Responsive image
博碩士論文 etd-0421118-105036 詳細資訊
Title page for etd-0421118-105036
論文名稱
Title
柴油引擎不同進氣量的尾氣污染物二維數值模擬
Two dimensional numerical simulations of exhaust pollutants from diesel engine with various inlet flows
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-06-06
繳交日期
Date of Submission
2018-06-08
關鍵字
Keywords
阿瑞尼斯式、二維數值模擬、柴油引擎、紊流模式、ANSYS FLUENT軟體
diesel engine, ANSYS FLUENT model, turbulence model, numerical simulation of two-dimensional, Arrenhnius equation
統計
Statistics
本論文已被瀏覽 5634 次,被下載 0
The thesis/dissertation has been browsed 5634 times, has been downloaded 0 times.
中文摘要
柴油引擎具有良好的熱效率,具備其他引擎不易取代的特性及優勢,是高扭力輸出動力機具的首選,常運用於重型車輛上。由於,柴油引擎排放的尾氣,造成環境的嚴重污染,若要追求永續性的發展,除了考量能源與經濟性外,也應重視柴油引擎對於廢氣污染管控的相關議題。
本研究以ANSYS FLUENT軟體作為研究工具,探討柴油引擎污染物的二維數值模擬,包含:氣體速度分佈、排氣溫度及污染物排放濃度。本研究以正庚烷(C7H16)作為燃料,依照不同的進氣速度、進氣溫度等操作設定,進行污染物排放濃度的分析及比較。在流場的分析方面,採用k- ε紊流模式。建立燃燒反應的質量、動量、及能量方程式,再以阿瑞尼斯(Arrenhnius)方程式預測正庚烷(C7H16)、氧氣(O2)、一氧化碳(CO)、二氧化碳(CO2)、一氧化氮(NO)及水蒸氣(H2O)之反應速率。
首先探討進氣溫度固定,改變模擬進氣速度的研究。進氣溫度為300K時,模擬進氣速度從20(m/s)至60(m/s) ,模擬結果顯示:尾氣中一氧化碳濃度(CO) 77.20×10-6降低至4.49×10-6 (kmol/m3)、二氧化碳濃度(CO2) 49.30×10-6降低至2.88×10-6 (kmol/m3)、一氧化氮濃度(NO) 72.10×10-6降低至4.20×10-6 (kmol/m3)及水蒸氣濃度(H2O) 12.10×10-5降低至7.04×10-6 (kmol/m3)。由研究結果可以得知,不同的進氣速度能對污染物排放濃度造成影響,在進氣速度為60(m/s)的操作條件下,污染物排放濃度有明顯下降。


根據上述研究,進階探討進氣速度固定,改變模擬進氣溫度的研究。進氣速度為60(m/s),隨著模擬進氣溫度從300K提升至650K,結果顯示,尾氣中一氧化碳濃度(CO) 4.49×10-6 上升至 4.62×10-6 (kmol/m3)、二氧化碳濃度(CO2) 2.88×10-6 上升至 2.96×10-6 (kmol/m3)、一氧化氮濃度(NO) 4.20×10-6 上升至 4.31×10-6 (kmol/m3)及水蒸氣濃度(H2O) 7.04×10-6 上升至7.23×10-6 (kmol/m3)。由研究結果可以得知,不同的進氣溫度對污染物排放濃度較無顯著影響。
Abstract
Diesel engine has better thermal efficiency than other engines, with the irreplaceable characteristics and advantages. Diesel engine is the first choice for the high torque output power machine, often used in heavy vehicles. However, the exhaust gas from diesel engine leads to a lot of serious pollution to the environment. To pursue the development of sustainability, it is not only to take into consideration of energy and economic, but also to pay much attention to the issues related to the exhaust pollution control from diesel engine.

In this study, ANSYS FLUENT model is used as the research tool to explore the numerical simulation of two-dimensional of diesel engine pollutants, including gas velocity, exhaust gas temperature and pollutant emission concentration. According to different inlet speed, inlet temperature and other operation settings, pollutant emission concentration is analyzed and compared when C7H16 is used as fuel in this study. When it comes to the flow field analysis, the k-ε turbulence model is used to set up continuity equation, momentum equation and energy equation. Next, the reaction rate of C7H16, oxygen (O2), carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO) and water vapor (H2O) are predicted by Arrenhnius equation.

Study one explores the result of changing the simulated inlet velocity when the air inlet temperature is fixed. The inlet temperature is 300K, with the simulation of inlet velocity changing from 20(m/s) to 60(m/s). The simulation results show: in exhaust gas, the concentration of CO reduces from 77.20×10-6 to 4.49×10-6 (kmol/m3), the concentration of CO2 reduces from 49.30×10-6 to 2.88×10-6 (kmol/m3), the concentration of NO reduces from 72.10×10-6 to 4.20×10-6 (kmol/m3) and the concentration of H2O decreased from 12.10×10-5 to 7.04×10-6 (kmol/m3). The research results can be seen that different inlet speed can affect the pollutant emission concentration. When the inlet speed is 60 (m/s), the pollutant emission concentration decreases significantly.

According to study one, study two explores the advanced result of changing the simulated air inlet temperature when the inlet velocity is fixed. The inlet velocity is 60(m/s), with the simulation of inlet temperature changing from 300K to 650K. The results show: in exhaust gas, the concentration of CO increases a little from 4.49×10-6 to 4.62×10-6 (kmol/m3), the concentration of CO2 increases a little from 2.88×10-6 to 2.96×10-6 (kmol/m3), the concentration of NO increases a little from 4.20×10-6 to 4.31×10-6 (kmol/m3) and the concentration of H2O increases a little from 7.04×10-6 to 7.23×10-6 (kmol/m3). Finally, the results show that the different inlet temperature has no significant impact on the concentration of pollutant emission.
目次 Table of Contents
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1研究緣起 1
1.2研究目標 4
第二章 文獻回顧 5
2.1 能源概論 5
2.1.1 當今能源概況 5
2.2柴油引擎及污染物特性 8
2.2.1 柴油引擎介紹 8
2.2.2 柴油引擎作用原理 9
2.2.3 影響引擎之排放因素 13
2.2.4 台灣對燃油消耗之規範 18
2.3 數值模擬介紹 20
2.3.1 各類數值模擬簡述 20
2.3.2 耦合方式介紹 22
第三章 研究方法與步驟 26
3.1研究架構與流程 26
3.2 研究方法 27
3.2.1 統御方程式 27
3.2.2 紊流方程式 30
3.3燃燒模式 34
3.3.1 反應速率式 35
3.4運用軟體介紹 36
3.4.1 ANSYS DESIGN MODELER軟體操作 37
3.4.2 ANSYS MESH軟體操作 38
3.4.3 ANSYS FLUENT軟體操作 39
第四章 結果與討論 40
4.1燃燒反應相關運算 40
4.1.1 計算化學式 40
4.2不同進氣速度之二維模擬分析及探討 42
4.2.1 不同進氣速度之尾氣污染物模擬結果 43
4.2.2 不同進氣速度之尾氣污染物模擬結果比較 63
4.3不同進氣溫度之二維模擬分析及探討 67
4.3.1 不同進氣溫度之尾氣污染物模擬結果 68
4.3.2 不同進氣溫度之尾氣污染物模擬結果比較 100
4.4尾氣污染物模擬結果及法規進行佐證 103
4.4.1 尾氣污染物模擬結果與與法規進行驗證 103
第五章 結論與建議 104
5.1結論 104
5.2建議 105
參考文獻 106
參考文獻 References
Abu-Zaid, M. (2004). Performance of single cylinder, direct injection diesel engine using water fuel emulsions. Energy Conversion and Management, 45(5), 697-705.
Agarwal, A. K., & Rajamanoharan, K. (2009). Experimental investigations of performance and emissions of Karanja oil and its blends in a single cylinder agricultural diesel engine. Applied Energy, 86(1), 106-112.
Ajav, E. A., Singh, B., & Bhattacharya, T. K. (1999). Experimental study of some performance parameters of a constant speed stationary diesel engine using ethanol–diesel blends as fuel. Biomass and Bioenergy, 17(4), 357-365.
Al‐Hasan, M. I., & Al‐Momany, M. (2008). The effect of iso‐butanol‐diesel blends on engine performance. Transport, 23(4), 306-310.
Bari, S., Lim, T. H., & Yu, C. W. (2002). Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine. Renewable energy, 27(3), 339-351.
Barsic, N. J., & Humke, A. L. (1981). Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels (No. 810262). SAE Technical Paper.
Benbrahim-Tallaa, L., Baan, R. A., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., ... & International Agency for Research on Cancer Monograph Working Group. (2012). Carcinogenicity of diesel-engine and gasoline-engine exhausts and some nitroarenes.
Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
Brown, M. D., Byyny, R., Diercks, D. B., Gemme, S. R., Gerardo, C. J., Godwin, S. A., ... & Kaji, A. (2017). Clinical policy: critical issues in the evaluation and management of adult patients presenting to the emergency department with acute carbon monoxide poisoning. Annals of emergency medicine, 1(69), 98-107.
Buyukkaya, E. (2010). Effects of biodiesel on a DI diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099-3105.
Canakci, M., & Van Gerpen, J. H. (2003). Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Transactions of the ASAE, 46(4), 937.
Canakci, M. (2007). Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel. Bioresource technology, 98(6), 1167-1175.


Carlier, P., Hannachi, H., & Mouvier, G. (1986). The chemistry of carbonyl compounds in the atmosphere—a review. Atmospheric Environment (1967), 20(11), 2079-2099.
Chauhan, B. S., Kumar, N., & Cho, H. M. (2012). A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends. Energy, 37(1), 616-622.
Chen, C. C., Nien, C. K., Tsai, C. Y., & Her, G. R. (1995). Comparison of tail-pipe emission from motorcycle and passenger cars. Journal of Air and Waste Management Association, 45, 116-124.
Chiang, T. A., Wu, P. F., Wang, L. F., Lee, H., Lee, C. H., & Ko, Y. C. (1997). Mutagenicity and polycyclic aromatic hydrocarbon content of fumes from heated cooking oils produced in Taiwan. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 381(2), 157-161.
Fleisch, T., McCarthy, C., Basu, A., Udovich, C., Charbonneau, P., Slodowske, W., ... & McCandless, J. (1995). A new clean diesel technology: demonstration of ULEV emissions on a Navistar diesel engine fueled with dimethyl ether (No. 950061). SAE Technical Paper.
Forson, F. K., Oduro, E. K., & Hammond-Donkoh, E. (2004). Performance of jatropha oil blends in a diesel engine. Renewable energy, 29(7), 1135-1145.
Ghobadian, B., Rahimi, H., Nikbakht, A. M., Najafi, G., & Yusaf, T. F. (2009). Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renewable Energy, 34(4), 976-982.
Han, Z., Uludogan, A., Hampson, G. J., & Reitz, R. D. (1996). Mechanism of soot and NOx emission reduction using multiple-injection in a diesel engine. SAE transactions, 105, 837-852.
Hasegawa, R., & Yanagihara, H. (2003). HCCI combustion in DI diesel engine (No. 2003-01-0745). SAE Technical Paper.
Harris, S. J., & Maricq, M. M. (2001). Signature size distributions for diesel and gasoline engine exhaust particulate matter. Journal of Aerosol Science, 32(6), 749-764.
Hiroyasu, H., Kadota, T., & Arai, M. (1983). Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions: Part 1 combustion modeling. Bulletin of JSME, 26(214), 569-575.
Huang, J., Wang, Y., Li, S., Roskilly, A. P., Yu, H., & Li, H. (2009). Experimental investigation on the performance and emissions of a diesel engine fuelled with ethanol–diesel blends. Applied Thermal Engineering, 29(11-12), 2484-2490.


Jensen, J. P., Kristensen, A. F., Sorenson, S. C., Houbak, N., & Hendricks, E. (1991). Mean value modeling of a small turbocharged diesel engine (No. 910070). SAE Technical Paper.
Kalam, M. A., Husnawan, M., & Masjuki, H. H. (2003). Exhaust emission and combustion evaluation of coconut oil-powered indirect injection diesel engine. Renewable Energy, 28(15), 2405-2415.
Kong, S. C., Han, Z., & Reitz, R. D. (1995). The development and application of a diesel ignition and combustion model for multidimensional engine simulation (No. 950278). SAE Technical paper.
Kwanchareon, P., Luengnaruemitchai, A., & Jai-In, S. (2007). Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel, 86(7-8), 1053-1061.
Lapuerta, M., Armas, O., & Rodriguez-Fernandez, J. (2008). Effect of biodiesel fuels on diesel engine emissions. Progress in energy and combustion science, 34(2), 198-223.
Labeckas, G., & Slavinskas, S. (2006). The effect of rapeseed oil methyl ester on direct injection diesel engine performance and exhaust emissions. Energy conversion and Management, 47(13-14), 1954-1967.
Nabi, M. N., Akhter, M. S., & Shahadat, M. M. Z. (2006). Improvement of engine emissions with conventional diesel fuel and diesel–biodiesel blends. Bioresource Technology, 97(3), 372-378.
Nehmer, D. A., & Reitz, R. D. (1994). Measurement of the effect of injection rate and split injections on diesel engine soot and NOx emissions (No. 940668). SAE Technical Paper.
Patterson, M. A., & Reitz, R. D. (1998). Modeling the effects of fuel spray characteristics on diesel engine combustion and emission (No. 980131). SAE Technical Paper.
Papagiannakis, R. G., & Hountalas, D. T. (2004). Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot diesel fuel and natural gas. Energy conversion and management, 45(18-19), 2971-2987.
Pfahl, U., Fieweger, K., & Adomeit, G. (1996, January). Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions. In Symposium (International) on Combustion (Vol. 26, No. 1, pp. 781-789). Elsevier.
Pramanik, K. (2003). Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renewable energy, 28(2), 239-248.



Puhan, S., Vedaraman, N., Sankaranarayanan, G., & Ram, B. V. B. (2005). Performance and emission study of Mahua oil (Madhuca indica oil) ethyl ester in a 4-stroke natural aspirated direct injection diesel engine. Renewable Energy, 30(8), 1269-1278.
Pugazhvadivu, M., & Jeyachandran, K. (2005). Investigations on the performance and exhaust emissions of a diesel engine using preheated waste frying oil as fuel. Renewable energy, 30(14), 2189-2202.
Raheman, H., & Phadatare, A. G. (2004). Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass and bioenergy, 27(4), 393-397.
Rakopoulos, C. D., Antonopoulos, K. A., Rakopoulos, D. C., Hountalas, D. T., & Giakoumis, E. G. (2006). Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy conversion and management, 47(18-19), 3272-3287.
Reitz, R. D., & Rutland, C. J. (1995). Development and testing of diesel engine CFD models. Progress in Energy and Combustion Science, 21(2), 173-196.
Sayin, C. (2010). Engine performance and exhaust gas emissions of methanol and ethanol–diesel blends. Fuel, 89(11), 3410-3415.
Scholl, K. W., & Sorenson, S. C. (1993). Combustion of soybean oil methyl ester in a direct injection diesel engine (No. 930934). SAE Technical Paper.
Sorenson, S. C., & Mikkelsen, S. E. (1995). Performance and emissions of a 0.273 liter direct injection diesel engine fuelled with neat dimethyl ether (No. 950064). SAE Technical Paper.
Sorenson, S. C., & Mikkelsen, S. E. (1995). Performance and emissions of a 0.273 liter direct injection diesel engine fuelled with neat dimethyl ether (No. 950064). SAE Technical Paper.
Usta, N. (2005). An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Energy Conversion and Management, 46(15-16), 2373-2386.
Venkanna, B. K., Reddy, C. V., & Wadawadagi, S. B. (2009). Performance, emission and combustion characteristics of direct injection diesel engine running on rice bran oil/diesel fuel blend. diesel engine, 14, 15.
Wang, Y. D., Al-Shemmeri, T., Eames, P., McMullan, J., Hewitt, N., Huang, Y., & Rezvani, S. (2006). An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil. Applied Thermal Engineering, 26(14-15), 1684-1691.


Xing-cai, L., Jian-Guang, Y., Wu-Gao, Z., & Zhen, H. (2004). Effect of cetane number improver on heat release rate and emissions of high speed diesel engine fueled with ethanol–diesel blend fuel. Fuel, 83(14-15), 2013-2020.
Zheng, M., Reader, G. T., & Hawley, J. G. (2004). Diesel engine exhaust gas recirculation––a review on advanced and novel concepts. Energy conversion and management, 45(6), 883-900.
楊思裕編著,(1997),柴油引擎
林達昌,(1998),「含甲醇替代燃料對柴油引擎排放空氣污染物之影響」,國科會環保署,NSC 87-EPA-P-006-016。
何文淵,(1999),「汽油車引擎廢氣揮發性有機物成份及光化反應潛勢」
林淵淙,(2006),「生質柴油及乳化柴油對引擎排放廢氣污染減量及提昇能源效率之研究」,博士論文,國立成功大學環境工程學系。
温正,石良臣,任毅如编著,(2009),FLUENT流體計算應用教程
韓占忠编著,(2009),FLUENT流體工程仿真計算與應用
谢龍漢,趙新宇,张炯明编著,(2012),ANSYS CFX流體分析及仿真
王冠中、姜嘉瑞、蘇裕軒、顧詠元編著,(2012),柴油引擎CFD流場模型建立
許滄粟,(2007),三相乳化油的製備與物理性質研究,浙江大學動力機械及車輛工程研究所。
經濟部能源局,(2014),「能源產業技術白皮書」。
蕭德瑛,(2006),柴油引擎與汽油引擎的差異,國立清華大學動力機械工程學系
王冠中,(2013),「渦輪增壓共軌柴油引擎之計算流體力學模型」碩士論文,國立台灣科技大學機械工程系。
周欣慧,(2008),「酒精汽油對不同里程車輛引擎排放氣態污染物影響研究」,碩士論文,國立成功大學環境工程學系。
蔡馥仲(2016),「汽車拆解廠中多環芳香烴化合物逸散模擬」,碩士論文,國立屏東科技大學環境工程與科學系。
陳志恩,(2013),「利用廢棄物質為催化劑製作生質柴油之研究」,碩士論文,國立中山大學環境工程研究所。
陳子秦,(2007),汽油車氣態污染物之排放劣化與行駛里程相關性研究,碩士論文,國立成功大學環境工程學系
張安伶,(2006),「油品成分對機車引擎排放氣態污染物影響研究」,碩士論文,國立成功大學環境工程學系。
施佳育,(2013),「運用生質柴油及固定氫氧混合氣對於柴油引擎醛酮化合物排放特徵之研究」,碩士論文,國立中山大學環境工程研究所。
蘇巧文,(2015),「以動力計探討在不同行車狀態下添加氫氣及生質酒精對汽車引擎之污染影響」,碩士論文,國立中山大學環境工程研究所。

蔡培育,(2017),「異丁醇混合痲瘋樹生質柴油之乳化油對引擎醛酮類化合物排放特性之研究」,碩士論文,國立中山大學環境工程研究所。
鄭郁琪,(2017),「運用廢食用生質柴油混合異丁醇之乳化油對於柴油引擎醛酮污染物排放之特徵研究」,碩士論文,國立中山大學環境工程研究所。
行 政 院 環 境 保 護 署 , (2014) , 空 氣 污 染 排 放 量 查 詢 系 統 (TEDS7.1). http://ivy2.epa.gov.tw/air-ei/new_main2-0-1.htm
經濟部能源局,(2013),車輛耗油節能研究網站 https://auto.itri.org.tw/
財團法人車輛研究測試中心,http://www.artc.org.tw/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code