Responsive image
博碩士論文 etd-0420116-143801 詳細資訊
Title page for etd-0420116-143801
論文名稱
Title
甘藷SPDSS1蛋白質及蛋白酶體抑制劑MG132延緩乙烯及鹽分逆境誘導的葉片老化
Sweet potato SPDSS1 protein and proteasome inhibitor MG132 attenuate ethephon and NaCl-induced leaf senescence
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-13
繳交日期
Date of Submission
2016-05-23
關鍵字
Keywords
葉片老化、鹽分逆境、MG132、蛋白酶體、甘藷SPDSS1、益收生長素
Leaf senescence, Ethephon, MG132, Proteasome, Sweet potato SPDSS1, NaCl stress
統計
Statistics
本論文已被瀏覽 5679 次,被下載 23
The thesis/dissertation has been browsed 5679 times, has been downloaded 23 times.
中文摘要
泛素蛋白酶體系統(UPS)是廣泛地存在於高等植物中,其參與在植物生長發育及抵抗環境逆境過程,然而proteasome在甘藷葉片老化中所扮演的角色尚未被釐清。已知在先前的研究中證實ethephon (ethylene-releasing compound)及NaCl逆境下會皆能促進甘藷葉片的老化。在本研究結果中分別在ethephon誘導三天及NaCl誘導六、九天與對照組相比都可以顯著促進葉片黃化,包括葉綠素降解、光合作用效率降低、增加NO/H2O2/MDA的含量及老化相關基因的表現,而藉由蛋白酶體抑制劑 MG132前處理能抑制在ethephon及NaCl逆境下包括(1) ethephon及NaCl分別在4小時及於24小時所產生的H2O2和NO二次信息因子、(2)訊息傳遞基因leucine-rich repeat receptor kinase SPLRR/calmodulin SPCAM/ethylene response factor SPERF1 6小時內的表現及(3)ethephon及NaCl分別在1天及 3天處理下乙烯合成相關基因ACC oxidase SPACO表現,減緩葉片老化。本實驗室從甘藷葉片中選殖出deleted in split hand/split foot DSS1-like protein SPDSS1全長,根據先前阿拉伯芥的研究指出其可能為26S proteasome的subunit。透過ethephon及NaCl誘導下葉片在老化前期可發現SPDSS1基因就有顯著的表現。而在外加SPDSS1融合蛋白前處理下可以延緩ethephon和NaCl所誘導的甘藷葉片老化,如果融合蛋白經失活處理(95℃ 5分鐘)後則會反轉延緩葉片老化現象,根據上述結果結論,不管是蛋白酶體抑制劑 MG132或SPDSS1融合蛋白都能延緩ethephon和NaCl所誘導的葉片老化,也建議26S proteasome在ethephon及NaCl誘導甘藷葉片老化過程扮演重要的角色。
Abstract
Ubiquitin-proteasome system widely exists in higher plants, and has been reported to be associated with plant development and stress responses. The role of proteasomes in association with sweet potato leaf senescence mostly remains unclear. Ethephon, an ethylene-releasing compound, and NaCl stress have been demonstrated to promote leaf senescence in sweet potato. Significant changes including morphological leaf yellowing reduction of chlorophyll/Fv/Fm contents, elevation of nitric oxide (NO)/H2O2/malodialdehyde (MDA) levels, and promotion of senescence-associated gene expression were observed in ethephon-treated leaves on day 3 and NaCl-treated leaves on days 6 and 9, respectively, as compared to the untreated control. Both ethephon and NaCl stress-mediated effects were all alleviated by proteasome inhibitor MG132. Components induced by ethephon and NaCl, including (1) generation of H2O2 and NO second signal within 6 h for ethephon and 24 h for NaCl, (2) induction of leucine-rich repeat receptor kinase SPLRR/calmodulin SPCAM/ethylene response factor SPERF1 of signal transduction pathway within 6 h, and (3) expression of ACC oxidase SPACO of ethylene biosynthesis pathway starting from day 1 for ethephon and day 3 for NaCl, were all repressed by MG132 pretreatment and also correlated with the attenuation of induced leaf senescence. In our laboratory, a full-length cDNA SPDSS1 encoding a putative deleted in the split hand/split foot (DSS1)-like protein has been cloned from sweet potato leaves, which is a candidate subunit of 26S proteasome according to the previous report in Arabidopsis. Both ethephon and NaCl enhanced SPDSS1 expression level earlier than the induced leaf senescence. Exogenous SPDSS1 fusion protein also delayed ethephon and NaCl-induced leaf senescence in sweet potato, which could be reversed by boil pretreatment (95℃ for 5 min) of SPDSS1 fusion protein. Based on these results we conclude for the first time that both proteasome inhibitor MG132 and SPDSS1 fusion protein mitigate ethephon and NaCl-induced leaf senescence, suggesting a novel role of the 26S proteasome in association with ethephon and NaCl-induced leaf senescence in sweet potato.
目次 Table of Contents
目 錄

論文審定書.................................................................................................i
誌謝..............................................................................................................ii
中文摘要………………………...………………...……….…...…….…iii
英文摘要……………………......…………..……………......…..………iv
目錄…...…………………………………………………….…..…….…...v
圖次……………………………..………….....…….……....………......ix
縮寫表......................................................................................................xiii
壹、 緒論………………………..……………………….………………1
甘藷.............…......………………………………………………1
葉片老化……………….....………………………………………1
乙烯訊息傳導途徑和葉片老化………...........…………………..2
鹽分逆境誘導的葉片老化…………........………………………4
Ubiquitin-proteasome system…………………...........…………...6
DSS1 (deleted in split hand/split foot)…………………………..9
甘藷葉片老化研究…………………......……………………….10
研究目的 (Specific aims)…..………………………………….11
貳、 研究材料和方法…………......………………………...………...12
(一) 實驗材料……………..…………………………..……………..12
甘藷………………………………………..………...12
基因………………………………………………..…………...12
實驗藥品……………………………..…………….……………13
(二) 實驗方法…………………………..………………..……………14
實驗流程圖..........................………..……………..…………….14
Ethephon處理………………………..……………….................15
NaCl處理...................................………..……………………….15
Effector 或 inhibitor前處理……….....…..…………………….16
葉片外觀型態...............................................................................19
葉綠素含量測定……………………………..…….....................19
Fv/Fm 測量…………………….…………………...………......20
甘藷SPDSS1表現載體構築、融合蛋白表現及純化………..…20
重組SPDSS1表現載體構築…………………...........……….....20
SPDSS1融合蛋白表現.................................................................23
蛋白質濃度測定............…….......................................................23
SDS-PAGE……………………………….......………………….24
SPDSS1融合蛋白純化………………..………………………...25
DAB染色…...........……………………..……………………….25
H2O2含量測定………….……………..………………………...26
NO含量測定………………………..…………………………...27
MDA含量測定.............................................................................28
甘藷相關基因表現分析...............................................................29
RNA萃取......................................................................................29
RT-PCR反應................................................................................30
PCR...............................................................................................31
甘藷相關基因的primers..............................................................32
參、 結果...................................................................................................35
Part A. 蛋白酶體抑制劑MG132延緩ethephon誘導之葉片老
化...................................................................................................35
Ethephon促進甘藷葉片老化.......................................................35
蛋白酶體抑制劑MG132前處理延緩ethephon誘導之
葉片老化及H2O2/MDA/NO含量的累積....................................35
蛋白酶體抑制劑MG132前處理延緩ethephon誘導之H2O2和
NO二次信息因子產生及葉片老化.............................................37
蛋白酶體抑制劑MG132前處理抑制ethephon可誘導之信息傳
遞因子、乙烯生合成及葉片老化相關基因的表
現...................................................................................................39
Part B. 蛋白酶體抑制劑MG132延緩NaCl誘導之葉片老
化...................................................................................................40
NaCl逆境促進甘藷葉片老化......................................................40
蛋白酶體抑制劑MG132前處理延緩NaCl誘導之葉片老化及
H2O2/MDA/No含量的累積..........................................................41
蛋白酶體抑制劑MG132前處理延緩NaCl誘導之H2O2和NO
二次信息因子產生及葉片老化...................................................42
蛋白酶體抑制劑MG132前處理抑制NaCl可誘導之信息傳遞因
子、乙烯生合成及葉片老化相關基因的表現.............................44
Part C. 甘藷SPDSS1延緩ethephon及NaCl誘導的葉片老化...............45
甘藷SPDSS1基因表現受ethephon及NaCl所誘導...................45
外加SPDSS1融合蛋白延緩ethephon誘導之葉片老化及
H2O2/MDA/NO含量累積.............................................................46
外加SPDSS1融合蛋白延緩NaCl誘導之葉片老化及
H2O2/MDA/NO含量累積.............................................................48
單獨外加SPDSS1融合蛋白並無顯著影響黑暗下誘導之葉片老
化...................................................................................................49
肆、 討論...................................................................................................50
參考文獻...................................................................................................56
參考文獻 References
吳欣黛, (2010). 從甘藷葉片選殖ethephon可誘導之基因與定性分析。國立中山大學 生物科學系研究所,碩士論文。
沈哲宇, (2010).從甘藷老化葉片分子選殖 mitogen-activated protein kinase cDNA 及乙烯訊息傳導探討。國立中山大學 生物科學系研究所,碩士論文。
顏佩勳, (2015). 還原態穀胱苷肽延緩乙烯或NaCl誘導的甘藷葉片老化及可能機制探討。國立中山大學 生物科學系研究所,碩士論文。
賴永昌, (2005). 農作篇 (一), 甘藷。台灣農家要覽增修訂第三版。 57-68
Afiyanti, M. (2015). Study the role of nitric oxide in the modulation of ethephon or NaCl-induced leaf senescence in sweet potato. National Sun Yat-sen University, Biological Sciences, Ph.D.’s Thesys.
Abeles, A. L. (1972). Biochemical Pathway of Stress-induced Ethylene. Plant physiology 50, 496-498.
Alonso, J. M., and Stepanova, A. N. (2004). The ethylene signaling pathway. Science 306, 1513-1515.
Baardseth, P., and Vonelbe, J. H. (1989). Effect of Ethylene, Free Fatty-Acid, and Some Enzyme-Systems on Chlorophyll Degradation. J Food Sci 54, 1361-1363.
Bader, N., and Grune, T. (2006). Protein oxidation and proteolysis. Biological chemistry 387, 1351-1355.
Beers, E. P., Jones, A. M., and Dickerman, A. W. (2004). The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65, 43-58.
Begara-Morales, J. C., Sanchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Perez, C., Lopez-Jaramillo, J., Padilla, M. N., Carreras, A., Corpas, F. J., and Barroso, J. B. (2014). Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. Journal of experimental botany 65, 527-538.
Beyer, E. M., and Morgan, P. W. (1971). Abscission: the role of ethylene modification of auxin transport. Plant physiology 48, 208-212.
Bleecker, A. B., and Patterson, S. E. (1997). Last exit: senescence, abscission, and meristem arrest in Arabidopsis. The Plant cell 9, 1169-1179.
Bonache, S., de la Hoya, M., Gutierrez-Enriquez, S., Tenes, A., Masas, M., Balmana, J., and Diez, O. (2013). Mutation analysis of the SHFM1 gene in breast/ovarian cancer families. Journal of cancer research and clinical oncology 139, 529-532.
Book, A. J., Gladman, N. P., Lee, S. S., Scalf, M., Smith, L. M., and Vierstra, R. D. (2010). Affinity purification of the Arabidopsis 26 S proteasome reveals a diverse array of plant proteolytic complexes. The Journal of biological chemistry 285, 25554-25569.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72, 248-254.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., and Pink, D. (2003). The molecular analysis of leaf senescence--a genomics approach. Plant biotechnology journal 1, 3-22.
Chen, H. J., Hou, W. C., Jane, W. N., and Lin, Y. H. (2000). Isolation and characterization of an isocitrate lyase gene from senescent leaves of sweet potato (Ipomoea batatas cv. Tainong 57). Journal of Plant Physiology 157, 669-676.
Chen, H. J., Hou, W. C., Liu, J. S., Yang, C. Y., Huang, D. J., and Lin, Y. H. (2004). Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves. Journal of experimental botany 55, 825-835.
Chen, H. J., Hou, W. C., Yang, C. Y., Huang, D. J., Liu, J. S., and Lin, Y. H. (2003). Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. Journal of Plant Physiology 160, 547-555.
Chen, H. J., Huang, C. S., Huang, G. J., Chow, T. J., and Lin, Y. H. (2013). NADPH oxidase inhibitor diphenyleneiodonium and reduced glutathione mitigate ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression in sweet potato (Ipomoea batatas). Journal of Plant Physiology 170, 1471-1483.
Chen, H. J., Huang, D. J., Hou, W. C., Liu, J. S., and Lin, Y. H. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of Plant Physiology 163, 863-876.
Chen, H. J., Huang, G. J., Chen, W. S., Su, C. T., Hou, W. C., and Lin, Y. H. (2009). Molecular cloning and expression of a sweet potato cysteine protease SPCP1 from senescent leaves. Bot Stud 50, 159-170.
Chen, H. J., Huang, Y. H., Huang, G. J., Huang, S. S., Chow, T. J., and Lin, Y. H. (2015). Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. J Plant Physiol 180, 1-17.
Chen, H. J., Wu, S. D., Lin, Z. W., Hung, G. J., Lin, Y. H. (2012a). Cloning and characterization of a sweet potato calmodulinSPCAM that participates in ethephon-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. Journal of Plant Physiology 169, 529-541.
Chen, H. J., Lin, Z. W., Huang, G. J., and Lin, Y. H. (2012b). Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. Journal of Plant Physioloy 169, 1892-1902.
Chen, H. J., Su, C. T., Lin, C. H., Huang, G. J., and Lin, Y. H. (2010a). Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. Journal of Plant Physiology 167, 838-847.
Chen, H. J., Tsai, Y. J., Chen, W. S., Huang, G. J., Huang, S. S., and Lin, Y. H. (2010b). Ethephon-mediated effects on leaf senescence are affected by reduced glutathione and EGTA in sweet potato detached leaves. Botanical Studies 51, 171-181.
Chen, L., and Hellmann, H. (2013). Plant E3 ligases: flexible enzymes in a sessile world. Molecular plant 6, 1388-1404.
Chen, Y. F., Shakeel, S. N., Bowers, J., Zhao, X. C., Etheridge, N., and Schaller, G. E. (2007). Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. The Journal of biological chemistry 282, 24752-24758.
Clausen, S., and Apel, K. (1991). Seasonal changes in the concentration of the major storage protein and its mRNA in xylem ray cells of poplar trees. Plant Mol Biol 17, 669-678.
Corn, P. G. (2007). Role of the ubiquitin proteasome system in renal cell carcinoma. BMC biochemistry 8 Suppl 1, S4.
Cui, F., Liu, L., Zhao, Q., Zhang, Z., Li, Q., Lin, B., Wu, Y., Tang, S., and Xie, Q. (2012). Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. The Plant cell 24, 233-244.
Duke, J.A. (1978). The quest for tolerant germplasm.1–61.
Desikan, R., Hancock, J. T., Bright, J., Harrison, J., Weir, L., Hooley, R., and Neill, S. J. (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant physiology 137, 831-834.
Dolan, L. (1997). The role of ethylene in the development of plant form. Journal of experimental botany 48, 201-210.
Dray, E., Siaud, N., Dubois, E., and Doutriaux, M. P. (2006). Interaction between Arabidopsis Brca2 and its partners Rad51, Dmc1, and Dss1. Plant physiology 140, 1059-1069.
Dreher, K., and Callis, J. (2007). Ubiquitin, hormones and biotic stress in plants. Annals of botany 99, 787-822.
Flowers, T. J. (2004). Improving crop salt tolerance. Journal of experimental botany 55, 307-319.
Foreman, J., Demidchik, V., Bothwell, J. H., Mylona, P., Miedema, H., Torres, M. A., Linstead, P., Costa, S., Brownlee, C., and Jones, J. D. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442-446.
Fu, X., Richards, D. E., Ait-Ali, T., Hynes, L. W., Ougham, H., Peng, J., and Harberd, N. P. (2002). Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. The Plant cell 14, 3191-3200.
Garbarino, J. E., Rockhold, D. R., and Belknap, W. R. (1992). Expression of stress-responsive ubiquitin genes in potato tubers. Plant Molecular Biology 20, 235-244.
Genschik, P., Marbach, J., Uze, M., Feuerman, M., Plesse, B., and Fleck, J. (1994). Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 148, 195-202.
Genschik, P., Philipps, G., Gigot, C., and Fleck, J. (1992). Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome alpha subunit from Drosophila. FEBS letters 309, 311-315.
Greenberg, J. T. (1996). Programmed cell death: a way of life for plants. Proceedings of the National Academy of Sciences of the United States of America 93, 12094-12097.
Guo, H., and Ecker, J. R. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115, 667-677.
Hancock, J. T., Desikan, R., and Neill, S. J. (2001). Hydrogen peroxide and nitric oxide in plant defence: Revealing potential targets for oxidative stress tolerance? Biofactors 15, 99-101.
Hanna, J., and Finley, D. (2007). A proteasome for all occasions. FEBS letters 581, 2854-2861.
Hanna, J., Meides, A., Zhang, D. P., and Finley, D. (2007). A ubiquitin stress response induces altered proteasome composition. Cell 129, 747-759.
Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J. (2000). Plant Cellular and Molecular Responses to High Salinity. Annual review of plant physiology and plant molecular biology 51, 463-499.
He, X., and Kermode, A. R. (2010). Programmed Cell Death of the Megagametophyte during Post-germinative Growth of White Spruce (Picea glauca) Seeds is Regulated by Reactive Oxygen Species and the Ubiquitin-mediated Proteolytic System. Plant Cell Physiology 51, 1707-1720.
Hebeler, R., Oeljeklaus, S., Reidegeld, K. A., Eisenacher, M., Stephan, C., Sitek, B., Stuhler, K., Meyer, H. E., Sturre, M. J., Dijkwel, P. P., and Warscheid, B. (2008). Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Molecular & cellular proteomics : MCP 7, 108-120.
Hodges, D. M., and Forney, C. F. (2000). The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. Journal of experimental botany 51, 645-655.
Jaspers, P., and Kangasjarvi, J. (2010). Reactive oxygen species in abiotic stress signaling. Physiologia plantarum 138, 405-413.
Jinn, T. L., Stone, J. M., and Walker, J. C. (2000). HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & development 14, 108-117.
Kendrick, M. D., and Chang, C. (2008). Ethylene signaling: new levels of complexity and regulation. Current opinion in plant biology 11, 479-485.
Kevany, B. M., Tieman, D. M., Taylor, M. G., Cin, V. D., and Klee, H. J. (2007). Ethylene receptor degradation controls the timing of ripening in tomato fruit. The Plant journal : for cell and molecular biology 51, 458-467.
Khan, M., Rozhon, W., and Poppenberger, B. (2014). The Role of Hormones in the Aging of Plants - A Mini-Review. Gerontology 60, 49-55.
Kurepa, J., Toh, E. A., and Smalle, J. A. (2008). 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. The Plant journal : for cell and molecular biology 53, 102-114.
Lee, J. H., Terzaghi, W., and Deng, X. W. (2011). DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant science : an international journal of experimental plant biology 180, 352-357.
Lim, P. O., Kim, H. J., and Nam, H. G. (2007). Leaf senescence. Annual review of plant biology 58, 115-136.
Liu, Y. C., Wu, Y. R., Huang, X. H., Sun, J., and Xie, Q. (2011). AtPUB19, a U-box E3 ubiquitin ligase, negatively regulates abscisic acid and drought responses in Arabidopsis thaliana. Molecular plant 4, 938-946.
Lyzenga, W. J., and Stone, S. L. (2012). Regulation of ethylene biosynthesis through protein degradation. Plant signaling & behavior 7, 1438-1442.
Ma, Y. Y., Lin, H., Chang, F. M., Chang, T. C., Trieu, T., Pridgen, H. I., Zhang Y., Huang, J., Patino-Guzman, K., and Diab, N. (2013). Identification of the deleted in split hand/split foot 1 protein as a novel biomarker for human cervical cancer. Carcinogenesis 34, 68-78.
Makino, A., and Osmond, B. (1991). Effects of Nitrogen Nutrition on Nitrogen Partitioning between Chloroplasts and Mitochondria in Pea and Wheat. Plant physiology 96, 355-362.
McDonald, H. B., and Byers, B. (1997). A proteasome cap subunit required for spindle pole body duplication in yeast. The Journal of cell biology 137, 539-553.
Morgan, P. W., and Drew, M. C. (1997). Ethylene and plant responses to stress. Physiologia plantarum 100, 620-630.
Morimoto, K., Mizoi, J., Qin, F., Kim, J. S., Sato, H., Osakabe, Y., Shinozaki K., and Yamaguchi-Shinozaki, K. (2013). Stabilization of Arabidopsis DREB2A Is Required but Not Sufficient for the Induction of Target Genes under Conditions of Stress. PloS one 8.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment 25, 239-250.
Ortega-Galisteo, A. P., Rodriguez-Serrano, M., Pazmino, D. M., Gupta, D. K., Sandalio, L. M., and Romero-Puertas, M. C. (2012). S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. Journal of experimental botany 63, 2089-2103.
Ouyang, S. Q., Liu, Y. F., Liu, P., Lei, G., He, S. J., Ma, B., Zhang, W. K., Zhang, J. S., and Chen, S. Y. (2010). Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. The Plant journal : for cell and molecular biology 62, 316-329.
Pak, C., and van Doorn, W. G. (2005). Delay of Iris flower senescence by protease inhibitors. The New phytologist 165, 473-480.
Paraskevopoulos, K., Kriegenburg, F., Tatham, M. H., Rosner, H. I., Medina, B., Larsen, I. B., Brandstrup, R., Hardwick, K. G., Hay, R. T., and Kragelund, B. B. (2014). Dss1 is a 26S proteasome ubiquitin receptor. Molecular cell 56, 453-461.
Peng, J., Li, Z., Wen, X., Li, W., Shi, H., Yang, L., Zhu, H., and Guo, H. (2014). Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS genetics 10, e1004664.
Peters, J. M., Franke, W. W., and Kleinschmidt, J. A. (1994). Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. The Journal of biological chemistry 269, 7709-7718.
Pickart, C. M., and Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Current opinion in chemical biology 8, 610-616.
Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 115, 679-689.
Qiao, W. H., Li, C. N., and Fan, L. M. (2014). Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environmental and Experimental Botany 100, 84-93.
Qin, F., Sakuma, Y., Tran, L. S. P., Maruyama, K., Kidokoro, S., Fujita, Y., Fujita, M., Umezawa, T., Sawano, Y., and Miyazono, K. I. (2008). Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. The Plant cell 20, 1693-1707.
Raab, S., Drechsel, G., Zarepour, M., Hartung, W., Koshiba, T., Bittner, F., and Hoth, S. (2009). Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis. The Plant journal : for cell and molecular biology 59, 39-51.
Reinheckel, T., Sitte, N., Ullrich, O., Kuckelkorn, U., Davies, K. J., and Grune, T. (1998). Comparative resistance of the 20S and 26S proteasome to oxidative stress. The Biochemical journal 335 ( Pt 3), 637-642.
Rentel, M. C., Lecourieux, D., Ouaked, F., Usher, S. L., Petersen, L., Okamoto, H., Knight, H., Peck, S. C., Grierson, C. S., Hirt, H., and Knight, M. R. (2004). OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427, 858-861.
Ryu, H., and Cho, Y. G. (2015). Plant hormones in salt stress tolerance. Journal of Plant Biology 58, 147-155.
Sadanandom, A., Bailey, M., Ewan, R., Lee, J., and Nelis, S. (2012). The ubiquitin-proteasome system: central modifier of plant signalling. New Phytologist 196, 13-28.
Sakakibara, H., Taniguchi, M., and Sugiyama, T. (2000). His-Asp phosphorelay signaling: a communication avenue between plants and their environment. Plant molecular biology 42, 273-278.
Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America 103, 18822-18827.
Santner, A., and Estelle, M. (2009). Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071-1078.
Sewelam, N., Kazan, K., Thomas-Hall, S. R., Kidd, B. N., Manners, J. M., and Schenk, P. M. (2013). Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. PloS one 8, e70289.
Solano, R., Stepanova, A., Chao, Q. M., and Ecker, J. R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & development 12, 3703-3714.
Taylor, J., Norbert, W., Michelle, R. W., Jennifer, K. B. (2015). Vegetables and pulses outlook, special article commodity highlight: sweet potatoes. United States Department of Agriculture. Economic Research Service. VGS-355-SA1
Tao, J. J., Chen, H. W., Ma, B., Zhang, W. K., Chen, S. Y., and Zhang, J. S. (2015). The Role of Ethylene in Plants Under Salinity Stress. Frontiers in plant science 6, 1059.
Taylor, C. B., Bariola, P. A., Delcardayre, S. B., Raines, R. T., and Green, P. J. (1993). Rns2 - a Senescence-Associated Rnase of Arabidopsis That Diverged from the S-Rnases before Speciation. Proceedings of the National Academy of Sciences of the United States of America 90, 5118-5122.
Tomko, R. J., and Hochstrasser, M. (2014). The Intrinsically Disordered Sem1 Protein Functions as a Molecular Tether during Proteasome Lid Biogenesis. Molecular cell 53, 433-443.
Van Breusegem, F., and Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant physiology 141, 384-390.
Vierstra, R. D. (2009). The ubiquitin-26S proteasome system at the nexus of plant biology. Nature reviews Molecular cell biology 10, 385-397.
Wan, X. R., Mo, A. Q., Liu, S. A., Yang, L. X., and Li, L. (2011). Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression. Journal of Bioscience and Bioengineering 111, 478-484.
Wang, K. L., Li, H., and Ecker, J. R. (2002). Ethylene biosynthesis and signaling networks. The Plant cell 14 Suppl, S131-151.
Wang, Y., Lin, A., Loake, G. J., and Chu, C. (2013). H2O2-induced leaf cell death and the crosstalk of reactive nitric/oxygen species. Journal of integrative plant biology 55, 202-208.
Wei, S. J., Williams, J. G., Dang, H., Darden, T. A., Betz, B. L., Humble, M. M., Chang, F. M., Trempus, C. S., Johnson, K., Cannon, R. E., and Tennant, R. W. (2008). Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. Journal of molecular biology 383, 693-712.
Wi, S. J., and Park, K. Y. (2002). Antisense expression of carnation cDNA encoding ACC synthase or ACC oxidase enhances polyamine content and abiotic stress tolerance in transgenic tobacco plants. Molecules and cells 13, 209-220.
Xu, F., Meng, T., Li, P., Yu, Y., Cui, Y., Wang, Y., Gong, Q., and Wang, N. N. (2011). A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene. Plant physiology 157, 2131-2153.
Xu, S. L., Rahman, A., Baskin, T. I., and Kieber, J. J. (2008). Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. The Plant cell 20, 3065-3079.
Ye, Y. H., and Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology 10, 755-764.
Yun, B. W., Feechan, A., Yin, M., Saidi, N. B., Le-Bihan, T., Yu, M., Moore, J. W., Kang, J. G., Kwon, E., and Spoel, S. H. (2011). S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478, 264-268.
Zhang, Y., Chang, F. M., Huang, J., Junco, J. J., Maffi, S. K., Pridgen, H. I., Catano, G., Dang, H., Ding, X., and Yang, F. (2014). DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells. Protein & cell 5, 124-140.
Zhao, X. C., and Schaller, G. E. (2004). Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS letters 562, 189-192.
Zhou, G. A., Chang, R. Z., and Qiu, L. J. (2010). Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis. Plant Molecular Biology 72, 357-367.
Zhu, J., Huang, T., and Lombard, J. H. (2007). Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. Journal of vascular research 44, 382-390.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code