Responsive image
博碩士論文 etd-0423114-134816 詳細資訊
Title page for etd-0423114-134816
論文名稱
Title
波長1310 nm錐形光纖光學感測器之特性與應用
Characteristics and Applications of 1310nm Wavelength Tapered Fiber Optical Sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-04-25
繳交日期
Date of Submission
2014-05-23
關鍵字
Keywords
錐形光纖、光纖、感測器、距離量測、螢光檢測器、波長1310nm紅外線光束、光反射式特性、光纖解析度、動態範圍
resolution, dynamic range, sensor, distance measurement, fiber, Tapered fiber, reflective mode, fluorescence, 1310 nm wavelength photonic beam
統計
Statistics
本論文已被瀏覽 5694 次,被下載 7
The thesis/dissertation has been browsed 5694 times, has been downloaded 7 times.
中文摘要
本論文研究係利用光纖感測器設計同時作為距離量測及螢光檢測器之功能,研究方法使用波長1310nm光束,光反射式特性及錐形光纖當作感測器。研究結果發現光纖解析度與動態範圍跟錐形光纖傾斜角度有明顯相關性,光纖解析度隨光纖傾斜角減少而增加,當錐形光纖傾斜角80°有最大動態範圍。本研究錐形光纖感測器最佳解析度可達12nm及可量測動態範圍達2mm,這些結果具產業利用性,本論文同時研究各種錐形傾斜角及相對微透鏡曲率半徑並量測其光學特性。
在光纖感測器應用方面,本實驗研究使用一個應用在多功能電子通訊的單一波長。研究系統有隨身攜帶外出至任何地方的潛在優勢能力,將來可作為在商業、工業、教育、及軍事等各方面的檢測。並且,本系統具有低成本、高效能、高效率、高速率、高靈敏度、高可靠度、及極高的實驗重複值。
Abstract
In this study, we utilized fiber sensor to design capable distance measurement and fluorescence simultaneously by using 1310 nm wavelength photonic beam, reflective mode, and tapered fiber as detective. We found that the fiber’s resolution and dynamic range had correlated relation with tapered fiber tilt angle. Fiber resolution increased as fiber tilt angle decreased. As tilt angle was 80°, there was a maximum dynamic range. Tapered fiber sensor had the best resolution of 12 nm and best dynamic range of 2 mm. Therefore, these results may have industrial usefulness. We also studied each tapered tilt angle relative with micro-lens cure radius and measured their optical characteristics.
The application of these fiber sensor can be used as a single wavelength for multi-function in electronic communications. Further system research may be potential use in portable outdoors and possible for utilizing in commercial, industrial, educational and military area’s detection. Moreover, our system applications may be low cost, high efficiency, effective, speedy, sensitive, reliable, and repeatable.
目次 Table of Contents
中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
圖 目 錄 vii
公 式 目錄 ix

第 一 章 緒 論 1

1.1 前 言 1
1.2 文 獻 回 顧 7
1.3 指 出 問 題 7
1.4 研究目的與方法 8
1.5 預 期 成 果 8
1.6 影 響 力 9
1.7 章 節 介 紹 9

第 二 章 研 究 方法 10

2.1 架 構 之 設 計 10
2.2 架 構 之 理 論 與 分 析 10
2.3 材 料 之 特 性 11
2.4 元 件 之 特 性 11
2.5 量 測 之 設 備 18
2.6 量 測 步 驟 24
2.7 量 測 ……………………………………………………………24

第 三 章 實 驗…………………………………………………28

3.1 實 驗 量 測 ……………………………………………………28
3.2 分 析…………………………………………………………32

第 四 章 模 擬……………………………………………… 33

4.1 方 法…………………………………………………………33 4.2 討 論………………………………………………………… 36
4.3 模 擬 結 果 討 論 ……………………………………………42

第 五 章 結 論………………………………………………………43

5.1 重 要 結 果 描 述…………………………………………… 43
5.2 結 果 說 明 ……………………………………………………43
5.3 與 其 他 相 近 文 獻 比 較…………………………………44
5.4 重 要 性…………………………………………………………45
5.5 結 論…………………………………………………………… 45
參考文獻……………………………………………………………………… 47
作者著作……………………………………………………………………… 61
作者簡介……………………………………………………………………… 63
附 加 檔 案(著作原稿) …………………………………………… 66
參考文獻 References
[1] C. Memadier, C. Kissinger, and H. Adkins: The Fotonic Sensor, Instrument and Control System ( Mechanical Technology, New York, 1967 ), p. 114.
[2] E. O. Doebelin: Measurement Systems Application and Design ( McGraw-Hill, New York, 1990 ), fourth edition, pp. 268 - 270.
[3] J. B. Wallace, B. E. Pettit, S. E. Prasad, E. Stenne, S. Kalaycioglu, and M. Giray: “Shape control using embedded piezoelectric actuators”, Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, Vol. 2, 1996, pp. 919 - 922.
[4] F. W. Cuomo, R. S. Kidwell, and A. Hu: “A fiber optic sensor sensitive to normal pressure and shear stress”, Proceeding of SPIE Symposium, Vol. 661, 1986, pp. 234 - 239.
[5] R. O. Cook and C. W. Hamm: “Shock measurement with noncontacting fiber optic levers”, Journal of Sound and Vibration, Vol. 76, 1981, pp. 443 - 456.
[6] Iyo Denshi to Seitai Kogaku: “Transducer utilizing fiber for the observation of intracardiac pressure”, 1977 [in Japanese].
[7] L. Hoogenboom, G. Hull-Allen, and S. Wang: “Optical inverse-square displacement sensor”, Proceeding of SPIE Symposium, Vol. 478, 1984, pp. 46 - 57.
[8] H. Aizawa, Y. Kano, T. Katsumata, and S. Komuro: “Temperature sensor application of fluorescence film”, Annual Conference SICE, 2007, pp. 1749 - 1752.
[9] Y. Kiyokawa, Y. Hasegawa, H. Aizawa, T. Katsumata, S. Komuro, and T. Morikawa: “Fluorescence thermo-meter application of Eu doped Y2SiO5 crystal”, International Joint Conference SICE–ICASE, 2006, pp. 1613 - 1616.
[10] T. Katsumata, H. Yamaguchi, C. Nakayama, H. Aizawa, and S. Komuro: “Fluorescence sensor using two-dimensional phosphor array”, Annual Conference SICE, 2007, pp. 1758 - 1761.
[11] Y. J. Heo, H. Shibata, T. Okitsu, T. Kawanishi, and S. Takeuchi: “Fluorescent hydrogel fibers for long-term in vivo glucose monitoring”, 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011, pp. 2140 - 2143.
[12] O. Strobel, D. Seibl, J. Lubkoll, and R. Rejeb: “Fiber-optic sensors - an overview”, 11th International Conference on Transparent Optical Networks, 2009, Mo. A. 1, pp. 1- 6.
[13] H. Kudo, K. Miyajima, D. Takahashi, T. Arakawa, H. Saito, K. Mitsubayashi, and M. Sawai: Fiber optic bio-sniffer (biochemical gas sensor) using UV-LED light for monitoring ethanol vapor with high sensitivity & selectivity” IEEE Sensors, 2009, pp. 1955 - 1958.
[14] F. Le Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta: “Efficient channeling of cesium fluorescence into guided modes of a nanofiber”, European Conference on Lasers and Electro-Optics, and the International Quantum Electronics Conference, 2007, p. 1.
[15] K. Koyama-Nakazawa, M. Koeda, M. Hedo, and Y. Uwatoko: “In situ pressure calibration for piston cylinder cells via ruby fluorescence with fiber optics”, Review of Scientific Instruments, Vol. 78, No. 6, 2007, pp. 066109 - 066109-3.
[16] Y. Fujimoto, E. Kawakami, M. Yoshida, J. Maeda, and H. Kan: “A broadband light source in near infrared region generated by a bismuth-doped silica fiber”, European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, 2009, p. 1.
[17] M. Kaneda, K. Orihara, H. Aizawa, T. Katsumata, S. Komuro, and T. Morikawa: “Thermo-sensor based on peak intensity ratio of photoluminescence from Cr doped YAG crystals”, International Joint Conference SICE–ICASE, 2006, pp. 1586 - 1589.
[18] T. Kobayashi, H. Tamura, Y. Hatanaka, M. Motoyama, T. Noda, K. Sasagawa, T. Tokuda, Y. Ishikawa, S. Shiosaka, and J. Ohta: “Functional neuroimaging by using an implantable CMOS multimodal device in a freely-moving mouse”, IEEE Biomedical Circuits and Systems Conference, 2011, p. 110 - 113.
[19] Y. Enami, T. Fukuda, and S. Suye: “Sol-gel silica planar waveguide doped with green fluorescent protein for in-line biosensors”, Applied Physics Letters, Vol. 91, No. 20, pp. 203507 - 203507-3.
[20] H. Aizawa, T. Katsumata, and S. Komuro: “Fluorescence oxygen sensor using photo quenching with oxygen molecule”, Annual Conference SICE, 2007, pp. 1762 - 1765.
[21] Y. Miyazaki, H. Aizawa, T. Katsumata, and S. Komuro: “Low temperature measurement using fluorescence thermometry”, International Conference on Control, Automation and Systems, 2008, pp. 1004 - 1007.
[22] Y. Kiyokawa, T. Sasagawa, Y. Suyama, H. Aizawa, T. Katsumata, S. Komuro, and T. Morikawa: “Growth and evaluation of the Tb doped YAlO3 crystals for the fiber-optic thermometer application”, International Joint Conference SICE–ICASE, 2006, pp. 1617 - 1620.
[23] R. Siebert, M. H. Vu Thi, F. Jean, Y. Charon, M. Collado-Hilly, M.-A. Duval, T. Mandat, L. Menard, S. Palfi, and T. Tordjmann: “Autofluorescence probe for brain cancer diagnostic: first results from rat model”, 16th Mediterranean Conference on Control and Automation, 2008, pp.1359 - 1363.
[24] K. P. Nayak, P. N. Melentiev, M. Morinaga, F. Le Kien, V. I. Balykin, and K. Hakuta: “Efficient probing of few atom fluorescence through the guided mode of an optical nanofiber”, Conference on Lasers and Electro-Optics - Pacific Rim, 2007, pp. 1- 2.
[25] P. L. Choyke and H. Kobayashi: “Medical uses of fluorescence imaging: bringing disease to light”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 18, No. 3, 2012, pp. 1140 - 1146.
[26] T. Hirano, M. Nakajima, M. Kojima, N. Hisamoto, M. Homma, and T. Fukuda: “Selective nano-injection using nano-probe based on nanomanipulation under hybrid microscope”, International Symposium on Micro-NanoMechatronics and Human Science, 2011, pp. 216 - 221.
[27] Y. Miyamoto, S. H. R. Hosseini, D. K. Kang, Y. Okuda, D. Oshita, and H. Akiyama: “Study of underwater shock wave induced embryonic modification in-vivo” IEEE Pulsed Power Conference, 2011, pp. 1208 - 1211.
[28] E. P. Muntz, S. J. Abel, and B. L. Maguire: “The electron beam fluorescence probe in experimental gas dynamics”, IEEE Transactions on Aerospace, Vol. 3, No. 2, 1965, pp. 210 - 222.
[29] H. C. Seat, S. Pullteap, and T. Bosch: “An extrinsic fibre optic interferometer with possible signal fading compensation for vibrometric applications”, Proceedings of the IEEE Instrumentation and Measurement Technology Conference, Vol. 3, 2005, pp. 2236 - 2241.
[30] S. Zivanovic, J. Elazar, and M. Tomic: “Fiber-optic displacement sensor”, Proceedings 21st International Conference on Microelectronics, vol. 2, 1997, pp. 561 - 564.
[31] G. He and F. W. Cuomo: “Displacement response, detection limit, and dynamic range of fiber-optic lever sensors”, Journal of Lightwave Technology, Vol. 9, No. 11, 1991, pp. 1618 - 1625.
[32] F. W. Cuomo, “Pressure and pressure gradient fiber optic lever hydrophones”, Journal of The Acoustical Society of America, Vol. 73, 1983, pp. 1848 - 1857.
[33] U. Minoni, G. Scotti, and F. Decchio: “Fiber-linked interferometric displacement sensor: analysis of residual sensitivity to fiber stress”, IEEE Transactions on Instrumentation and Measurement, Vol. 45, No.1, 1996, pp. 201 - 208.
[34] K. Q. Kieu and M. Mansuripur: “Biconical fiber taper sensors”, IEEE Photonics Technology Letters, Vol. 18, No. 21, 2006, pp. 2239 - 2241.
[35] J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler: “An evanescent wave biosensor. II. Fluorescent signal acquisition from tapered fiber optic probes”, IEEE Transactions on Biomedical Engineering, Vol. 41, No. 6, 1994, pp. 585 - 591.
[36] W. B. Spillman and R. L. Gravel: “Moving fiber-optic hydrophone”, Optical. Letter, vol. 5, 1980, pp. 30-31.
[37] W. B. Spillman and D. H. McMahon: “Schlieren multimode fiber-optic hydrophone”, Applied Physics Letters, Vol. 37, 1980, pp. 145-147.
[38] W. B. Spillman and D. H. McMahon: “Frustrated total intenal reflection multimode fiber optic hydrophone”, Applied Optics, Vol. 19, 1980, pp. 113-117.
[39] J. N. Fields and J. H. Cole: “Fiber microbend acoustic sensor”, Applied Optics, Vol. 19, 1980, pp. 3265-3267.
[40] J. D. Beasley: “Multimode optical evanscent-wave acoustic sensor”, Journal of The Acoustical Society of America, Vol. 68, 1980, pp. 595-598.
[41] J. B. Rosolem, M. B. Elias, E. W. Bezerra, and C. K. Suzuki: “Bending sensor based on -band depressed cladding erbium-doped fiber”, IEEE Photonics Technology Letters, Vol. 22, No. 14, 2010, pp. 1060-1062.
[42] T. Kawahara, Y. Miyata, K. Akayama, M. Okajima, and M. Kaneko: “Design of noncontact tumor imager for video-assisted thoracic surgery”, IEEE Transactions on Mechatronics, Vol. 15, No. 6, 2010, pp. 838 – 846.
[43] K. Murari, R. Etienne-Cummings, G. Cauwenberghs, and N. Thakor: “An integrated imaging microscope for untethered cortical imaging in freely-moving animals”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010, pp. 5795-5798.
[44] Y. Enami, K. Tsuchiya, and S. Suye: “Detection of organophosphorus compound based on a sol–gel silica planar waveguide doped with a green fluorescent protein and an organophosphorus hydrolase”, Applied Physics Letters, Vol. 98, No. 23, 2011, pp. 233503 - 233503-3.
[45] H. Aizawa, Y. Miyazaki, T. Katsumata, and S. Komuro: “Evaluation of fluorescent inorganic materials in low temperature region”, Proceedings of SICE Annual Conference, 2010, pp. 2660 – 2663.
[46] H. Aizawa, T. Katsumata, and S. Komuro: “Low temperature behavior of fluorescent inorganic materials”, Proceedings of SICE Annual Conference, 2011, pp. 454-456.
[47] M. Kato-Negishi, H. Onoe, and S. Takeuchi: “ ‘Neural bypass’ with hydrogel microfiber encapsulating neurons”, IEEE 25th International Conference on Micro Electro Mechanical Systems, 2012, pp. 977-980.
[48] X. Zhang, W. Bai, and Y. Chen: “An approach for accurate measurement of lubricant film thickness based on fiber-optical displacement sensor”, International Conference on Mechatronics and Automation, 2007, pp. 3015- 3019.
[49] J. B. Faria: “A theoretical analysis of the bifurcated fiber bundle displacement sensor ”, IEEE Transactions on Instrumentation and Measurement, Vol. 47, No.3, 1998, pp. 742 - 747.
[50] X. Zhang and L. Yang: “Research on displacement sensor of two-circle reflective coaxial fiber bundle”, International Conference on Advanced Intelligent Mechatronics, 2008, pp. 211- 216.
[51] X. Zhang and L. Yang: “Influence analysis of reflector shape with respect to the fibre optic based dynamic measurement of lubricant film for slide bearing”, 14th International Conference on Mechatronics and Machine Vision in Practice, 2007, pp. 197– 201.
[52] S. Saito, N. Sekine, I. Hosako, and K. Sakai: “Phase shift measurement of the THz wave with laser displacement sensor”, 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008, pp. 1- 2.
[53] T. Yasui, Y. Kabetani, S. Yokoyama, and T. Araki: “Real-time, terahertz impulse radar based on asynchronous optical sampling”, 33rd International Conference on Infrared, Millimeter and Terahertz Waves, 2008, p. 2.
[54] K. Yasuda: “Characterization for dynamic micro wetting of lead-free solder paste”, 2nd Electronics System-Integration Technology Conference, 2008, pp. 1349-1352.
[55] K. Takano, F. Miyamaru, H. Sumikura, T. Nagashima, M. Tani, and M. Hangyo: “Enhanced THz transmission and polarization conversion in double-layer metal hole arrays”, Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006, p. 563.
[56] D. Sengupta, M. Sai Shankar, P. Saidi Reddy, R. L. N. SaiPrasad, K. S. Narayana, and P. Kishore: “A real time fiber optic micro displacement level sensor”, Fifth International Conference on Sensing Technology, 2011, pp. 358 - 361.
[57] A. Molisch: Wireless Communications (IEEE Press, New York, 2011) pp. 211-248.
[58] A. V. Getling: Rayleigh-Bénard Convection: Structures and Dynamics (World Scientific, Singapore, 1998) , pp. 119-129.
[59] A. Molisch: Wireless Communications (IEEE Press, New York, 2011) p. 69-99.
[60] Z. Keli, S. Zhefeng, and G. Y. Liang: IEEE Communication Letter, Vol. 8, No.6, 2004, pp. 368-370.
[61] R. Zhang, T. T. Tjhung, H. B. Zhang, and P. He: “BER performance comparison of single code and multicode DS/CDMA channelization schemes for high rate data transmission”, IEEE Commununication Letter, Vol. 5, No.2, 2001, pp. 67-69.
[62] C.-D. Iskander and P. T. Mathiopoulos:“Exact performance analysis of dual-branch coherent equal-gain combining in Nakagami- , Rician, and Hoyt Fading”, IEEE Transactions on Vehicular Technology, Vol. 57, No. 2, 2008, pp. 921-931.
[63] P. L. Kafle, A. B. Sesay, and J. McRory: “Capacity of MIMO-OFDM systems in spatially correlated indoor fading channels”, The Institution of Engineering and Technology Communications, Vol. 1, No. 3, 2007, pp.514-519.
[64] K. Xin, L. Ying-Chang, H. K. Garg, and Zhang Lan: “Sensing-based spectrum sharing in cognitive radio networks”, IEEE Transactions on Vehicular Technology, Vol. 58, No.8, 2009, pp. 4649-2654.
[65] P. Minero, M. Franceschetti, and D. N. C. Tse: “Random access: an information-theoretic perspective ”, IEEE Transactions on Information Theory, Vol. 58, No. 2, 2012, pp. 909-930.
[66] F. Renna, N. Laurenti and H.V. Poor: “Physical-layer secrecy for OFDM transmissions over fading channels”, Vol. 7 , N0. 4, 2012, pp. 1354 – 1367.
[67] X. Cai and G. B. Giannakis: “Error probability minimizing pilots for OFDM with M-PSK modulation over Rayleigh-fading channels”, IEEE Transactions on Vehicular Technology, Vol.53, No. 1, 2004, pp. 146-155.
[68] H. Defeng and L. Khaled: “Symbol-based space diversity for coded OFDM systems”, IEEE Transactions on Wireless Communications, Vol. 3, No. 1, 2004, pp 117-127.

[69] Thunter Hwang, Wood-Hi, and Yan-Kuin Su: “Characteristics and applications of tapered fiber optical sensors for 1310 nm wavelength ”, Japanese Journal Applied Physics, Vol. 52, 2013, pp. 062503-1~062503-5.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.77.98
論文開放下載的時間是 校外不公開

Your IP address is 13.58.77.98
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code