Responsive image
博碩士論文 etd-0421114-162933 詳細資訊
Title page for etd-0421114-162933
論文名稱
Title
回收耐龍熱熔排氣之生物及化學洗滌處理
Biological and Chemical Scrubbings of Vented gas from hot-melting operation of recycled nylon plastics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-04-25
繳交日期
Date of Submission
2014-05-21
關鍵字
Keywords
耐龍、生物濾床、次氯酸鈉、揮發性有機物、異味、過氧化氫
volatile organic compounds (VOCs), sodium hypochlorite, nylon, hydrogen peroxide, biofilter, odor control
統計
Statistics
本論文已被瀏覽 5782 次,被下載 873
The thesis/dissertation has been browsed 5782 times, has been downloaded 873 times.
中文摘要
本研究主要目的在探討蛇木屑生物濾床法與次氯酸鈉(NaOCl)串聯鹼性過氧化氫(H2O2)兩段式化學洗滌法,去除回收耐龍熱熔(250oC)造粒過程中,塑料所產生的排氣異味。在研究過程中建立生物濾床與兩段式化學洗滌最佳操作參數,以改善排氣及臭味。
研究分二主題進行:其一利用蛇木屑生物濾床去除耐龍熱熔排氣產生VOCs及異味;另一為利用兩段式化學洗滌去除上述產生VOCs及異味,供試含VOCs及異味氣體樣品在實驗室以烘烤相關回收耐龍膠粒產生。
生物處理實驗設備為一壓克力製生物濾床(14 cmW ×14 cmL ×120 cmH),內填充19.6 L蛇木屑濾料至高度100 cm,氣體為上流式。處理過氣體可直接排放至大氣中或引入至5.2 cm內填充30 g圓柱型活性碳吸附後再排放至大氣中。
生物處理研究結果顯示:在pH 5.5-7.0的操作條件下,氣體空塔停留時間(EBRT)控制在6-12秒,總碳氫化合物(THC)濃度0.65-2.61 mg m-3,有機負荷為0.05-0.85 g m-3 h-1,THC去除效率可達80%。每1000 m3排氣處理費用合計約USD 0.41 (NTD 12.2)。
化學洗滌實驗設備為兩組500 mL洗滌瓶,分別填充300 mL稀釋之次氯酸鈉溶液及300 mL稀釋之鹼性過氧化氫溶液,熱熔氣體注入速率為1 L min-1。
化學洗滌研究結果顯示:在氧化洗滌液有效氯濃度15-95 mg L-1,pH調整在 6.54-10.8之間,氧化洗滌排氣再經以pH值12.0-12.4的35%的過氧化氫之水溶液將氯氣還原,在熱熔氣體揮發性有機物濃度15-28.5 ppm (as methane equivalent)範圍內,去除率可達95%。依試驗結果計算,以洗滌法去除異味。每1000 m3排氣處理藥品(次氯酸鈉、過氧化氫、液鹼)費用合計約USD 0.07 (NTD 2.1 )。本研究化學洗滌方法為有效性和經濟性處理熱熔排氣異味。
Abstract
This study aimed to develop a biotrickling-biofilter process and a two-stage chemical scrubbing process to absorb and oxidize VOCs in vented gas from hot-melt granulation of waste nylon at 250oC as a renewable raw material. The gas contains fumes and volatile organic compounds (VOCs) with unpleasant plastic-burning odors which may arise complaints when smelled by nearby residents.
A pilot-scale biotrickling-biofilter consisting of an acrylic column (14 cm sq. × 120 cm H) was used for the test. The column was initially packed with 19.6 L of prepared fern chips to a height of 100 cm. A 20-L nutrient solution tank with an effective volume of 16 L and a circulation pump with a pumping rate of 10 L min-1 were provided for moistening and nutrition of the biomedia. The bio-treated gas vented from the bio column was either vented to the atmosphere or introduced to a column of 5.2 cm inner diameter packed with 30 g of cylinder-type granular activated carbon (GAC) of 2-3 mm in diameter and length. The GAC was intended to adsorb residual VOCs or odorous compounds from the bio-treated gas.
Results of the biotreatment test indicate that oxygen- and nitrogen-containing hydrocarbons as well as paraffins were major VOCs (volatile organic compounds) emitted from thermal smelting of recycled nylon at 250oC. With operation conditions of media pH of 5.5-7.0, EBRT (empty bed retention time) of 6-12 s, influent THC (total hydrocarbons) concentrations of 0.65-2.61 mg m-3, and volumetric organic loading of 0.05-0.85 g m-3 h-1, the fern chip packed biofilter with nutrients of milk, potassium dihydrogen phosphate, and glucose could achieve an overall THC removal efficiency of around 80%. Burnt odor emitted from the smelting of the recycled nylon could be eliminated by the biofilter. Estimations indicate that for scrubbing 1000 actual cubic meters (Am3 @25oC) of the exhaust gas and the total cost of chemicals and electricity is around US $0.41 (NTD 12.2).
In the chemical scrubbing process, sodium hypochlorite (NaOCl) solutions were used to scrub and oxidize the VOCs and the associated odors from the hot-melting exhaust. An alkaline hydrogen peroxide (H2O2) solution was followed to remove chlorine (Cl2) emitted from the oxidative solution. Laboratory scrubbing bottles with a liquid volume of 300 mL were used with the hot melt gas injected into the system at a rate of 1 L min-1 at 25oC.
Results from the chemical scrubbing tests indicate that by purging the test gas through a solution with available chlorine (Cl2) of 15-95 mg L-1 at an adjusted pH (6.54-10.8), and then through a solution with pH in the range of 12.0-12.4 and 0.35% H2O2, 95% of the VOCs in the range of 15.0-28.5 ppm (expressed as methane equivalent) were removed. The pungent burnt plastic odor in the test gas was almost completely removed. Estimations indicate that it requires around 0.058, 0.0517, and 0.0949 kg of NaOCl solution (12% available Cl2), H2O2 solution (35% H2O2), and sodium hydroxide solution (45% NaOH), respectively, for scrubbing 1000 normal cubic meters (Nm3) of the exhaust gas and the total chemical costs is around US $0.07 (NTD 2.1). This study has developed a new, effective, and economic process for reducing odorous compounds in hot-melt gas.
目次 Table of Contents
謝誌 i
中文摘要 ii
Abstract iv
List of Contents vii
List of Tables x
List of Figures xi
Chapter 1 Introduction 1
Chapter 2 Review of Literatures 4
2.1 Biological processes for odor control 4
2.2 Chemical scrubbing processes for odor control 7
Chapter 3 Material and Methods 10
3.1 Biological treatment 10
3.1.1 Experimental Setup 10
3.1.2 Materials 11
3.1.3 Operation 12
3.1.4 Analysis 14
3.2 Chemical Scrubbings treatment 17
3.2.1 Experimental Setup 17
3.2.2 Materials 19
3.2.3 Analytical 20
Chapter 4 Results and Discussions 23
4.1 Biological treatment 23
4.1.1 VOCs emitted from smelting nylon 23
4.1.2 Performance on THC Elimination 25
4.1.3 Olfactory test 35
4.1.4 Cost estimation for the biological treatment 36
4.2 Chemical Scrubbings treatment 38
4.2.1 Effects of Initial Available Cl2 Concentration on the NMHC Removal 38
4.2.2 GC-MSD Examination 42
4.2.3 Olfactory Test 44
4.2.4 Cl2 Consumption for the NMHC Removal 44
4.2.5 Estimation of Chemical Requirements 45
Chapter 5 Conclusions 48
5.1 Biological treatment 48
5.2 Chemical scrubbing 48
Chapter 6 Suggestions 51
References 52
Appendix 作者簡歷 59
參考文獻 References
Alonso, C.; Suidan, M.T.; Kim, B.R.; Kim, B.J. (1998). Dynamic mathematical model for the biodegradation of VOCs in a biofilter: biomass accumulation study; Environ. Sci. Technol. 32, 3118-3123.
Bluyssen, P.M.; Alblas, M.J.; Tuinman, I.L. (2013). In vitro exposure of human lung cells to emissions of several indoor air sources created in a climate chamber. Sustain. Environ. Res., 23(2), 101-112.
Botalova, O.; Schwarzbauer , J.; Frauenrath, T.; Dsikowitzky, L. (2009). Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Res. 43, 3797-3812.
Cadena, F. and Peters, R.W. (1998). Evaluation of chemical oxidizers for hydrogen sulfide control. JWPCF., 60 (7), 1259-1263.
Chang, S.T.; Chou, M.S.; Chang, H.Y. (2012) Controlling odorous fumes produced by melting recycled polypropylene. Environ. Eng. Sci., 29 (12), 1063-1068.
Cheremisinoff, P. N.; Bethea, R. M.; Hellman, T. M.; Lauren, O. B. (1975). Techniques for industrial odor control. Pollut. Eng., 7, 24.
Chou, M.S.; Wu, S.L. (1998). Bioconversion of dimethylformamide in biofilters; J. Air & Waste Manage. Assoc. 48(4), 306-316.
Chou, M.S.; Li, S.C. (2010). Elimination of MEK in Air Streams by A Biofilter Packed with Fern Chips; Environ. Eng. Sci. 27 (8), 679-687.
Chou, M.S.; Chang, Y.F.; Perng, H.T. (2008). Treatment of PGMEA in air stream by a biofilter packed with fern chips; J. Air and Waste Manage. Asso. 58, 1590-1597.
Chou, M.S.; Li, S.C. (2010). Elimination of MEK in Air Streams by A Biofilter Packed with Fern Chips; Environ. Eng. Sci. 27 (8), 679-687.
Cox, H. H. J.; Deshusses, M. A. (2002). Co-treatment of H2S and toluene in a biotrickling filter; Chemical Engineering Journal. 87(1), 101-110.
Deborde, M.; van Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review, Water Res., 42, 13-51.
Deshusses, M. A. (1997).Transient behavior of biofilters: Start-up, carbon balances, and interactions between pollutants; J. Environ. Eng.-ASCE. 123(6), 563-568.
Devinny, J. S.; Deshusses, M. A.; Webster, T. S. (1999). Biofiltration for air pollution control; New York, Lewis Publishing Inc.
Dewulf, J.; Van Langenhove, H;. De Smedt E.; Guens, S. (2001). Combination of advanced oxidation processes and gas absorption for the treatment of chlorinated solvents in waste gases. Water Sci. Technol., 44 (9), 173-180.
EBMUD., (1992). Annual Progress Report-Control and production of toxic air emissions by POTW odor control equipment. WERF Project RFP No WERF 91-VOC-2. East Bay Municipal Utility District, Oakland, CA, U.S.A.
Feliers, C.; Patria, L.; Morvan, J.; Laplanche, A. (2001). Kinetics of oxidation of odourous sulfur compounds in aqueous alkaline solution with H2O2. Environ. Technol,. 22 (10), 1135-1146.
Iranpour, R.; Cox, H.H.J.; Deshusses, M.A.; Schroeder, E.D. (2005) Literature review of air pollution control biofilters and biotrickling filters for odor and volatile organic compound removal. Environ. Prog., 24(3), 254-267.
Iwasaki, Y. (2003). The history of odor measurement in Japan and triangle odor bag method. In Odor Measurement Review. Tokyo: Japan Ministry of the Environment, p. 37.
Jensen, G.A.; Adams, D.F.; Stern, H. (1966). Absorption of hydrogen sulfide and methyl mercaptan from dilute gas mixture. J. Air Pollution Control Assoc., 16 (5), 248-253.
Jorio, H.; Bibeau, L.; Viel, G.; Heitz, M. (2000). Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance; Chemical Engineering Journal. 76(3), 209-221.
Lawson, R.B. and Adams, C.D. (1999). Enhanced VOC absorption using the ozone/hydrogen peroxide advanced oxidation process. J. Air Waste Manage. Assoc., 45, 1315-1323.
Le Sauze, N.; Laplanche, A.; Martin, G.; Paillard, H. (1991). A process of washing and ozonation to deodorize an atmosphere contaminated by sulfides. Ozone Sci. Eng., 13 (3), 331-347.
Lee, D.; Lau, A.K.; Pinder, K.L. (2001). Development and performance of an alternative biofilter system; J. Air & Waste Manage. Assoc. 51(1), 78-85.
Mohsen, M.; Allen, D.G. (1999). Transient performance of biofilters treating mixtures of hydrophilic and hydrophobic volatile organic compounds; J. Air & Waste Manage. Asso. 49, 1434-1441.
Mohsen, M.I.; Allen, D.G.. (2000). Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds; Chem. Eng. Sci. 55, 1545–1558.
Mudliar, S.; Giri, B.; Padoley, K.; Satpute, D.; Dixit, R.; Bhatt, P.; Pandey, R.; Juwarkar, A.; Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours - A review; J. Environ. Manage., 91, 1039-1054.
Rajmohan, B.; Reddy, S.N.; Meikap, B.C. (2008) Removal of SO2 from industrial effluents by a novel twin fluid air-assist atomized spray scrubber. Ind. Eng. Chem. Res. 47, 7833-7840.
Ryu, H.W.; Kyung-Suk Cho, K.W.; Lee, T.H. (2011). Reduction of ammonia and volatile organic compounds from foodwaste-composting facilities using a novel anti-clogging biofilter system; Bioresource Technology. 102, 4654-4660.
Saxena, S.C.; Henry, R.F.; Podolski, W.F. (1985) Particulate removal from high temperature, high-pressure combustion gases. Prog. Energy Combust. Sci., 11, 193-251.
Sereno, D. J.; MacGinley, C. T.; Harrison, D. S.; Haug, R. T. (1993). Multi-stage control of air emissions from dewatered sludge storage. Water Environ. Res., 65, 66.
Shahalam, A. B. M. (1982). Scrubbing odor from wastewater treatment. J. Environ. Eng. ASCE 108, 785.
Shareefdeen, Z.; Baltzis, B.C.; Oh, Y.S.; Bartha, R. (1993). Biofiltration of methanol vapor; Biotechnol. Bioeng. 41(5), 512-524.
Tsai, C.J.; Chen, M.L.; Chang, K.F.; Chang, F.K.; Mao, I.F. (2009). Characteristics analysis of the ambient malodor and hazardous components in plastic waste recycling plants. Proc. International Conference on Industrial Hygiene and Occupational Medicine, Taichung, Taiwan.
U.S. Environmental Protection Agency (USEPA), (1983). Methods for chemical analysis of water and wastes, Method 330.5, Total Residual Chlorine. EPA/600/4-79/020, USEPA, March 1983.
USEPA (1991) Handbook: Control Technologies for Hazardous Air Pollutants. EPA/625 /6-91/014, June, 1991; USEPA: Office of Research and Development, Washington, DC.
Webster, T.S. (2005). Odor removal in municipal wastewater treatment plants - Case studies. In Z. Shareefdeen and A. Singh (Eds.). Biotechnology for Odor and Air Pollution Control. Springer, Heidelberg, Germany, p. 330.
Williams, T.O.; Miller, F.C. (1992). Facility management - Odor control using biofilters; Biocycle. 33(10), 73-77.
Xue, N.; Wang, Q.; Wang J.; Wang J.; Sun, X. (2013). Odorous composting gas abatement and microbial community diversity in a biotrickling filter; International Biodeterioration & Biodegradation. 82, 73-80.
Yamashita, K.; Yamamoto, N.; Mizukoshi, A.; Noguchi, M.; Ni, Y.; Yanagisawa, Y. (2009). Compositions of Volatile Organic Compounds Emitted from Melted Virgin and Waste Plastic Pellets; J. Air & Waste Manage. Assoc. 59(3), 273-278.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code