Responsive image
博碩士論文 etd-0424113-171118 詳細資訊
Title page for etd-0424113-171118
論文名稱
Title
CuZrAl-V/Co 金屬玻璃複合材料之微組織與機性分析
Microstructural and mechanical response of CuZrAl-V/Co bulk metallic glass composites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
198
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-04-19
繳交日期
Date of Submission
2013-04-24
關鍵字
Keywords
麻田散鐵相變化、攣晶、金屬玻璃、鑄造、壓縮測試、微結構、複合材料
metallic glass, composite, microstructure, compression test, casting, martensitic transformation, twinning
統計
Statistics
本論文已被瀏覽 5779 次,被下載 355
The thesis/dissertation has been browsed 5779 times, has been downloaded 355 times.
中文摘要
CuZrAl、CuZrAl-V與CuZrAl-Co合金經由吸鑄鑄造成金屬玻璃複合材料。首先Cu50Zr43Al7金屬玻璃由能量釋放的角度分析其應力¬¬ 應變曲線下的鋸齒狀特徵以及破斷面與剪切帶之間的關連。為了鑄造微米尺度第二相之金屬玻璃複合材料,添加3至10原子百分比釩或鈷至CuZrAl合金中經由吸鑄法鑄造並分析其微結構以及機械性質。經由過飽和析出之富釩相形成尖銳尖端樹枝狀結構,導至應力集中並且降低了機械性質。另一方面,由於液態分離而形成的圓形富鈷相,由於其較低的應力集中現象而使機械性質得以提高或是維持。同時,添加1原子百分比之釩至CuZrAl合金中誘導了奈米尺度的B2-CuZr相,由研究發現少量添加釩之後,促使形成B2-CuZr相並提高了機械性質,並經由剪切帶增加、耗損能量、攣晶、應變誘導相變化以及晶粒粗化等不同的觀點分析其機械性質提升之機制。
由研究結果以及文獻參考發現,晶粒大小可能決定了應變誘導麻田散鐵相變化或是攣晶的發生與否,而晶粒大小與製程中所使用的模具吸鑄口的形貌有著相當大的關連,這項研究的最終任務是檢視尖銳或士鈍口模具對於鑄造後B2-CuZr相的大小以及金屬玻璃複合材料的機械性質之間的關係。由研究結果發現,當B2-CuZr相的大小大於關鍵尺寸後,會誘導形成麻田散鐵相變化或是攣晶,並且基於流體力學的理論建構出一個分析模型,經由與實驗結果的印證,發現模型與實驗之間的對照是十分令人滿意的。
Abstract
CuZrAl and CuZrAl-V and CuZrAl-Co amorphous alloys were cast by rapid suction casting. Flow serrations and fracture morphologies of the base monolithic Cu50Zr43Al7 bulk metallic glasses (BMGs) are first studied by compression at a low strain rate and analyzed by an energy release perspective.
Vanadium or cobalt from 3 to 10 at% is alloyed to the amorphous CuZrAl base alloys to induce precipitation in order to form the bulk metallic glass composites (BMGCs) with micro-sized second phase domains. The V-rich second phase formed during rapid cooling possesses a sharp dendrite shape, inducing stress concentration in the amorphous matrix and lowering the mechanical performance. The Co-rich phase, formed from liquid phase separation, possesses round morphology, lowering the stress concentration and raising or sustaining the mechanical properties.
Meanwhile, 1 at% vanadium was alloyed to the amorphous CuZrAl base alloy to induce nano-sized B2-CuZr phase formation in order to improve compressive plasticity. It was found that the dilute vanadium addition induced B2-CuZr formation and, thus, improved plasticity of the CuZrAl alloy. The role of vanadium on plasticity improvement was discussed in the frame of shear band multiplication, energy dissipation during shear banding, twinning/phase transformation of the B2-CuZr particles during deformation, and deformation induced B2-CuZr particle coarsening.
It was suggested that such transformation induced plasticity would show dependence on the B2 particle size, which in-turn depends on the inlet shape of the suction casting mold in use. It follows that the final task of this research was to examine the effects of the B2 size and distribution, resulted from the sharp or blunt inlet mold, on the mechanical plasticity in the CuZrAl and CuZrAlCo BMGs and BMGCs. It appears that the B2 particles need to be over some critical size to induce the martensitic/twinning transformation into the B19’ phase (sometimes with twins embedded). An analytic model, based on melt flow dynamics with or without vena contraction, is established, and the agreement between experiment and model is satisfactory.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
Content vii
List of Tables x
List of Figures xii
Chapter 1 Introduction 1
1.1 Amorphous alloys 1
1.2 Bulk metallic glasses 2
1.3 Motivation 4
Chapter 2 Background 8
2.1 The history of amorphous alloys 8
2.2 The fabrication methods of amorphous alloys 11
2.3 The forming condition of amorphous alloys 12
2.3.1 The glass forming ability 12
2.3.2 Empirical rules for the formation of amorphous alloys 17
2.4 Characterization of amorphous alloys 22
2.4.1 Mechanical properties 23
2.4.2 Magnetic properties 25
2.4.3 Chemical properties 25
2.4.4 Other properties 26
2.5 Mechanical behaviors of amorphous alloys 27
2.5.1 Stress-strain curves and fracture morphologies 27
2.5.2 Temperature effect 28
2.5.3 Strain rate effect 31
2.5.4 Sample size effect 32
2.5.5 Geometric constraint effect 33
2.5.6 Deformation mechanisms of metallic glasses 35
2.6 Strategies to improve mechanical properties of metallic glasses 37
2.7 The development of Cu-based metallic glasses 40
2.8 Deformation induced martensitic transformation of CuZr B2 phase 41
Chapter 3 Experimental procedures 43
3.1 Raw materials 43
3.2 Computational thermodynamic approach 43
3.3 Sample preparations 45
3.3.1 Arc melting 45
3.3.2 Suction casting 46
3.3.3 Suction casting with different inlet edged molds 47
3.4 Identifications of amorphous nature 48
3.4.1 X-ray diffraction analyses 48
3.4.2 Thermal analyses 48
3.4.3 Qualitative and quantitative analyses 49
3.5 Mechanical tests 49
3.5.1 Sample preparation 49
3.5.2 Compression test 50
3.6 SEM observations 51
3.7 TEM observations 51
Chapter 4 Results 52
4.1 Sample observations 52
4.2 Monolithic bulk metallic glasses 52
4.2.1 XRD and SEM/EDS analyses 52
4.2.2 Mechanical properties 53
4.2.3 Fracture surface observations 53
4.3 BMGCs with micro-sized second phases 54
4.3.1 Microstructure analyses 55
4.3.2 Mechanical properties 57
4.4 BMGCs with nano-sized second phases 58
4.4.1 Microstructure analyses 58
4.4.2 Mechanical properties 59
4.5 BMGCs cast by two different molds 60
4.5.1 Microstructure analyses 60
4.5.2 Mechanical properties 62
Chapter 5 Discussion 63
5.1 Flow serrations of monolithic BMGs from energy release perspective 63
5.2 Mechanical response of micro-scaled phases in CuZrAl-V/Co BMGCs 67
5.3 Effects of V on phase formation and plasticity improvement 70
5.4 Effect of cast mold inlet orifice on plasticity of Cu-Zr-Al glassy alloys 76
5.5 Effects of B2 size on martensitic/twinning transformation and mechanical plasticity 82
Chapter 6 Conclusion 83
References 86
Tables 97
Figures 110
參考文獻 References
[1] Inoue A, Acta Mater. 2000;48:279.
[2] Pampillo CA, J. Mater. Sci. 1975;10:1194.
[3] Chen HS, Rep. Prog. Phys. 1980;43:353.
[4] Greer AL, Science 1995;267:1947.
[5] Johnson WL, MRS Bull. 1999;24:42.
[6] Wang WH, Dong C, Shek CH, Mater. Sci. Eng. R-Rep. 2004;44:45.
[7] Chen MW, Annu. Rev. Mater. Res. 2008;38:445.
[8] Huang JC, Chu JP, Jang JSC, Intermetallics 2009;17:973.
[9] Liu CT, Heatherly L, Easton DS, Carmichael CA, Schneibel JH, Chen CH, Wright JL, Yoo MH, Horton JA, Inoue A, Metall. Mater. Trans. 1998;A29:1811.
[10] Schuh CA, Hufnagel TC, Ramamurty U, Acta Mater. 2007;55:4067.
[11] Zhang ZF, Wu FF, He G, Eckert J, J. Mater. Sci. Technol. 2007;23:747.
[12] Song SX, Bei H, Wadsworth J, Nieh TG, Intermetallics 2008;16:813.
[13] Chen HM, Du XH, Huang JC, Jang JSC, Nieh TG, Intermetallics 2009;17:330.
[14] Hays CC, Kim CP, Johnson WL, Phys. Rev. Lett. 2000;84:2901.
[15] Schroers J, Johnson WL, Phys. Rev. Lett. 2004;93:255506.
[16] Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH, Science 2007;315:1385.
[17] Conner RD, Dandliker RB, Johnson WL, Acta Mater. 1998;46:6089.
[18] Das J, Tang MB, Kim KB, Theissmann R, Baier F, Wang WH, Eckert J, Phys. Rev. Lett. 2005;94:205501.
[19] Jang JSC, Ciou JY, Hung TH, Huang JC, Du XH, Appl. Phys. Lett. 2008;92:011930.
[20] Xing LQ, Li Y, Ramesh KT, Li J, Hufnagel TC, Phys. Rev. B 2001;64:180201.
[21] Yao KF, Ruan F, Yang YQ, Chen N, Appl. Phys. Lett. 2006;88:122016.
[22] Du XH, Huang JC, Hsieh KC, Lai YH, Chen HM, Jang JSC, Liaw PK, Appl. Phys. Lett. 2007;91:131901.
[23] Park ES, Kim DH, Acta Mater. 2006;54:2597.
[24] Du XH, Huang JC, Chen HM, Chou HS, Lai YH, Hsieh KC, Jang JSC, Liaw PK, Intermetallics 2009;17:607.
[25] Du XH, Huang JC, Hsieh KC, Jang JSC, Liaw PK, Chen HM, Chou HS, Lai YH, Adv. Eng. Mater. 2009;11:387.
[26] Makino A, Li X, Yubuta K, Chang C, Kubota T, Inoue A, Scr. Mater. 2009;60:277.
[27] Park JM, Na JH, Kim DH, Kim KB, Mattern N, Kühn U, Eckert J, Philos. Mag. 2010;90:2619.
[28] Hofmann DC, Suh JY, Wiest A, Duan G, Lind ML, Demetriou MD, Johnson WL, Nature 2008;451:1085.
[29] Pauly S, Gorantla S, Wang G, Kühn U, Eckert J, Nat. Mater. 2010;9:473.
[30] Pauly S, Liu G, Wang G, Kühn U, Mattern N, Eckert J, Acta Mater. 2009;57:5445.
[31] Pauly S, Das J, Duhamel C, Eckert J, Adv. Eng. Mater. 2007;6:487.
[32] Pauly S, Das J, Bednarcik J, Mattern N, Kim KB, Kim DH, Eckert J, Scr. Mater. 2009;60:431.
[33] Wu Y, Xiao YH, Chen GL, Liu CT, Lu ZP, Adv. Mater. 2010;22:2770.
[34] Wu Y, Wang H, Wu HH, Zhang ZY, Hui XD, Chen GL, Ma D, Wang XL, Lu ZP, Acta Mater. 2011;59:2928.
[35] Inoue A, Zhang W, Zhang T, Kurosaka K, Mater. Trans., JIM 2001;42:1149.
[36] Inoue A, Zhang W, Zhang T, Kurosaka K, Acta Mater. 2001;49:2645.
[37] Lin XH, Johnson WL, J. Appl. Phys. 1995;78:6514.
[38] Eckert J, Das J, Kim KB, Baier F, Tang MB, Wang WH, Zhang ZF, Intermetallics 2006;14:876.
[39] Duhamel C, Das J, Pauly S, Lee KS, Eckert J, Rev. Adv. Mater. Sci. 2008;18:527.
[40] Zhang Q, Zhang W, Xie G, Inoue A, Mater. Trans., JIM 2007;48:1626.
[41] Kuo CN, Huang JC, Du XH, Liu XJ, Nieh TG, J. Alloys Compd. 2013;XX:XX.
[42] Kuo CN, Huang JC, Du XH, Chen YC, Liu XJ, Nieh TG, Mater. Sci. Eng., A 2013;561:245.
[43] Takeuchi A, Inoue A, Mater. Trans., JIM 2000;41:1372.
[44] Aghamiry E, Gholampour R, Khademian N, Mater. Sci. Eng. A 2012;547 80.
[45] Klement W, Willens RH, Duwez P, Nature 1960;187:869.
[46] 吳學陞, 工業材料 1999;149:154.
[47] Kavesh S. Metallic Glasses. Mark Park, OH: ASM International, 1978.
[48] Chen HS, Miller CE, Rev. Sci. Instrum. 1970;41:1237.
[49] Chen HS, Turnbull D, Acta Metall. 1969;17:1021.
[50] Chen HS, Krause JT, Sigety EA, J. Non-Cryst. Solids 1974;13:321.
[51] Chen HS, Acta Metall. 1974;22:1505.
[52] Liebermann HH, Graham CD, IEEE Trans. Magn. 1976;12:921.
[53] Drehman AJ, Greer AL, Turnbull D, Appl. Phys. Lett. 1982;41:716.
[54] Kui HW, Greer AL, Turnbull D, Appl. Phys. Lett. 1984;45:615.
[55] Inoue A, Zhang T, Masumoto T, Mater. Trans., JIM 1989;30:965.
[56] Inoue A, Yamaguchi H, Zhang T, Masumoto T, Mater. Trans., JIM 1990;31:104.
[57] Inoue A, Kita K, Zhang T, Masumoto T, Mater. Trans., JIM 1989;30:722.
[58] Inoue A, Zhang T, Masumoto T, Mater. Trans., JIM 1990;31:425.
[59] Inoue A, Kato A, Zhang T, Kim SG, Masumoto T, Mater. Trans., JIM 1991;32:609.
[60] Zhang T, Inoue A, Masumoto T, Mater. Trans., JIM 1991;32:1005.
[61] Inoue A, Nishiyama N, Kimura H, Mater. Trans., JIM 1997;38:179.
[62] Telford M. The case for bulk metallic glass, 2004.
[63] Inoue A. Bulk Amorphous Alloys. Zurich: Trans. Tech., 1998-1999.
[64] Fan C, Takeuchi A, Inoue A, Mater. Trans., JIM 1999;40:42.
[65] Fan C, Inoue A, Appl. Phys. Lett. 2000;77:46.
[66] Lu ZP, Li Y, Ng SC, J. Non-Cryst. Solids 2000;270:103.
[67] Lu ZP, Tan H, Li Y, Ng SC, Scr. Mater. 2000;42:667.
[68] Li Y, Ng SC, Ong CK, Hng HH, Goh TT, Scr. Mater. 1997;36:783.
[69] Waniuk TA, Schroers J, Johnson WL, Appl. Phys. Lett. 2001;78:1213.
[70] Shen TD, He Y, Schwarz RB, J. Mater. Res. 1999;14:2107.
[71] Lu ZP, Liu CT, Acta Mater. 2002;50:3501.
[72] Lu ZP, Liu CT, Phys. Rev. Lett. 2003;91:115505.
[73] Xiao XS, Fang SS, Xia L, Li WH, Hua Q, Dong YD, J. Alloys Compd. 2003;351:324.
[74] Fan GJ, Choo H, Liaw PK, J. Non-Cryst. Solids 2007;353:102.
[75] Chen QJ, Shen J, Zhang DL, Fan HB, Sun J, McCartney DG, Mater. Sci. Eng., A 2006;433:155.
[76] Du XH, Huang JC, Liu CT, Lu ZP, J. Appl. Phys. 2007;101:086108.
[77] Reed-hill RE, Abbaschian R. Physical Metallurgy Principles: I.T. Publishing, 3rd, 1994.
[78] Egami T, Mater. Sci. Eng., A 1997;226:261.
[79] Fang SS, Xiao X, Lei X, Li WH, Dong YD, J. Non-Cryst. Solids 2003;321:120.
[80] Shek CH, Wang YM, Dong C, Mater. Sci. Eng., A 2000;291:78.
[81] Chen W, Wang Y, Qiang J, Dong C, Acta Mater. 2003;51:1899.
[82] Xi XK, Zhao DQ, Pan MX, Wang WH, Intermetallics 2005;13:638.
[83] Ma D, Cao H, Ding L, Chang YA, Hsieh KC, Pan Y, Appl. Phys. Lett. 2005;87:171914.
[84] Lu ZP, Liu CT, J. Mater. Sci. 2004;39:3965.
[85] Park ES, Kang HG, Kim WT, Kim DH, J. Non-Cryst. Solids 2001;279:154.
[86] Amiya K, Inoue A, Mater. Trans., JIM 2001;42:543.
[87] Amiya K, Inoue A, Mater. Trans., JIM 2000;41:1460.
[88] Men H, Hu ZQ, Xu J, Scr. Mater. 2002;46:699.
[89] Ma H, Shi LL, Xu J, Li Y, Ma E, Appl. Phys. Lett. 2005;87:181915.
[90] Cheng YT, Hung TH, Huang JC, Hsieh PJ, Jang JSC, Mater. Sci. Eng., A 2007;449:501.
[91] Cheng YT, Hung TH, Huang JC, Jang JSC, Tsao CYA, Lee F, Intermetallics 2006;14:866.
[92] Zhang ZF, Zhang H, Pan XF, Das J, Eckert J, Philos. Mag. Lett. 2005;85:513.
[93] Liu FX, Liaw PK, Wang GY, Chiang CL, Smith DA, Rack PD, Chu JP, Buchanan RA, Intermetallics 2006;14:1014.
[94] Jiang WH, Fan GJ, Choo H, Liaw PK, Mater. Lett. 2006;60:3537.
[95] Chen HM, Chang YC, Hung TH, Du XH, Huang JC, Jang JSC, Liaw PK, Mater. Trans., JIM 2007;48:1802.
[96] Bei H, Xie S, George EP, Phys. Rev. Lett. 2006;96:105503.
[97] Zhang ZF, Eckert J, Schultz L, Acta Mater. 2003;51:1167.
[98] Inoue A, Zhang T, Zhang W, Takeuchi A, Mater. Trans., JIM 1996;37:99.
[99] Inoue A, Zhang T, Takeuchi A, Zhang W, Mater. Trans., JIM 1996;37:636.
[100] Chaudhar.P, Cuomo JJ, Gambino RJ, Appl. Phys. Lett. 1973;22:337.
[101] Buschow KHJ, Vanderkraan AM, J. Magn. Magn. Mater. 1981;22:220.
[102] Inoue A, Takeuchi A, Zhang T, Metall. Mater. Trans. 1998;A29:1779.
[103] Inoue A, Shinohara Y, Gook JS, Mater. Trans., JIM 1995;36:1427.
[104] Inoue A, Koshiba H, Zhang T, Makino A, J. Appl. Phys. 1998;83:1967.
[105] Inoue A, Katsuya A, Mater. Trans., JIM 1996;37:1332.
[106] Inoue A, Fujita K, Zhang T, Makino A, Mater. Trans., JIM 1998;39:327.
[107] Qin CL, Zhang W, Asami K, Kimura H, Inoue A, J. Mater. Res. 2007;22:1710.
[108] Qin CL, Asami K, Zhang T, Zhang W, Inoue A, Mater. Trans., JIM 2003;44:1042.
[109] Pang SJ, Zhang T, Asami K, Inoue A, Acta Mater. 2002;50:489.
[110] Pang S, Zhang T, Asami K, Inoue A, Mater. Trans., JIM 2002;43:2137.
[111] Asami K, Qin CL, Zhang T, Inoue A, Mater. Sci. Eng., A 2004;375-377:235.
[112] Li Y, Bai HY, Wen P, Liu ZX, Zhao ZF, J. Phys. 2003;15:4809.
[113] Li Y, Bai HY, J. Non-Cryst. Solids 2005;351:2378.
[114] Tanaka H, Senoh H, Kuriyama N, Aihara K, Terashita N, Nakahata T, Mater. Sci. Eng., B 2004;108:81.
[115] Mukai T, Nieh TG, Kawamura Y, Inoue A, Higashi K, Intermetallics 2002;10:1071.
[116] Zhang ZF, He G, Eckert J, Schultz L, Phys. Rev. Lett. 2003;91:045505.
[117] Spaepen F, Scr. Mater. 2006;54:363.
[118] Spaepen F, Acta Metall. 1977;25:407.
[119] Schroers J, Pham Q, Desai A, J. Microelectromech. Syst. 2007;16:240.
[120] Schroers J, Nguyen T, O'Keeffe S, Desai A, Mater. Sci. Eng., A 2007;449:898.
[121] Li HQ, Tao KX, Fan C, Liaw PK, Choo H, Appl. Phys. Lett. 2006;89:041921.
[122] Li HQ, Fan C, Choo H, Liaw PK, Mater. Trans., JIM 2006;48:1752.
[123] Dalla Torre FH, Dubach A, Siegrist ME, Loffler JF, Appl. Phys. Lett. 2006;89:091918.
[124] Zhang J, Park JM, Kim DH, Kim HS, Mater. Sci. Eng., A 2007;449:290.
[125] Xiao XS, Fang SS, Xia L, Li WH, Hua Q, Dong Y, J. Non-Cryst. Solids 2003;330:242.
[126] Jiang WH, Liu FX, Jiang F, Qiu KQ, Choo H, Liaw PK, J. Mater. Res. 2007;22:2655.
[127] Jiang WH, Fan GJ, Liu F, Wang GY, Choo H, Liaw PK, Int. J. Plast. 2008;24:1.
[128] Zheng Q, Cheng S, Strader JH, Ma E, Xu J, Scr. Mater. 2007;56:161.
[129] Xie S, George EP, Intermetallics 2008;16:485.
[130] Wu WF, Han Z, Li Y, Appl. Phys. Lett. 2008;93:061908.
[131] Wu FF, Zhang ZF, Mao SX, Eckert J, Philos. Mag. Lett. 2009;89:178.
[132] Volkert CA, Donohue A, Spaepen F, J. Appl. Phys. 2008;103:083539.
[133] Schuster BE, Wei Q, Hufnagel TC, Ramesh KT, Acta Mater. 2008;56:5091.
[134] Schuster BE, Wei Q, Ervin MH, Hruszkewycz SO, Miller MK, Hufnagel TC, Ramesh KT, Scr. Mater. 2007;57:517.
[135] Lee CJ, Huang JC, Nieh TG, Appl. Phys. Lett. 2007;91:161913.
[136] Lai YH, Lee CJ, Cheng YT, Chou HS, Chen HM, Du XH, Chang CI, Huang JC, Jian SR, Jang JSC, Nieh TG, Scr. Mater. 2008;58:890.
[137] Huang YJ, Shen J, Sun JF, Appl. Phys. Lett. 2007;90:081919.
[138] Yang Y, Ye JC, Lu J, Liu FX, Liaw PK, Acta Mater. 2009;57:1613.
[139] Wu WF, Zhang CY, Zhang YW, Zeng KY, Li Y, Intermetallics 2008;16:1190.
[140] Wu WF, Li Y, Schuh CA, Philos. Mag. 2008;88:71.
[141] Jiang WH, Qiu KQ, Liu FX, Choo H, Liaw PK, Adv. Eng. Mater. 2007;9:147.
[142] Wang K, Fujita T, Zeng YQ, Nishiyama N, Inoue A, Chen MW, Acta Mater. 2008;56:2834.
[143] Cohen MH, Turnbull D, J. Chem. Phys. 1959;31:1164.
[144] Polk DE, Turnbull D, Acta Metall. 1972;20:493.
[145] Argon AS, Acta Metall. 1979;27:47.
[146] Yang B, Liu CT, Nieh TG, Appl. Phys. Lett. 2006;88:221911.
[147] Srolovitz D, Vitek V, Egami T, Acta Metall. 1983;31:335.
[148] Schuh CA, Lund AC, Nat. Mater. 2003;2:449.
[149] Falk ML, Phys. Rev. B 1999;60:7062.
[150] Argon AS, Kuo HY, Mater. Sci. Eng. 1979;39:101.
[151] Pan D, Inoue A, Sakurai T, Chen MW, Proc. Natl. Acad. Sci. U.S.A. 2008;105:14769.
[152] Leamy HJ, Wang TT, Chen HS, Metall. Mater. Trans. B 1972;3:699.
[153] Pampillo CA, Reimschuessel AC, J. Mater. Sci. 1974;9:718.
[154] Spaepen S, Turnbull D, Scr. Metall. 1974;8:563.
[155] Chou CPP, Spaepen F, Acta Metall. 1975;23:609.
[156] Dai LH, Yan M, Liu LF, Bai YL, Appl. Phys. Lett. 2005;87:141916.
[157] Yang B, Morrison ML, Liaw PK, Buchanan RA, Wang GY, Liu CT, Denda M, Appl. Phys. Lett. 2005;86:141904.
[158] Fan C, Inoue A, Mater. Trans., JIM 2000;41:1467.
[159] Fan C, Ott RT, Hufnagel TC, Appl. Phys. Lett. 2002;81:1020.
[160] Fan C, Qiao DC, Wilson TW, Choo H, Liaw PK, Mater. Sci. Eng., A 2006;431:158.
[161] Wada T, Inoue A, Greer AL, Appl. Phys. Lett. 2005;86:251907.
[162] Pauly S, Das J, Mattern N, Kim DH, Eckert J, Intermetallics 2009;17:453.
[163] Park BJ, Chang HJ, Kim DH, Kim WT, Chattopadhyay K, Abinandanan TA, Bhattacharyya S, Phys. Rev. Lett. 2006;96:245503.
[164] Park ES, Kyeong JS, Kim DH, Scr. Mater. 2007;57:49.
[165] Pan DG, Zhang HF, Wang AM, Hu ZQ, Appl. Phys. Lett. 2006;89:261904.
[166] Sung DS, Kwon OJ, Fleury E, Kim KB, Lee JC, Kim DH, Kim YC, Met. Mater. Int. 2004;10:575.
[167] Kim YC, Lee JC, Cha PR, Ahn JP, Fleury E, Mater. Sci. Eng., A 2006;437:248.
[168] Dai CL, Guo H, Shen Y, Li Y, MA E, Xu J, Scr. Mater. 2006;54:1403.
[169] Hu CJ, Wu HM, J. Alloys Compd. 2007;434-435:390.
[170] Zhang QS, Zhang HF, Deng YF, Ding BZ, Hu ZQ, Scr. Mater. 2003;49:273.
[171] Zhang T, Inoue A, Mater. Trans., JIM 1999;40:301.
[172] Li C, Saida J, Kiminami M, Inoue A, J. Non-Cryst. Solids 2000;261:108.
[173] Inoue A, Zhang W, Appl. Phys. Lett. 2003;83:2351.
[174] Inoue A, Zhang W, Tsurui T, Yavari AR, Greer AL, Philos. Mag. Lett. 2005;85:221.
[175] Seo JW, Schryvers D, Acta mater. 1998;46:1165.
[176] Schryvers D, J. Phys. 1995;5:1047.
[177] Garde RJ. Fluid Mechanics Through Problems: New Age International, 1997.
[178] Oertel H, Prandtl L, Böhle M, Mayes K. Prandtl's Essentials of Fluid Mechanics: Springer, 2004.
[179] Gurland J. Quantitative Microscopy. New York: McGraw-Hill, 1968.
[180] Ye JC, Lu J, Yang Y, Liaw PK, Intermetallics 2010;18:385.
[181] Zhang ZF, Eckert J, Phys. Rev. Lett. 2005;94:094301.
[182] Spaepen F, Acta Metall. 1975;23:615.
[183] Wright WJ, Saha R, Nix WD, Mater. Trans., JIM 2001;42:642.
[184] Song SX, Nieh TG, Intermetallics 2009;17:762.
[185] Song SX, Wang XL, Nieh TG, Scr. Mater. 2010;62:847.
[186] Kuo CN, Chen HM, Du XH, Huang JC, Intermetallics 2010;18:1648.
[187] Chen HM, Huang JC, Song SX, Nieh TG, Jang JSC, Appl. Phys. Lett. 2009;94:141914.
[188] Zhang Y, Stelmashenko NA, Barber ZH, Wang WH, Lewandowski JJ, Greer AL, J. Mater. Res. 2007;22:419.
[189] Yang B, Liu CT, Nieh TG, Morrison ML, Liaw PK, Buchanan RA, J. Mater. Res. 2006;21:915.
[190] Lewandowski JJ, Greer AL, Nat. Mater. 2006;5:15.
[191] Han Z, Li Y, J. Mater. Res. 2009;24:3620.
[192] Hull D, Clyne TW. An Introduction To Composite Materials: Cambridge, 1996.
[193] Wang JG, Zhao DQ, Pan MX, Wang WH, Song SX, Nieh TG, Scr. Mater. 2010;62:477.
[194] Wang L, Bei H, Gao YF, Lu ZP, Nieh TG, Acta Mater. 2011;59:7627.
[195] Nagasaki S, Hirabayashi M. Binary Alloy Phase Diagrams. Beijing, China: Metallurgical Industry Press, 2004.
[196] Xu D, Lohwongwatana B, Duan G, Johnson WL, Garland C, Acta Mater. 2004;52:2621.
[197] Tang MB, Zhao DQ, Pan MX, Wang WH, Chin. Phys. Lett. 2004;21:901.
[198] Hirata A, Hirotsu Y, Matsubara E, Ohkubo T, Hono K, Phys. Rev. B 2006;74:184204.
[199] Bernstein N, Aziz MJ, Kaxiras E, Phys. Rev. B 1998;58:4579.
[200] Boyd JD, Nicholson RB, Acta Mater. 1971;19:1101.
[201] Christian J. The Theory of Transformation in Metals and Alloys. Oxford: Pergamon Press, 1975.
[202] Reynolds O, Philos. Trans. R. Soc. London 1883;174:935.
[203] Rott N, Annu. Rev. Fluid Mech. 1990;22:1.
[204] Konstantinova N, Kurochkin A, Popel P, EPJ Web of Conferences 2011;15:1.
[205] Lu XY, Kolbe M, Herlach DM, Mater. Res. Soc. 2003;754:21.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code