical properties 106
5.5 Discussion 107
5.5.1 RS type ZnO and WZ type of MgO 107
5.5.2 Diffusion in heterostructure 109
5.5.3 Heterostructure growth 110
5.5.4 Band gap energy and transition energy 111
5.5.5 Growth rate 112
5.5.6 Phase transformation 112
5.6 Conclusions 114
Chapter VI Conclusions and Future Prospects 115
6.1 Conclusions 115
References 117
List of Publications and Honors 210
參考文獻 References
1. M. Fox, Optical Properties of Solids, Oxford University Press, (2001).
2. S. O. Kasap, Principles of Electronic Materials and Devices, 3rd edn, McGraw-Hill Education, (2006) 543.
3. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes”, Appl. Phys. Lett. 67 (1995) 1868.
4. R. J. Molnar, R. Singh, and T. D. Moustakas, “Blue‐violet light emitting gallium nitride p‐n junctions grown by electron cyclotron resonance‐assisted molecular beam epitaxy”, Appl. Phys. Lett. 66 (1995) 268.
5. C. Huh, K.-S. Lee, E.-J. Kang, and S.-J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys. 93 (2003) 9383.
6. J. Edmond, A. Abare, M. Bergman, J. Bharathan, K. L. Bunker, D. Emerson, K. Haberern, J. Ibbetson, M. Leung, P. Russel, and D. Slater, “High efficiency GaN-based LEDs and lasers on SiC”, J. Cryst. Growth 272 (2004) 242.
7. X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, “Blue and near-ultraviolet light-emitting diodes on free-standing GaN substrates”, Appl. Phys. Lett. 84 (2004) 4313.
8. R. F. Service, “Will UV Lasers beat the blues?”, Science 276 (1997) 895.
9. A. Tsukazaki, A. Ohtomo., T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO”, Nature Materials 4 (2005) 42.
10. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98 (2005) 041301.
11. V. L. Solozhenko, A. N. Baranov, and V. Z. Turkevich, “High-pressure formation of MgxZn1-xO solid solutions with rock salt structure”, Solid State Commun. 138 (2006) 534.
12. Ü. Özgür and H. Morkoç, “Zinc Oxide-Fundamentals, Materials and Device Technology”, Wiley-VCH, (2009).
13. S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Jpn. J. Appl. Phys. 30 (1991) L1705.
14. I. Ohkubo, A. Ohtomo, T. Ohnishi, Y. Mastumoto, H. Koinuma, and M. Kawasaki, “In-plane and polar orientations of ZnO thin films grown on atomically flat sapphire”, Surf. Sci. 443 (1999) L1043.
15. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”, Nature 406 (2000) 865.
16. R. Armitage and H. Hirayama, “M-plane GaN grown on m-sapphire by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 92 (2008) 092121.
17. M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, “Structural characterization of nonpolar (110) a-plane GaN thin films grown on (102) r-plane sapphire”, Appl. Phys. Lett. 81 (2002) 469.
18. M. M. C. Chou, D. R. Hang, H. Kalisch, R. H. Jansen, Y. Dikme, Michael Heuken, and G. P. Yablonskii, “Crystal growth and properties of LiAlO2 and nonpolar GaN on LiAlO2 substrate”, J. Appl. Phys. 101 (2007) 103106.
19. R. Schuber, M. M. C. Chou, and D. M. Schaadt, “Growth of m-plane GaN on (100) LiGaO2 by plasma-assisted molecular beam epitaxy”, Thin Solid Films 518 (2010) 6773.
20. T. Moriyama and S. Fujita, “Growth behavior of nonpolar ZnO on m-plane and r-plane sapphire by metalorganic vapor phase epitaxy”, Jpn. J. Appl. Phys. 44 (2005) 7919.
22. P. Pant, J. D. Budai, and J. Narayan, “Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation”, Acta Mater. 58 (2010) 1097.
22. M. M. C. Chou, L. Chang, H. -Y. Chung, T. -H. Huang, J. -J. Wu, and C. -W. Chen, “Growth and characterization of nonpolar ZnO (10"1" ̅0) epitaxial film on -LiAlO2 substrate by chemical vapor deposition”, J. Crys. Growth 308 (2007) 412.
23. T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, and R. Zhang, “Growth and characterization of ZnO films on (0 01), (10 0) and (010) LiGaO2 substrates”, J. Crys. Growth 310 (2008) 3144.
24. X. H. Wei, Y. R. Li, W. J. Jie, J. L. Tang, H. Z. Zeng, W. Huang, Y. Zhang and J. Zhu, “Heteroepitaxial growth of ZnO on perovskite surfaces”, J. Phys. D: Appl. Phys. 40 (2007) 7502.
25. Y. -C. Liang, “Growth and characterization of nonpolar a-plane ZnO films on perovskite oxides with thin homointerlayer”, J. Alloy Compd 508 (2010) 158.
26. M. J. Paisley, Z. Sitar, J. B. Posthill, and R. F. Davis, “Growth of cubic phase gallium nitride by modified molecularbeam epitaxy”, J. Vac. Sci. Technol. A 7 (1989) 701.
27. A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Y. -W. Ok, and T. -Y. Seong, “Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers”, Appl. Phys. Lett. 76 (2000) 550.
28. K. H. Ploog, O. Brandt, H. Yang, and A. Trampert, “MBE growth and characteristics of cubic GaN”, Thin Solid Films 306 (1997) 231.
29. S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D. J. Smith, W. J. Choyke, H. Morkoç, “An investigation of the properties of cubic GaN grown on GaAs by plasma assisted molecular-beam epitaxy”, J. Vac. Sci. Technol. B 9 (1991) 1924.
30. T. Lei, T. D. Moustakas, R. J. Graham, Y. He, and S. J. Berkowitz, “Epitaxial growth and characterization of zincblende gallium nitride on (001) silicon”, J. Appl. Phys. 71 (1992) 4933.
31. R. C. Powell, N. E. Lee, Y. W. Kim, and J. E. Greene, “Heteroepitaxial wurtzite and zincblende structure GaN grown by reactive ion molecularbeam epitaxy: Growth kinetics, microstructure, and properties”, J. Appl. Phys. 73 (1993) 189.
32. H. Liu, A. C. Frenkel, J. G. Kim, and R. M. Park, “Growth of zinc blende GaN on β-SiC coated (001) Si by molecular beam epitaxy using a radio frequency plasma discharge, nitrogen free radical source”, J. Appl. Phys. 74 (1993) 6124.
33. B. Daudin, G. Feuillet, J. Hübner, Y. Samson, F. Widmann, A. Philippe, C. Bru-Chevallier, G. Guillot, E. Bustarret, G. Bentoumi and A. Deneuville, “How to grow cubic GaN with low hexagonal phase content on (001) SiC by molecular beam epitaxy”, J. Appl. Phys. 84 (1998) 2295.
34. T. Kogure and Y. Bando, “Formation of ZnO nanocrystallites on ZnS surfaces by electron beam irradiation”, J. Electron Microsc. 47 (1998) 135.
35. M. Posternak, A. Baldereschi, A. Catellani, and R. Resta, “Ab initio study of the spontaneous polarization of pyroelectric BeO”, Phys. Rev. Lett. 64 (1990) 1777.
36. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys”, J. Appl. Phys. 89 (2001) 5815.
37. R. Klann, O. Brandt, H. Yang, H. T. Grahn, and K. H. Ploog, “Optical gain in optically pumped cubic GaN at room temperature” Appl. Phys. Lett. 70 (1997) 1076.
38. A. Ashrafi and C. Jagadish , “Review of zincblende ZnO: Stability of metastable ZnO phases” J. Appl. Phys. 102 (2007) 071101.
39. S. Q. Wang, “A comparative first-principles study of ZnS and ZnO in zinc blende structure”, J. Crys. Growth 287 (2006) 185.
40. C. Fan, Q. Wang, L. Li, S. Zhang, Y. Zhu, X. Zhang, M. Ma, R. Liu, and W. Wang, “Bulk moduli of wurtzite, zinc-blende, and rocksalt phases of ZnO from chemical bond method and density functional theory”, Appl. Phys. Lett. 92 (2008) 101917.
41. G. H. Lee, T. Kawazoea, and M. Ohtsua, “Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate”, Solid State Commun. 124 (2002) 163.
42. F. Z. Aoumeur, K. Benkabou, and B. Belgoumene, “Structural and dynamical properties of ZnO in zinc-blende and rocksalt phases”, Physica B. 337 (2003) 292.
43. C.-Y. Yeh, S.-H. Wei, and A. Zunger, “Relationships between the band gaps of the zinc-blende and wurtzite modifications of semiconductors”, Phys. Rev. B 50 (1994) 2715.
44. C. H. Bates, W. B. White, and R. Roy, “New high-pressure polymorph of zinc oxide”, Science 137 (1962) 993.
45. S. Desgreniers, “High-density phases of ZnO: Structural and compressive parameters”, Phys. Rev. B 58 (1998) 14102.
46. L. Gerward, and J. S. Olsen, “The high-pressure phase of zincite”, J. Synchrotron Radiat. 2 (1995) 233.
47. H. Karzel, W. Potzel, M. K€offerlein, W. Schiessl, M. Steiner, U. Hiller, G. M. Kalvius, D. W. Mitchell, T. P. Das, P. Blaha, K. Schwarz, and M. P. Pasternak, “Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures”, Phys. Rev. B 53 (1996), 11425.
48. J. M. Recio, M. A. Blanco, V. Luaña, R. Pandey L. Gerward, and J. S. Olsen, “Compressibility of the high-pressure rocksalt phase of ZnO”, Phys. Rev. B 58 (1998) 8949.
49. F. Decremps, J. Zhang, and R. C. Liebermann, “New phase boundary and high-pressure thermoelasticity of ZnO”, Europhys. Lett. 51 (2000) 268.
50. R. W. G. Wyckoff, “Crystal structure”, Vol. 1, Inter-science Publishers (John Wiley), New York (1965).
51. O. E. Taurian, M. Springborg, and N. E. Christensen, “Self-consistent electronic structures of MgO and SrO”, Solid State Commun. 55 (1985) 351.
52. D. M. Roessler and W. C. Walker, “Electronic spectrum and ultraviolet optical properties of crystalline MgO”, Phys. Rev. 159 (1967) 733.
53. M. W. Williams and E. T. Arakawa, “Optical properties of single‐crystal magnesium oxide”, J. Appl. Phys. 386 (1967) 5272.
54. C. Duriez, C. Chapon, C.R. Henry, and J.M. Rickard, “Structural characterization of MgO (100) surfaces”, Surf. Sci. 230 (1990) 123.
55. M. R. Welton-Cookt and W. Berndt, “A LEED study of the MgO (100) surface: identification of a finite rumple”, J. Phys. C: Solid State Phys. 15 (1982) 5691.
56. S. Limpijumnong and S. Jungthawan, “First-principles study of the wurtzite-to-rocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier”, Phys. Rev. B 70 (2004) 054104.
57. R. Schmidt, B. Rheinländer, M. Schubert, D. Spemann, T. Butz, J. Lenzner, E. M. Kaidashev, M. Lorenz, A. Rahm, H. C. Semmelhack, and M. Grundmann, “Dielectric functions (1 to 5 eV) of wurtzite MgxZn1−xO (x⩽0.29) thin films”, Appl. Phys. Lett. 82 (2003) 2260.
58. J. F. Sarver, Fred L. Katnack, and F. A. Hummel, “Phase equilibria and manganese‐activated fluorescence in the system Zn3(PO4)2-Mg3(PO4) 2”, J. Electrochem. Soc. 106 (1959) 960.
59. Y. -S. Kim, E. C. Lee, and K. J. Chang, “Stability of wurtzite and rocksalt MgxZn1−xO alloys”, J. Korean Phys.Soc. 39 (2001) 92.
60. M. Sanati, G. L. W. Hart, and A. Zunger, “Ordering tendencies in octahedral MgO-ZnO alloys”, Phys. Rev. B 68 (2003) 155210.
61. I. V. Maznichenko, A. Ernst, M. Bouhassoune, J. Henk, M. Däne, M. Lüders, P. Bruno, W. Hergert, I. Mertig, Z. Szotek, and W. M. Temmerman, “Structural phase transitions and fundamental band gaps of MgxZn1−xO alloys from first principles”, Phys. Rev. B 80 (2009) 144101.
62. M. Kunisu, I. Tanaka, T. Yamamoto, T. Suga, and T. Mizoguchi, “The formation of a rock-salt type ZnO thin film by low-level alloying with MgO”, J. Phys.: Condens. Matter 16 (2004) 3801.
63. L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, B. H. Li, Z. Z. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, J. Y. Zhang, “Epitaxial growth of high quality cubic MgZnO films on MgO substrate”, J. Crys. Growth 312 (2010) 875.
64. C. -Y. J. Lu, T. Yan, L. Chang, K. H. Ploog, M. M. C. Chou, C. -M. Chiang, “Rock-salt Zn1−xMgxO epilayer having high Zn content grown on MgO (100) substrate by plasma-assisted molecular beam epitaxy”, J. Crys. Growth 378 (2013) 168.
65. N. B. Chen and C. H. Sui, “Recent progress in research on MgxZn1–xO alloys”, Mater. Sci. Eng. B 126 (2006) 16.
66. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, and H. Koinuma, “MgxZn1−xO as a II–VI widegap semiconductor alloy”, Appl. Phys. Lett. 72 (1998) 2466.
67. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1−xO alloy films”, Appl. Phys. Lett., 80 (2002) 1529.
68. J. Narayan, A. K. Sharma, A. Kvit, C. Jin, J. F. Muth, and O. W. Holland, “Novel cubic ZnxMg1−xO epitaxial heterostructures on Si (100) substrates”, Solid State Commun. 121 (2001) 9.
69. Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M. W. Cho, T. Yao, and A. Setiawan, “Structural variation of cubic and hexagonal MgxZn1-xO layers grown on MgO(111)/c-sapphire”, J. Appl. Phys. 98 (2005) 054911.
70. H. L. Liang, Z. X. Mei, Z. L. Liu, Y. Guo, A. Y. Azarov, A. Y. Kuznetsov, A. Hallen, and X. L. Du, “Growth of single-phase Mg0.3Zn0.7O films suitable for solar-blind optical devices on RS-MgO substrates”, Thin Solid Films 520 (2011) 1705.
71. W. Yang, R. D. Vispute, S. Choopun, R. P. Sharma, T. Venkatesan, and H. Shen, “Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films”, Appl. Phys. Lett. 78 (2001) 2787.
72. Y. C. Lin, C. L. Tseng, W. C. Chou, C. H. Chia, T. C. Han, and J. L. Shen, “Lattice dynamics and crystalline properties of wurtzite Zn1-xMgxO powders under high pressure”, J. Phys. Chem. C 115 (2011) 19962.
73. N. B. Chen, H. Z. Wu, D. J. Qiu, T. N. Xu, J. Chen and W. Z. Shen, “Temperature-dependent optical properties of hexagonal and cubic MgxZn1−xO thin-film alloys”, J. Phys.: Condens. Matter 16 (2004) 2973.
74. J. E. Ayers, “Heteroepitaxy of semiconductor”, CRC press, (2006).
75. A. Trampert and K. H. Ploog, “Heteroepitaxy of large-misfit systems: Role of coincidence lattice”, Crys. Res. Technol. 35 (2000) 793.
76. J. Venables, “Introduction to surface and thin film processes”, Cambridge University Press, (2000).
77. K. N. Tu, J. W. Mayer, and L. C. Feldman, “Electronic thin film science: for electrical engineers and materials scientists”, Macmillan, (1992).
78. I. Daruka and A. L. Barabási, “Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium”, Phys. Rev. Lett. 79 (1997) 3708.
79. J. Tersoff, A. W. Denier van der Gon, and R. M. Tromp, “Critical island size for layer-by-layer growth”, Phys. Rev. Lett. 72 (1994) 266.
80. J. W. Matthews, S. Mader and T. B. Light, “Accommodation of misfit across the interface between crystals of semiconducting elements or compounds”, J. Appl. Phys. 41 (1970) 3800.
81. R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained‐layer heterostructures”, Appl. Phys. Lett. 47 (1985) 322.
82. M. A. Herman and H. Sitter, Molecular beam epitaxy: Fundamentals and current Status, 2nd edn, Springer, (1996).
83. C. A. Bishop, “Vacuum deposition onto webs, films, and foils”, William Andrew, (2007).
84. R. T. Bayard and D. Alpert, “Extension of the low pressure range of the ionization gauge”, Review of Scientific Instruments 21 (1950) 571.
85. W. H. King, “Piezoelectric sorption detector”, Anal. Chem. 36 (1964) 1735.
86. E. A. Wood, “Vocabulary of surface crystallography”, J. Appl. Phys. 35 (1964) 1306.
87. W. Braun, “Applied RHEED: Reflection high-energy electron diffraction during crystal growth”, Springer (1999).
88. M. A. Herman and H. Sitter, “Molecular beam epitaxy: Fundamentals and current status”, 2nd edn, Springer, (1996).
89. Ł. Gelczuk and M. Dąbrowska-szata, “Modification of energy bandgap in lattice mismatched InGaAs/GaAs heterostructures”, Optica Applicata 39 (2009) 845.
90. W. Schröter, H. Hedemmann, V. Kveder, F. Riedel, “Measurements of energy spectra of extended defects”, Journal of Physics: Condensed Matter 14 (2002) 13047.
91. G. L Bir and G. Pikus, “Symmetry and strain-induced effects in semiconductors”, Wiley, New York (1974).
92. H. Q. Ni, Y. F. Lu, and Z. M. Ren, “Quasiparticle band structures of wurtzite and rock-salt ZnO”, J. Appl. Phys. 91 (2002) 1339.
93. J. E. Jaffe, Ravindra Pandey, and A. B. Kunz, “Electronic structure of the rocksalt-structure semiconductors ZnO and CdO”, Phys. Rev. B 43 (1991) 14030.
94. A. Segura, J. A. Sans, F. J. Manjón, A. Muñoz, and M. J. Herrera-Cabrera, “Optical properties and electronic structure of rock-salt ZnO under pressure”, Appl. Phys. Lett. 83 (2003) 278.
95. J. A. Sans, A. Segura, J. Manjón, B. Marí, A. Muñoz, and M. J. Herrera-Cabrera, “Optical properties of wurtzite and rock-salt ZnO under pressure”, Microelectron. J. 36 (2005) 928.
96. H. Dixit, R. Saniz, D. Lamoen and B. Partoens, “The quasiparticle band structure of zincblende and rocksalt ZnO”, J. Phys.: Condens. Matter 22 (2010) 125505.
97. P. Yu, D. -J. Qiu, H. -Z. Wu, “Ultraviolet and deep-ultraviolet emissions from c-MgxZn1-xO/MgO ultrathin multilayer heterostructures", Chin. Phys. Lett. 22 (2005) 2688.
98. L. Wang, H. Y. Xu, C. Zhang, X.H. Li, Y.C. Liu, X. T. Zhang, Y. Tao, Y. Huang, D. L. Chen, “MgZnO/MgO strained multiple-quantum-well nanocolumnar films: Stress-induced structural transition and deep ultraviolet emission”, J. Alloys Compd. 513 (2012) 399.
99. P. Bhattacharya, “Semiconductor Optoelectronic Devices”, Prentice Hall, Englewood Cliffs, NJ, (1994).
100. E. Monroy, F. Calle, E. Muñoz, F. Omnès, “AlGaN metal–semiconductor–metal photodiodes”, Appl. Phys. Lett. 74 (1999) 3401.
101. S. S. Hullavarad, N. V. Hullavarad, D. E. Pugel, S. Dhar, I. Takeuchi, T. Venkatesan and R. D. Vispute, “Homo- and hetero-epitaxial growth of hexagonal and cubic MgxZn1-xO alloy thin films by pulsed laser deposition technique”, J. Phys. D: Appl. Phys. 40 (2007) 4887.
102. L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, and J. Y. Zhang, “MgZnO metal-semiconductor-metal structured solar-blind photodetector with fast response”, Solid State Communications 149 (2009) 2021.
103. L. K. Wang, Z. G. Ju, J. Y. Zhang, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, and C. X. Shan, “Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices”, Appl. Phys. Lett. 95 (2009) 131113.
104. S. Han, J. Zhang, Z. Zhang, Y. Zhao, L. Wang, J. Zheng, B. Yao, D. Zhao, and D. Shen, “Mg0.58Zn0.42O thin films on MgO substrates with MgO buffer layer”, ACS Appl. Mater. Interfaces 2 (2010) 1918.
105. X. Xie, Z. Zhang, B. Li, S. Wang, M. Jiang, C. Shan, D. Zhao, H. Chen, and D. Shen, “Enhanced solar-blind responsivity of photo detectors based on cubic MgZnO films via gallium doping”, Optics Express 22 (2014) 246.
106. G. Y. Zhang, Y. Z. Tong, Z. J. Yang, S. X. Jin, J. Li, and Z. Z. Gan, “Relationship of background carrier concentration and defects in GaN grown by metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 71 (1997) 3376.
107. X. Chen and J. Kang, “The structural properties of wurtzite and rocksalt MgxZn1−xO”, Semicond. Sci. Technol. 23 (2008) 025008.
108. A. A. Kelly and K. M. Knowles, “Crystallography and crystal defects”, 2nd Edition, Wiley & Sons, Ltd, (2012).
109. Y. -T. Tu, “The study of formation mechanism and stability of rocksalt Structure MgZnO Epilayer”, NSYSU Master Thesis (2014).
110. S. -Y. Chen, P. Shen, and J. Jiang, “Polymorphic transformation of dense ZnO nanoparticles: Implications for chair/boat-type Peierls distortions of AB semiconductor”, J. Chem. Phys. 121 (2004) 11309.
111. S. Miyoshi, K. Onabe, N. Ohkouchi, H. Yaguchi, R. Ito, S. Fukatsu and Y. Shiraki, “MOVPE growth of cubic GaN on GaAs using dimethyihydrazine”, J. Crys. Growth, 124 (1992) 439.
112. T. Makino, C. H. Chia, N. T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates”, Appl. Phys. Lett. 77 (2000) 975.
113. S. Datta, I. M. Boswarva, and D. B. Holt, “Cathodoluminescence in deformed MgO crystal”, J. Phys. Chem. Solids 40 (1979) 567-571.
114. S. J. Pennycook and L. M. Brown, “Cathodoluminescence at dislocations in divalent oxides”, J. Lumin. 18/19 (1979) 905.
115. Q. Yan, P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, M. Scheffer, and C. G. Van de Walle, “Strain effects and band parameters in MgO, ZnO, and CdO”, Appl. Phys. Lett. 101 (2012) 152105.
116. T.-H. Huang, W.-H. Lin, T. Yan, J.-J. Wu, L. Chang, M. M. C. Chou, U. Jahn, and K. H. Ploog, “Strain relaxation, defects and cathodoluminescence of m-Plane ZnO and Zn0.8Mg0.2O epilayers grown on γ-LiAlO2 substrate”, ECS J. Solid State Sci. Technol. 2 (2013) 338.
117. B. J. Wuensch and T. Vasilos, “Diffusion of Zn2+ in Single‐Crystal MgO”, J. Chem. Phys. 42 (1965) 4113.
118. L. L. Yang, Q. X. Zhao, G. Z. Xingc, D. D. Wang, T. Wu, M. Willander, I. Ivanov, and J. H. Yang, “A SIMS study on Mg diffusion in Zn0.94Mg0.06O/ZnO heterostructures grown by metal organic chemical vapor deposition”, Appl. Surf. Sci. 257 (2011) 8629.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code