Responsive image
博碩士論文 etd-0424117-100707 詳細資訊
Title page for etd-0424117-100707
論文名稱
Title
特殊鉭鎢碳化物與石墨烯之脈衝雷射剝熔蝕合成與鑑定
Synthesis and characterization of special Ta/W carbides and graphene by pulsed laser ablation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
211
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-04-28
繳交日期
Date of Submission
2017-06-06
關鍵字
Keywords
脈衝雷射剝熔蝕、奈米凝聚物、鉭-碳、鎢-碳、亂層石墨烯、晶向關係、聚炔烴
W-C, crystallographic relationship, polyyne, turbostratic graphene, Ta-C, nanocondensate, pulsed laser ablation
統計
Statistics
本論文已被瀏覽 5715 次,被下載 30
The thesis/dissertation has been browsed 5715 times, has been downloaded 30 times.
中文摘要
本研究利用脈衝雷射剝熔蝕靶材於真空中伴隨著基材上的碳或特殊的液態環境中,合成鉭-鎢-碳系統中不同型態的特殊耐火金屬碳化物以及石墨烯,並利用穿透式電子顯微鏡及光譜去做鑑定。
首先是在高能量密度下,於真空中對塊材TaC作脈衝雷射剝熔蝕合成碳化鉭凝聚物。穿透式電子顯微鏡觀察到的顆粒及奈米凝聚物,為有著相當程度的非化學劑量及缺陷之岩鹽結構TaC及六方Ta2C的複合物。TaC的顆粒有著良好發展的{001}、{011}、{111}面伴隨著聚簇所形成的{111}雙晶面。而Ta2C的顆粒則有(0001)、{1010}、{11-20}以及{1-101}的面。周圍的TaC及Ta2C奈米凝聚物則有著{022}TaC // {01-10}Ta2C、<100>TaC // <0001>Ta2C的晶向關係。而吸收光譜顯示雙峰的最小能隙值約3.8 eV及2.3 eV。
再來,於真空中脈衝雷射剝熔蝕鎢金屬靶材,合成出體心立方晶及其衍生物的鎢/碳化鎢凝聚物及顆粒。體心立方晶及序化體心斜方晶的碳化鎢顆粒周圍會被亂層石墨烯層所包圍。體心立方晶結構的鎢奈米凝聚物顯現出{110}及{112}的面以及對稱的[111](110)傾斜界面和非對稱的[111](-110)/(-23-1)傾斜界面。碳參雜的體心斜方晶結構的鎢奈米凝聚物則有{110}的雙晶/疊差、相稱超晶格、(011)[100]/(-101)[010]的特殊界面以及約30°{111}的扭轉界面。
接著,於真空中脈衝雷射剝熔蝕碳化鎢靶材,合成特殊形狀及面缺陷的WC及W2C奈米顆粒。最主要的β-W2C1-x顆粒顯現(0001)、{-1011}面及(0001)的疊差和 [2-1-10](0-113)的雙晶界面。次要的γ-WC1-x則有發展良好的{100}、{110}及{111}面,還有(1-11)的聚片變形雙晶。
此外,於TEOS溶液中脈衝雷射剝熔蝕鎢金屬靶材則主要產生γ-WC及次要的α-W及β-W。對比於先前由於承接基板上的碳過參雜,則形成有序體心斜方晶結構的鎢顆粒。
最後,於液態氮中利用不同能量的脈衝雷射剝熔蝕碳靶材,產生多層的石墨烯奈米緞帶及奈米板以及聚炔烴(polyyne),並利用X光/電子繞射及光譜去做鑑定。
Abstract
This research deals with the synthesis and transmission electron microscopic (TEM) coupled with optical spectroscopic characterizations of some special carbides of refractory metals and graphene with various forms in Ta-W-C based system as fabricated by pulsed laser ablation (PLA) of bulk targets with optional supply of carbon from the substrate in vacuum or from a specific liquid environment.
PLA of bulk TaC in vacuum under a peak power density of 1.3 x 1011 W/cm2 were used to fabricate tantalum carbide condensates. TEM observations indicated the resultant particulates and nanocondensates are composite of rocksalt type TaC and hexagonal Ta2C with a considerable extent of nonstoichiometry and defect clusters yet negligible turbostratic graphene. The TaC particulates have well-developed {001}, {011}, {111} faces with occasional twinned bicrystal following {111} twin plane due to coalescence event, whereas the Ta2C particulates have (0001), {10-10}, {11-20} and {1-101} faces but hardly twinned. The surrounding TaC and Ta2C nanocondensates were found to follow almost the crystallographic relationship {022}TaC//{01-10}Ta2C; <100>TaC//<0001>Ta2C which can be rationalized by their coalescence over the well-developed (100)TaC and (0001)Ta2C surface for further twisting toward an energy cusp with a fair coincidence site lattice. The TaC and Ta2C composite particulates/condensates have a bimodal minimum band gap of ~3.7 and ~2.3 eV for potential optoelectronic applications.
PLA of bulk α-W target in vacuum under a peak power density of 1.3 x 1011 W/cm2 caused the bcc-type based/derived W/WC condensates/particulates with {110} preferred orientation. The WC particulates with body-centered cubic (B2) and ordered body-centered orthorhombic (OBCO)-type structures tended to be encapsulated/surrounded by turbostratic graphene lamellae rolls due to C uptake from the supporting carbon-coated collodion film. The bcc-type α-W nanocondensates showed ledged {110} and {112} faces for mutual coalescence as special interfaces such as symmetrical [111](-110) tilt boundary and asymmetrical [111](-110)/(-23-1) tilt boundary. The carbon doped body-centered orthorhombic (BCO)-type W nanocondensates have prevailed {110} twinning/faulting, commensurate superstructure and (011)[100]/(-101)[010] special interface as well as {111} ca. 30° twist boundary. As the carbon atoms progressively substitute for tungsten atoms for the composite W/WC condensates/particulates by the C-richer substrate, the minimum band gap decreases from 3.55 to 3.21 eV implying their potential optoelectronic and catalytic applications.
PLA of bulk δ-WC in vacuum caused rapid solidification and condensation of tungsten mono- and semi-carbide nanoparticles having high-temperature primitive structures with specific shape and planar defects. The predominant β-type W2C1-x particulates with primitive hexagonal structure (P63/mmc) and hence forbidden (0001) reflection showed (0001), { 011} facets, (0001) fault and a coherent [2-1-10](0-113) twin boundary due to (0-113)-specific coalescence and/or a growth mechanism. The minor high-temperature stabilized γ-WC1-x particulates with rocksalt-type structure showed well-developed {100}, {110} and {111} facets and (1-11) polysynthetic deformation twinning. The nanocondensates ranging from 5 to 20 nm in size were made of β-W2C1-x, γ-WC1-x, and rare W3C (with bcc sublattice of C) all having point defect clusters when mediated by the 2-3 nm sized lamellar phase of amorphous carbon with W dopant. The occurrence of β-W2C1-x and γ-WC1-x rather than C-overdoped BCO-type W and OBCO-type WC indicates that such ordered superstructures can only occur by inward diffusion of C from substrate upon pulsed laser heating in vacuum as shown in previous part.
Besides, PLA of bulk W in tetraethyl orthosilicate (TEOS) under free run mode vs vacuum under Q-switch mode were comparatively studied. The W-based nanoparticles less than 20 nm in size thus formed in the former process are mainly γ-WC and minor α-W (bcc) and β-W (simple cubic). By contrast, C-doped W particulates with OBCO structure were formed in the latter process due to carbon overdosage from the supporting substrate. This knowledge sheds light on the kinetic phase selection of the W-based materials in the C-Si-O-H environment for some engineering applications.
Finally, multilayer graphene nanoribbons and nanoplates in flat appearance and a byproducts of polyyne molecules as formed by PLA of bulk graphite in liquid nitrogen (LN2) within a peak power density range of 1011 to 107 W/cm2 were characterized by X-ray/electron diffraction and optical spectroscopy. The nanoribbons have unusual in-plane corrugations ca. 5-10 nm periodicity parallel to the flat surface, whereas the nanoplates gave tangential orientation domain boundaries, i.e. glide and twisting stacking faults in terms of A/B sites wrong registration and 30° rotation, respectively of the basal layers. The nanoribbons tended to parallel align on the orthogonal nanoplates to form 90° tilt boundary with 2-D semicoherency constrained by the coherent [11] direction. The graphene nanoribbons/nanoplates with near visible absorbance and polyyne molecules (C2H2 up to C14H2) with multiple UV absorbance have potential bio-medical/optoelectronic applications. The formation mechanism of the graphene nanostructures and the H uptake of polyyne by the PLA process in LN2 are addressed.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Contents ix
List of Figures xiii
List of Appendixes and Supplements xxii
List of Tables xxiv

Chapter 1
Research outline and background

Chapter 2
Laser ablation synthesis of tantalum carbide particles with specific phase assemblage and special interface

2-1. Introduction 3
2-2. Experimental 6
2-2-1. PLA synthesis 6
2-3. Results 7
2-3-1. XRD 7
2-3-2. SEM 8
2-3-3. TEM-EDX 9
2-3-4. Raman and UV-visible spectra 12
2-4. Discussion 13
2-4-1. Laser parameters of the formation of condensates and particulates 13
2-4-2. Phase selection of tantalum carbide and excess carbon by PLA 15
2-4-3. Special interface of TaC1-x/Ta2C condensates 19
2-4-4. Implications 20
2-5. Conclusions 20

Chapter 3
Pulsed laser synthesis of carbon-overdoped tungsten with a body-centered orthorhombic structure and planar defects

3-1. Introduction 41
3-2. Experimental 45
3-2-1. PLA synthesis 45
3-3-2. Characterization techniques 45
3-3. Results 46
3-3-1. XRD 46
3-3-2. TEM-EDX 48
3-3-2-1. Rapidly solidified particulates 48
3-3-2-2. Condensed nanpparticles 51
3-3-3. Raman probe 53
3-3-4. UV-visible absorbance 54
3-4. Discussion 54
3-4-1. Phase selection of W-C system by the PLA process 54
3-4-2. {110} shuffled superstructures of BCO- and/or OBCO-W nanocondensates 57
4-4-3. Surface and special grain boundaries with fair CSL 58
3-4-4. Engineering Implications 61
3-5. Conclusions 62

Chapter 4
High-temperature primitive tungsten mono/semicarbides with special defects by pulsed laser ablation of bulk WC in vacuum

4-1. Introduction 82
4-2. Experimental 84
4-2-1. PLA synthesis 84
4-2-2. Characterization techniques 85
4-3. Results 86
4-3-1. XRD 86
4-3-2. SEM 86
4-3-3. TEM 87
4-3-3-1. β-W2C1-x particulate 87
4-3-3-2. γ-WC1-x particulate 88
4-3-3-3. Nanocondensates with varied crystal structures 89
4-3-4. Raman spectroscopy and UV-visible absorbance 90
4-4. Discussion 91
4-4-1. Phase selection of W-C system by PLA of bulk δ-WC in vacuum 91
4-4-2. Causes of planar defects of γ-WC1-x and β-W2C1-x 93
4-4-3. Implications 96
4-5. Conclusions 96

Chapter 5
Pulsed laser synthesis of W-based particles C-Si-O-H environment

5-1. Introduction 115
5-2. Experimental 116
5-2-1. PLA synthesis 116
5-2-2. Characterization techniques 117
5-3 Results and discussions 118
5-3-1. PLA of W in TEOS 118
5-3-2. PLA of W in vacuum for particle deposition on a C-supporting substrate 120
5-4. Concluding remarks 120

Chapter 6
On the straight graphene nanoribbons/nanoplates with in-plane corrugations and special boundaries by pulsed laser ablation of graphite in liquid nitrogen

6-1. Introduction 127
6-2. Experimental 129
6-2-1. PLA synthesis 129
6-2-2. Characterization techniques 131
6-3. Results 132
6-3-1. XRD 132
6-3-2. TEM-EDX 133
6-3-2-1. PLA at a high peak power density in LN2 133
6-3-2-2. PLA at a relatively low peak power density in LN2 134
6-3-2-3. PLA at a high peak power density in vacuum 136
6-3-3. Raman spectra 136
6-3-4. UV-visible absorbance 137
6-3-5. XPS 138
6-4. Discussion 139
6-4-1. Rolling of turbostratic graphene with/without co-existing 3-D nanocrystal 139
6-4-2. Bonding configuration and formation mechanism of straight graphene nanoribbon with in-plane corrugations and strain 140
6-4-3. Translation (glide) and rotation (twist) stacking faults of graphene nanoplate 143
6-4-4. Implications 145
6-5. Conclusions 147
References 163
參考文獻 References
Ahlén N., Johnsson M., Nygren M., (1999) Oxidation behaviour of TaxTi1−xC and TaxTi1−xCyN1−y whiskers. Thermochim. Acta, 336, 111-120
Ahn K.Y., (1987) A comparison of tungsten film deposition techniques for very large scale integration technology. Thin Solid Films, 153, 469-478
Aitken Z.H., Huang R., (2010) Effects of misfit strain and substrate surface corrugation on morphology of supported monolayer graphene. J. Appl. Phys., 107, 123531
Allmen M. von, Blatter A., (1994) Laser-Beam Interactions with Materials. Springer-Verlag, New York
Antony L.V.M., O’Dell J.S., McKechnie T.N., Power C., Hemker K. and Mendis B., (2006) US pioneers high speed tiny tungsten. Met. Powder Rep., 61, 16-19
Aouadi M.S., Parsons R.R., Wong P.C. and Mitchell K.A.R., (1992) Characterization of sputter deposited tungsten films for x‐ray multilayers. J. Vac. Sci. Technol. A, 10, 273-280
Ariza M.P., Serrano R., Mendez J.P., (2012) Ortiz M. Stacking faults and partial dislocations in graphene. Phil. Mag., 92, 2004-2021
Ashfold M.N.R., Claeyssens F., Fuge G.M., Henley S.J., (2004) Pulsed laser ablation and deposition of thin films. Chemical Society Reviews, 33, 23-31
Austrheim H., Erambert M. and Boundy T.M., (1996) Garnet recording deep crustal earthquakes. Earth Planet. Sci. Lett., 139, 223-238
Baimova J.A., Dmitriev S.V., Zhou K., (2012) Strain-induced ripples in graphene nanoribbons with clamped edges. Physica Status Solidi (b), 249, 1393-1398
Bakshi S.R., Musaramthota V., Lahiri D., Singh V., Seal S., Agarwal A., (2011) Spark plasma sintered tantalum carbide: effect of pressure and nano-boron carbide sddition on microstructure and mechanical properties. Mater. Sci. Eng. A, 528, 1287-1295
Balani K., Gonzalez G., Agarwal A., Hickman R., O'Dell J.S., Seal S., (2006) Synthesis microstructural characterization and mechanical property evaluation of vacuum plasma sprayed tantalum carbide. J. Am. Ceram. Soc., 89, 1419-1425
Bao W., Miao F., Chen Z., Zang H., Jang W., Dames C. et al., (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nanotechnol, 4, 562-566
Baserga A., Russo V., Fonzo F. Di, Bailini A., Cattaneo D., Casari C.S., Bassi A. Li, Bottani C.E., (2007) Nanostructured tungsten oxide with controlled properties: synthesis and Raman characterization. Thin Solid Films, 515, 6465-6469
Bäuerle D., (2000) Laser Processing and Chemistry. Springer, Berlin
Baxter E.F., Caddick M.J. and Ague J.J., (2013) Garnet: common mineral, uncommonly useful. Element, 9, 415-419
Bhattacharya S.K., Tanaka S., Shiihara Y. and Kohyama M., (2014) Ab initio perspective of the< 110> symmetrical tilt grain boundaries in bcc Fe: application of local energy and local stress. J. Mater. Sci., 49, 3980-3995
Boulos M.I., Jureqicz J. and Guo J., (2007) Induction plasma synthesis of nanopowders. US Patent Application No. 20070029291
Bouziane K., Mamor M. and Meyer F., (2005) DC magnetron sputtered tungsten: W film properties and electrical properties of W/Si Schottky diodes. Appl. Phys. A: Mater. Sci. Process, 81, 209-215
Bowman A.L., Wallace T.C., Yarnell J.L., Wenzel R.G., Storms E.K., (1965) The crystal structures of V2C and Ta2C. Acta Crystallogr., 19, 6-9
Cai K.J., Zheng Y., Chen S., Shen P., (2014) TiCx-Ti2C nanocrystals and epitaxial graphene-based lamellae by pulsed laser ablation of bulk TiC in vacuum. CrystEngComm., 16, 5466-5474
Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K., (2009) The Electronic Properties of Graphene. Rev. Mod. Phys., 81, 109-163
Celiešiūtė R., Trusovas R., Niaurač G., Švedas V., Račiukaitis G., Ruželė Ž. et al., (2014) Influence of the laser irradiation on the electrochemical and spectroscopic peculiarities of graphene-chitosan composite film. Electrochimica Acta., 132, 265-276
Celik C., Antony T., Boulos M.I., Chen G. and Davis H.J., (2002) Methods and transferred arc plasma system for production of fine and ultrafine powders. US Patent Application No. 6379419
Cheetham A.K., (1981) Structural studies on nonstoichiometric oxides using x-ray and neutron diffraction, Ch. 8 in Nonstoichiometric Oxides (Ed. Søerensen O.T.). Academic Press: New York, pp. 399-433 and literature cited herein
Chen C.H., Huang C.N., Chen S.Y. and Shen P., (2011) Crystallographic shear of polymorphic TiO2 nanocondensates with enhanced Cr2O3 dissolution via pulsed laser ablation. J. Nanoparticle Res., 13, 3683-3692
Chen C.L., Nagase T. and Mori H., (2009) In situ TEM observations of irradiation-induced phase change in tungsten. J. Mater. Sci., 44, 1965-1968
Chen S.Y., Shen P., (2002) Laser ablation condensation of α-PbO2-type TiO2. Phys. Rev. Lett., 89, 096106
Chen S.Y., Shen P., (2004) Laser ablation condensation and transformation of baddeleyite-type related TiO2. Japanese Journal of Applied Physics, 43, 1519-1524
Chen Y.J., Li J.B., Wei Q.M., Zhai H.Z., (2002) Preparation of different morphology of TaCx whiskers. Mater. Lett. 56, 279-283
Chichkov B.N., Momma C., Nolte S., Von Alvensleben F., Tunnerman A., (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 63, 109-115
Choi J.G., (1999) The influence of surface properties on catalytic activities of tantalum carbides. Appl. Catal. A, 184, 189-201
Chopra K.L., Randlett M.R. and Duff R.H., (1966) Face-centered tungsten films obtained by. Appl. Phys. Lett., 9, 402-405
Chopra K.L., Randlett M.R. and Duff R.H., (1967) Face centered cubic modification in sputtered thin films of tantalum molybdenum, tungsten, rhenium, hafnium and zirconium. Philos. Mag., 16, 261-273
Costa P.M.F.J., Fang X.S., Wang S., He Y.H., Bando Y., Mitome M., Zou J., Huang H. and Golberg D., (2009) Two-probe electrical measurements in transmission electron microscopes—Behavioral control of tungsten microwires. Microscopy Research and Technique, 72, 93-100
Chrisey D.B., Hubler G.K., (1994) Pulsed laser deposition of thin films. Wiley-Interscience
Dahotre N.B. and Harimkar S.P., (2008) Laser Fabrication and Machining of Materials. Springer
Deer W.A., Howie R.A. and Zussman J., (1992) An introduction to the rock-forming minerals, 2nd ed., Longman, Essex, pp. 696
Desmaison-Brut M., Alexandre N., Desmaison J., (1997) Comparison of the oxidation behavior of two dense hot isostatically pressed tantalum carbide (TaC and Ta2C) materials. J. Eur. Ceram. Soc., 17, 1325-1334
Dressler B., (1990) Shock metamorphic features and their zoning and orientation in the Precambrian rocks of the Manicouagan structure: Quebec, Canada. Tectonophysics, 171, 229-245
Dyer P.E., Issa A., Key P.H., (1990) Dynamics of excimer laser ablation of superconductors in an oxygen environment. Applied Physics Letters 57, 186-188
Eason R., (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley-Interscience
Einarsdotter K., Sadigh B., Grimvall G. and Ozoliņš V., (1997) Phonon Instabilities in fcc and bcc Tungsten. Phys. Rev. Lett., 79, 2073-2076
Epicier T., Esnouf C., Dubois J., Fantozzi G., (1984) Dislocation structures in polycrystalline tungsten hemicarbide W2C deformed at high temperatures, in Tressler R.E., Bradt R.C., “Deformation of Ceramic Materials II,” pp. 73-86, Plenum Press, New York
Fabbro R., Fournier J., Ballard P., Devaux D., Virmont J., (1990) Physical study of laser-produced plasma in confined geometry. J. Appl. Phys., 68, 775-784
Fasolino A., Los J.H., Katsnelson M.I., (2008) Intrinsic ripples in graphene. Nat. Mater., 6, 858-861
Fedosejevs R., Gobet F., Dorchies F., Fourment C., Hannachi F., Aléonard M.M., Claverie G., Gerbaux M., Malka G., Scheurer J.N., Tarisien M., Meot V., Morel P., Liesfeld B., Robson L., Blasco F., Descamps D., Schurtz G., Nicolai Ph., Tikhonchuk V., (2005) Heating of Tantalum plasma for studies on the activation of the 6.238 keV nuclear level of Ta-181, 32nd EPS Conference on Plasma Phys. Tarragona, ECA Vol. 29C, pp. 1.152
Ferrari A.C., Robertson J., (2004) Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. London, Ser. A 362, 2477-2512
Fleming J.G., Lin S.Y., El-Kady I., Biswas R. and Ho K.M., (2002) All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 417, 52-55
Friedrich A., Winkler B., Juarez-Arellano E.A., Bayarjargal L., (2011) Synthesis of binary transition metal nitrides, carbides and borides from the elements in the laser-heated diamond anvil cell and their structure-property relations. Materials, 4, 1648-1692
Gasgnier M., Nevot L., Baillif P. and Bardolle J., (1983) Characterization and Crystalline Structures of Tungsten Thin Films. Phys. Stat. Sol. (a), 79, 531-542
Gazit D., (2009) Theory of the spontaneous buckling of doped graphene. Phys. Rev. B, 79, 113411
Geim A.K., Kim P., (2008) Carbon Wonderland. Sci. Am., 298, 90-97
Geim A.K., Novoselov K.S., (2007) The rise of graphene. Nat. Mater., 6, 183-191
Geringer V., Liebmann M., Echtermeyer T., Runte S., Schmidt M., Rückamp R. et al., (2008) Weak localization in graphene flakes. Phys. Rev. Lett., 100, 056802
Giorgi A.L., Szklarz E.G., Storms E.K., Bowman A.L., Matthias B.T., (1962) Effect of Composition on the Superconducting Transition Temperature of Tantalum Carbide and Niobium Carbide. Phys. Rev., 125, 837-838
Girault B., Eyidi D., Goudeau P., Sauvage T., Guerin P., Le Bourhis E. and Renault P.O., (2013) Controlled nanostructuration of polycrystalline tungsten thin films. J. Appl. Phys., 113,174310
Green D.J., Hannink R. and Swain M.V., (1989) Transformation Toughening of Ceramics. Boca Raton, CRC Press
Gusev A.I., Kurlov A.S., Lipatnikov V.N., (2007) Atomic and vacancy ordering in carbide ζ-Ta4C3−x(0.28⩽x⩽0.40) and phase equilibria in the Ta–C system. J. Solid State Chem., 180, 3234-3246
Gupta D.K., Seigle L.L., (1975) Free energies of formation of WC and W2C, and the thermodynamic properties of carbon in solid tungsten. Metallurgical Transactions A, 6, 1939-1944
Gusev A.I., Rempel A.A., Lipatnikov V.N., (1996) Incommensurate ordered phase in non-stoichiometric tantalum carbide. J. Phys.: Condens. Matter, 8, 8277-8293
Hackett K., Verhoef S., Cutler R.A., Shetty D.K., (2009) Phase constitution and mechanical properties of carbides in the Ta-C system. J. Am. Ceram. Soc., 92, 2404-2407
Haghiri-Gosnet A.M., Ladan F.R., Mayeux C. and Launois H., (1989) Stress and microstructure in tungsten sputtered thin films. J. Vac. Sci. Technol. A, 7, 2663-2669
Harris P.J.F., (1999) Carbon nanotubes and related structures – New materials for the twenty-first century. Cambridge University Press, Cambridge, pp. 1-279
Hirsch P.B., Howie A., Whelan M.J., (1960) A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects. Phil. Mag. A, 252, 499-529
Huang B.H., Shen P., Chen S.Y., (2008) {10 1} artificial epitaxy of dense ZnO on glass via pulse laser deposition. J. Eur. Ceram. Soc., 28, 2545-2555
Huang C.N., Chen S.Y. and Shen P., (2007) Condensation and Decomposition of NiO-Dissolved Rutile Nanospheres. J. Phys. Chem. C, 111, 3322-3327
Hwang S.L., Shen P., Chu H.T. and Yui T.F., (2001) Defect microstructures of minerals as a potential indicator of extremely rapid and episodic exhumation of ultrahigh-pressure metamorphic rock: implication to continental collision orogens. Earth Planet. Sci. Lett., 192, 57-63
Ishigami M., Chen J.H., Cullen W.G., Fuhrer M.S., Williams E.D., (2007) Atomic structure of graphene on SiO2. Nano Lett., 7, 1643-1648
Iwama S. and Hayakawa K., (1985) Preparation of ultrafine Mo and W particles by the gas evaporation technique with electron-beam heating. Surf. Sci., 156, 85-89
Jeong B., Ihm J., Lee G.D., (2008) Stability of dislocation defect with two pentagon-heptagon pairs in graphene. Phys. Rev. B, 78, 165403
Kandemir B.S., (2010) Corrugated graphene: effects of in-plane and tilted out-of-plane magnetic fields. The European Physical Journal B, 78, 393-397
Katsnelson M.I., Geim A.K., (2008) Electron scattering on microscopic corrugations in graphene. Philos Trans R Soc London Ser. A, 366, 195–204
Kecskes L.J., Cho K.C., Dowding R.J., Schuster B.E., Valiev R.Z. and Wei Q., (2007) Grain size engineering of bcc refractory metals: top-down and bottom-up-application to tungsten. Mater. Sci. Eng. A, 467, 3-43
Kim N.H., Ko P.J., Seo Y.J., Lee W.S., (2006) Improvement of TEOS-chemical mechanical polishing performance by control of slurry temperature. Microelectronic Eng., 83, 286-292
Kim P., Abkarian M., Stone H.A., (2011) Hierarchical folding of elastic membranes under biaxial compressive stress. Nature Materials, 10, 952-957
Krajewski A., D’Alessio L., De Maria G., (1998) Physico-chemical and thermophysical properties of cubic binary carbides. Cryst. Res. Technol. 33, 341-374
Kurlov A.S., Gusev A.I., (2006) Tungsten carbides and W-C phase diagram. Inorganic Materials, 42, 121-127
Kurlov A.S., Gusev A.I., (2007) Atomic-vacancy ordering in the lowest tungsten carbide W2C. J. Experimental and Theoretical Physics, 105, 710-721
Lassner E. and Schubert W.D., (1999) Tungsten: properties, chemistry, technology of the element, alloys and chemical compound. Kluwer Academic/Plenum Publishers, New York, pp. 1-36
Leclercq L., Provost M., Pastor H., Grimblot J., Hardy A.M., Gengembre L., Leclercq G., (1989) Catalytic properties of transition metal carbides I. Preparation and physical characterization of bulk mixed carbides of molybdenum and tungsten. J. Catal., 117, 371-383
Lee D.S., Riedl C., Krauss B., von Klitzing K., Starke U., Smet J.H., (2008) Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett., 8, 4320-4325
Lee Y.H., Choi C.H., Jang Y.T., Kim E.K., Ju B.K., Min N.K. and Ahn J.H., (2002) Tungsten nanowires and their field electron emission properties. Appl. Phys. Lett., 81, 745-747
Lide D.R., (2009) Handbook of Chemistry and Physics (90th ed.), Boca Raton, Florida: CRC Press
Lin B.C., Huang C.N., Shen P., Chen S.Y., (2014) On the twinning and special grain boundaries of bimetallic particles via pulsed laser ablation of bulk AuCu in vacuum. CrystEngComm., 16, 1532-1539
Lin P.W., Wu C.H., Zheng Y., Chen S.Y., Shen P., (2013) Calcite II-type CaCO3 by pulsed laser ablation on calcite powder in water. J. Phys. Chem. Solids, 74, 1281-1290
Lin S.S., Chen S.Y., Shen P., (2015a) Pulsed laser synthesis of carbon-overdoped tungsten with body-centered orthorhombic structure and planar defects. CrystEngComm., 17, 4937-4949
Lin S.S., Shen P., Chen S.Y., (2015b) Laser ablation synthesis of tantalum carbide particles with specific phase assemblage and special interface. Appl. Phys. A., 120, 75-88
Liu C.J., Lin S.S., Zheng Y., Chen S.Y., Shen P., (2015) Pulsed laser synthesis of diamond-type nanoparticles with enhanced Si-C solid solubility and special defects. CrystEngComm., 17, 9142-9154
Liu L.G. and Bassett W.A., (1986) Elements, oxides, and silicates: high-pressure phases with implications for the Earth's interior. Oxford University Press, New York
Liu L., Ryu S., Tomasik M.R., Stolyarova E., Jung N., Hybertsen M.S. et al., (2008) Graphene oxidation: thickness-dependent etching and strong chemical doping. Nano Lett., 8, 1965-1970
Locatelli A., Knox K.R., Cvetko D., Menteş T.O., Niňo M.A., Wang S. et al., (2010) Corrugation in exfoliated graphene: An electron microscopy and diffraction study. ACS Nano, 4, 4879-4889
Lu H.D., Lin B.C., Chen S.Y., Shen P., (2011) Pulsed laser ablation induced fragmentation, transformation, internal stress, Sn2+/H+ co-signature and optical property change of SnO2 powders in water. J. Phys. Chem. C, 115, 24577-24585
Lu Y., Guo J., (2010) Band gap of strained graphene nanoribbons. Nano Res., 3, 189-199
Madadi A., (2008) A new approach for the synthesis of tungsten nanopowders. UMI Microform 1451113, ProQuest Information and Learning Company
Magnusson M.H., Deppert K. and Malm J.O., (2000) Single-crystalline tungsten nanoparticles produced by thermal decomposition of tungsten hexacarbonyl. J. Mater. Res., 15, 1564-1569
Martoccia D., Björck M., Schlepütz C.M., Brugger T., Pauli S.A., Patterson B.D. et al., (2010) Graphene on Ru(0001): a corrugated and chiral structure. New J. Phys., 12, 043028
Mazurovsky V., Zinigrad M., Leontiev L., Lisin V., (2004) Carbide formation during crystallization upon welding. In: Third International Conference on Mathematical Modeling and Computer Simulation of Materials Technologies MMT
McKechnie T.N., Antony L.V.M., O’Dell J.S., Power C. and Tabor T., (2009) Nano powders components and coatings by plasma technique. US Patent Application No. 7615097
Medina H., Lin Y.C., Jin C., Lu C.C., Yeh C.H., Huang K.P. et al., (2012) Metal-free growth of nanographene on silicon oxides for transparent conducting applications. Advanced Functional Materials, 22, 2123-2128
Meyer J.C., Geim A.K., Katsnelson M.I., Novoselov K.S., Booth T.J., Roth S., (2007) The structure of suspended graphene sheets. Nature, 446, 60-63
Mishra V., Chaturvedi S., (2013) FP-LAPW calculations of equation of state and elastic properties of a and b phases of tungsten carbide at high pressure. J. Phys. Chem. Solids, 74, 509-517
Moore D., Ding Y., Wang Z.L., (2006) Heirarchical structured nanohelices of ZnS. Angew. Chem. Int. Ed., 45, 5150-5154
Morris R.A., Butts D., DiPetro S., Craven A., Matson L., Thompson G.B., (2009) Comparison between HIP and VPS tantalum carbides microstructure morphologies. in SAMPE 2009 Technical Conference Proceedings Baltimore, MD, pp. 1-10
Morris R.A., Butts D., Shade P.A., Thompson G.B., (2010) Influence of precipitation sequence on the 3D TaC + Ta2C/Ta4C3 microstructure processed by vacuum plasma spraying. Microscopy Society of America, 16, 1882-1883
Mulder C.A.M. and Damen A.A.J.M., (1987) Raman analysis of the initial stages of the hydrolysis and polymerization of tetraethylorthosilicate. J. Non-crystalline Solids, 93, 169-178
Murugan K., Chanfrasekhar S.B. and Joardar J., (2011) Nanostructureed α/β-tungsten by reduction of WO3 under microwave plasma. Int. J. Refract. Met. Hard Mater., 29, 128-133
Nersisyan H.H., Won H.I., Won C.W. and Cho K.C., (2009) Combustion synthesis of nanostructured tungsten and its morphological study. Powder Technol., 189, 422-425
Nishiyama Z., Fine M.E., Meshii M. and Wayman C.M., (1978) Martensitic transformation. Academic Press, New York
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V. et al., (2005) Two-dimensional gas of massless Dirac Fermions in graphene. Nature, 438, 197-200
Novoselov K.S., Jiang Z., Zhang Y., Morozov S.V., Stormer H.L., Zeitler U. et al., Room-temperature quantum Hall effect in graphene. Science, 315, 1379
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V. et al., (2004) Electric field effect in atomically thin carbon films. Science, 306, 666-669
Novoselov K.S., McCann E., Morozov S.V., Falko V.I., Katsnelson M.I., Zeitler U. et al., (2006) Unconventional quantum Hall effect and Berry’s Phase of 2π in bilayer graphene. Nat. Phys., 2, 177-180
Oda E., Fujiwara H. and Ameyama K., (2008) Nano Grain Formation in Tungsten by Severe Plastic Deformation-Mechanical Milling Process. Mater. Trans. JIM, 49, 54-57
O’Keefe M.J. and Grant J.T., (1996) Phase transformation of sputter deposited tungsten thin films with A‐15 structure. J. Appl. Phys., 79, 9134-9141
Olevsky E., Khaleghi E., Garcia C., Bradbury W., (2010) Fundamentals of Spark-Plasma Sintering: Applications to Net-Shaping of High Strength Temperature Resistant Components. Mater. Sci. Forum, 654-656, 412-415
Palomar F.E., Zambrano P., Gómez M.I., Colás R., Castillo A., (2009) Tungsten Carbide and Tantalum Carbide Coatings on Machining Tools. Ingenieria Mecánica, 3, 55-59
Pan C., Chen S.Y., Shen P., (2006) Laser Ablation Condensation, Coalescence, and Phase Change of Dense γ-Al2O3 Particles. J. Phy. Chem. B, 110, 24340-24345
Pan C.T., Hinks J.A., Ramasse Q.M., Greaves G., Bangert U., Donnelly S.E. et al. (2014) In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene. Scientific Reports, 4, 6334
Panchal V., Giusca C.E., Lartsev A., Yakimova R., Kazakova O., (2014) Local electric field screening in bi-layer graphene devices. Front Phys., 2, 1-10
Pimenta M.A., Dresselhaus G., Dresselhaus M.S., Cancado L.G., Jorio A., Saito R., (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem., 9, 1276-1291
Pocivavsek L., Dellsy R., Kern A., Johnson S., Lin B., Lee K.Y.C. et al., (2008) Stress and fold localization in thin elastic membranes. Science, 320, 912-916
Porter D.A. and Easterling K.E., (1992) Phase Transformations in Metals and Alloys. Chapman & Hall, London, 2nd edition
Porter D.A., Easterling K.E., Sherif M.Y., (2009) Phase transformations in metals and alloys. 3rd ed. CRC Press, Boca Raton
Prior D.J., Wheeler J., Peruzzo L., Spiess R. and Storey C., (2002) Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies. J. Structural Geol., 24, 999-1011
Putnis A., (1992) Introduction to Mineral Sciences. Cambridge University Press, Cambridge
Rautala P., (1951) An investigation of the system wolfram-cobalt-carbon. PhD thesis, MIT
Röhrl J., Hundhausen M., Emtsev K.V., Seyller T., Graupner R., Ley L., (2008) Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett., 92, 201918
Rossnagel S.M., Noyan I.C. and Cabral Jr. C., (2002) Phase transformation of thin sputter-deposited tungsten films at room temperature. J. Vac. Sci. Technol. B, 20, 2047
Roundy D., Krenn C.R., Cohen M.L. and Morris Jr. J.W., (2001) The ideal strength of tungsten. Phil. Mag. A, 81, 1725-1747
Rowcliffe D.J., Thomas G., (1975) Structure of nonstoichiometric TaC. Materials Science and Engineering, 18, 231-238
Ruoff R., (2008) Calling all chemists. Nat. Mater., 3, 10-11
Ryu S., Han M.Y., Maultzsch J., Heinz T.F., Kim P., Steigerwald M.L., et al., (2008) Reversible basal plane hydrogenation of graphene. Nano Lett., 8, 4597-4602
Ryu T., Sohn H.Y., Hwang K.S. and Fang Z.Z., (2009) Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. Int. J. Refract. Met. Hard Mater., 27, 149-154
Santoro G., Probst H.B., (1963) An Explanation of Microstructures in the Tantalum-Carbon. System. Adv. X-Ray Anal., 7, 126-135
Sara R.V., (1965) Phase Equilibria in the System Tungsten—Carbon. J. Am. Ceram. Soc., 48, 251-257
Sarathi R., Sindhu T.K., Chakravarthy S.R., Sharma A. and Nagesh K.V., (2009) Generation and Characterization of Nano-Tungsten Particles Formed by Wire Explosion Process. J. Alloys Compd., 475, 658-663
Schedin F., Geim A.K., Morozov S.V., Hill E.W., Blake P., Katsnelson M.I. et al., (2007) Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 6, 652-655
Seng W.F., Barnes P.A., (2000) Calculations of tungsten silicide and carbide formation on SiC using the Gibbs free energy. Mater. Sci. Eng. B, 72, 13-18
Shen Y.G. and Mai Y.M., (2000) Influences of oxygen on the formation and stability of A15 β-W thin films. Mater. Sci. Eng. A, 284, 176-183
Shvab S.A., Egorov F.F., (1982) Structure and some properties of sintered tantalum carbides. Sov. Powder Metall. Metal Ceram., 21, 894-897
Stankovich S., Piner R.D., Chen X., Wu N., Nguyen S.T., Ruoff R.S., (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem., 16, 155-158
Stolyarova E., Rim K.T., Ryu S., Maultzsch J., Kim P., Brus L.E. et al., (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. U.S.A., 104, 9209-9212
Storms E.K., (1967) The tantalum-tantalum carbide system, in The Refractory Carbides, ed., Storms E.K., Academic Press, New York
Suda Y., Nakazono T., Ebihara K., Baba K., (1997) Pulsed laser deposition of tungsten carbide thin films on silicon (100) substrate. Nuclear Instruments and Methods in PhysicsResearch B, 121, 396-399
Sun H.L., Song Z.X., Guo D.G., Ma F. and Xu K.W., (2010) Microstructure and mechanical properties of nanocrystaline tungsten thin films. J. Mater. Sci. Technol., 26, 87-92
Teghil R., D’Alessio L., De Maria G., Ferro D., (1995) Pulsed-laser deposition and characterization of TaC films. Applied Surface Science, 86, 190-195
Teghil R., D’Alessio L., Zaccagnino M., Ferro D., Marotta V., De Maria G., (2001) TiC and TaC deposition by pulsed laser ablation: a comparative approach. Appl. Surf. Sci., 173, 233-241
Teghil R., De Bonis A., Galasso A., Villani P., Santagata A., (2007) Femtosecond pulsed laser ablation deposition of tantalum carbide. Appl. Surf. Sci., 254, 1220-1223
Tikhonenko F.V., Horsell D.W., Gorbachev R.V., Savchenko A.K., (2008) Weak localization in graphene flakes. Phys. Rev. Lett., 100, 056802
Trusovas R., Ratautas K., Raciukaitis G., Barkauskas J., Stankevičienė I., Niaura G. et al., (2013) Reduction of graphite oxide to graphene with laser irradiation. Carbon, 52, 574-582
Tsai M.H., Chen S.Y. and Shen P., (2005) Laser ablation condensation of TiO2 particles: Effects of laser energy, oxygen flow rate and phase transformation. J. Aerosol Sci., 36, 13-25
Upadhyay K., Yang J.M., Hoffman W.P., (1997) Advanced materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull., 76, 51-56
Vainshtein B.K., Fridkin V.M. and Indenbom V.L., (1982) Modern Crystallography II: Structure of Crystals, Springer-Verlag, Berlin, pp. 1-433
Valvoda V., (1981) X-ray diffraction study of Debye temperature and charge distribution in tantalum monocarbide. Physica Status Solidi (a), 64, 133-142
Venkatesan R.K., Kvit A., Wei Q., Narayan J., (2000) Tungsten carbide nanocrystalline composites by pulsed laser deposition. 2000 MRS Fall Meeting, MRS Proceedings, Vol. 634
Voegelé V., Ando J.I., Cordier P. and Liebermann R.C., (1998) Plastic deformation of silicate garnets. I. High-pressure experiments. Phys. Earth Planet. Inter., 108, 305-318
Voegelé V., Cordier P., Sautter V., Sharp T.G., Lardeaux J.M. and Marques F.O., (1998) Plastic deformation of silicate garnets II. Deformation microstructures in natural samples. Phys. Earth Planet. Inter., 108, 319-338
Vogel A., Venugopalan V., (2003) Mechanisms of Pulsed Laser Ablation of Biological Tissues. Chemical Review, 103, 577-644
Wagner R.S., Sinha A.K., Sheng T.T., Levinstein H.J. and Alexander F.B., (1974) Tungsten metallization for LSI applications. J. Vac. Sci. Technol., 11, 582-590
Wang Y., Alsmeyer D.C., McCreery R.L., (1990) Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem. Mater., 2, 557-563
Wang C., He Y., Peng C., Wang S. and Liu X., (2012) Controllable synthesis of Ni-catalyzed tetragonal tungsten nanowires via chemical vapor deposition. Progress in Natural Science: Materials International, 22, 514-519
Warner J.H., Rümmeli M.H., Gemming T., Büchner B., Briggs G.A., (2009) Direct imaging of rotational stacking faults in few layer graphene. Nano Lett., 9, 102-106
Weerasekera I.A., Shah S.I., Baxter D.V. and Unruh K.M., (1994) Structure and stability of sputter deposited beta-tungsten thin films. Appl. Phys. Lett., 64, 3231-3233
Wenk H.R., Janssen C., Kenkmann T., Dresen G., (2011) Mechanical twinning in quartz: Shock experiments, impact, pseudotachylites and fault breccias. Tectonophysics, 510, 69-79
Whitney D.L., Goergen E.T., Ketcham R.A. and Kunze K., (2008) Formation of garnet polycrystals during metamorphic crystallization. J. Metamorphic Geol., 26, 365-383
Wiesenberger H., Lengauer W., Ettmayer P., (1998) Reactive diffusion and phase equilibria in the V–C, Nb–C, Ta–C and Ta–N systems. Acta. Mater., 46, 651-666
Wilhelm H., Lelaurain M., McRae E., Humbert B., (1998) Raman spectroscopic studies on well-defined carbonaceous materials of strong two-dimensional character. J. Appl. Phys., 84, 6552-6558
Wu C.H., Chen S.Y., Shen P., (2014) Polyynes and flexible Si-H doped carbon nanoribbons by pulsed laser ablation of graphite in tetraethyl orthosilicate. Carbon, 67, 27-37
Wu T.C., Bassett W.A., Burnley P.C. and Weathers M.S., (1993) Shear-promoted phase transitions in Fe2SiO4 and Mg2SiO4 and the mechanism of deep earthquakes. J. Geophys. Res., 98, 19767-19776
Yang G.W., (2007) Laser ablation in liquids: Applications in the synthesis of nanocrystals. Prog. Mater. Sci., 52, 648-698
Yang G.W., (2012) Laser ablation in liquids: principles and applications in the preparation of nanomaterials. Pan Stanford Publishing Pte. Ltd, Singapore
Yeh C.H., Lin Y.C., Chen Y.C., Lu C.C., Liu Z., Suenaga K. et al., (2014) Grating electron-hole asymmetry in twisted bilayer graphene. ACS Nano, 8, 6962-6969
Yeh C.H., Lin Y.C., Nayak P.K., Lu C.C., Liu Z., Suenaga K. et al., (2014) Probing interlayer coupling in twisted single-crystal bilayer graphene by Raman spectroscopy. J Raman Spectroscopy Online. DOI: 10.1002/jrs.4571
Yeh C.L., Liu E.W., (2006) Combustion synthesis of tantalum carbides TaC and Ta2C. J. Alloys and Compounds, 415, 66-72
Yeong K. and Thong J., (2006) Field-emission properties of ultrathin 5nm tungsten nanowire. J. Appl. Phys., 100, 114325
Yvon K., Parthé E., (1970) On the crystal chemistry of the close packed transition metal carbides. I. The crystal structure of the ξ-V, Nb, and Ta carbides Acta Crystallogr. B, 26, 149-153
Zhang H., Bai L., Hu P., Yuan F. and Li J., (2012) Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma. Int. J. Refract. Met. Hard Mater., 31, 33-38
Zhang H., Penn R.L., Lin Z. and Colfen H., (2014) Nanocrystal growth via oriented attachment. CrytEngComm., 16, 1407-1408
Zhang Q.Y., Mei X.X., Yang D.Z., Chen F.X., Ma T.C., Wang Y.M., Teng F.N., (1997) Preparation, structure and properties of TaN and TaC films obtained by ion beam assisted deposition. Nuclear Instruments and Methods in Physics Research B, 127-128, 664-668
Zhang Y., Tan Y.W., Stormer H.L., Kim P., (2005) Experimental observation of the quantum Hall Effect and Berry’s phase in graphene. Nature, 438, 201-204
Zakharchenko K.V., Katsnelson M.I., Fasolino A., (2009) Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett., 102, 046808
Zhigilei L.V., Garrison B.J., (2000) Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. Journal of Applied Physics, 88, 1281-1298
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code