Responsive image
博碩士論文 etd-0426117-103718 詳細資訊
Title page for etd-0426117-103718
論文名稱
Title
超音波珠擊製程應用於不鏽鋼表面細晶化及純鋁表面高散熱鍍膜之微結構及性質分析
Microstructures and properties of nano-grain refined 304 stainless steel and ceramic-powder inserted Al processed by ultrasonic surface mechanical attrition treatment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
193
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-05-25
繳交日期
Date of Submission
2017-05-30
關鍵字
Keywords
高散熱鍍膜、超音波機械式鍍膜、細晶強化、表面細晶化、超音波珠擊製程
surface mechanical attrition treatment, grain refinement, fine grain strengthening, ultrasonic mechanical coating and armoring, heat dissipation coating
統計
Statistics
本論文已被瀏覽 5761 次,被下載 62
The thesis/dissertation has been browsed 5761 times, has been downloaded 62 times.
中文摘要
在此研究中,我們使用超音波珠擊設備做為研究工具,從事材料表面細晶化 (SMAT)及機械式鍍膜 (UMCA) 之研究,在論文中將分別進行敘述及討論。

在表面細晶化研究中,我們建立一套模型作為分析超音波表面珠擊製程的工具,將實驗參數導入物理公式並推演出珠擊製程中鋼球撞擊的速度以及其產生的能量,並以加工過後材料的硬度、作用深度、晶粒大小,作為結果數據導入模型中,以分析趨勢並找出擁有最佳加工效果的條件,期待以此理論模型可在未來讓使用這項加工製程技術的實驗者能在實驗上有可參考的依據,能在實際施予材料加工時提前預估可能的結果。

以AISI 304不銹鋼作為實驗的材料,藉由改變鋼球大小及超音波馬達震幅為變數,導入簡諧運動、牛頓運動、碰撞公式等,推算出系統中鋼球施加於試片上的能量,並在詳細的微結構觀察、物理性質測量後,與模型作比較,從歸納整理後的結果來看,經由適當的製程參數(鋼球直徑 1-2 mm 鋼球速度 8-10公尺/秒 應變速率 4-5x102 1/秒 輸入能量 70-75 毫焦耳),利用表面微珠擊製程確實能造成晶粒細化進而使金屬的機械性質一定程度上的強化,若使用超過合適的製程參數作為加工條件,經由實驗證實在此情況下,無限制地提高加工量並無法讓強度不斷的提升,反而可能使材料在過高的加工情況下在內部產生空孔、裂縫等缺陷,也可能因為過高的加工能量造成材料表層溫度上升,晶粒無法進一步縮小,材料之硬度、強度不升反降。

在機械式鍍膜研究中,以鋁合金1050作為基板材料,因為在LED燈具中,鋁合金被大量使用作導熱散熱材料,因為其具有良好的導熱性質,但是一般鋁合金表面輻射系數遠低於0.3,藉由在表面鍍上一層具有高熱輻射係數的材料,可大幅增加整體的散熱效能,在此研究中,我們使用機械式鍍膜方法,利用超音波震動提供鋼珠動能,藉由撞擊將粉末打入材料表面,我們使用氧化鋁、氧化矽、石墨粉做為鍍膜的粉末材料,並自行建構一套測試散熱效能的實驗系統,實驗結果亦由嚴謹的熱傳數學模型帶入實驗參數驗證其準確性。在使用適當的混和粉末(氧化鋁、氧化矽、石墨)情況下,利用此製程在表面鍍上一層陶瓷粉末可提升熱輻射係數達0.95,能將熱能有效的轉換成紅外線釋放,藉以提高散熱效能,相較於未經鍍膜的鋁片及鋁鰭片,可降低溫度達5–11°C,對於有冷卻效能的需求的應用端,是一很有潛力的新製程。
Abstract
In this research, we used Ultrasonic shot peening equipment as the tool, conducting nano-crystallization and surface mechanical coating experiments. Detailed experimental methods, results and discussion are presented separately as SMAT and UMCA parts in the manuscript.

For the first part, the analytic modeling and one experimental assess of the ultrasonic surface mechanical attrition treatment (SMAT) are presented. The bombarding ball speed, induced energy, and the resulting sample hardness, experienced depth and grain size are incorporated into this model, based on harmonic longitudinal vibration motion of ultrasonic-wave-driven ball impact onto the sample surface. An experimental assessment by using a stainless steel flat sample is conducted, and the comparison of the model and experiment is reported. There appear some optimum SMAT working parameters for the best SMAT effect, locating within the ranges of 1-2 mm for the ball size, 8-10 m/s for the ball speed, 4-5x102 s-1 for the strain rate, and 70-75 mJ for the input energy. Beyond the optimum SMAT parameters, the sample surface would be subject to bombarding micro-cracking and the grain size would not be further reduced. Instead, the grain size becomes larger and the hardness becomes lower. The benefits from SMAT would become lower.

We used 1050 aluminum alloys, which often serve as heat sink in light-emitting diode (LED) lighting, are inherent with a high thermal conductivity, but poor thermal total emissivity. Thus, high emissive coatings on the Al substrate can enhance the thermal dissipation efficiency of radiation. In this study, the ultrasonic mechanical coating and armoring (UMCA) technique was used to insert various ceramic combinations, such as Al2O3, SiO2, graphite and carbon nanotube to enhance thermal dissipation. Analytic models have been established to couple the thermal radiation and convection on the sample surface through heat flow equations. A promising match has been reached between the theoretical estimations and experimental measurements. With the adequate insertion of ceramic powders, the heat can be transferred to thermal radiation and emitted. The temperature of the Al plates and heat sinks can be lowered by 5–11°C, which is highly favorable for applications requiring cooling components.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents vii
List of Tables xi
List of Figures xiii
Chapter 1 Introduction 1
1-1 Surface mechanical attrition treatment (SMAT) 1
1-2 Ultrasonic mechanical coating and armoring (UMCA) 2
1-3 Motivation 2
Chapter 2 Background and Literature Review 4
2-1 The development and applications of stainless steel 4
2-2 The characteristic of stainless steel 4
2-2-1 Contents of stainless steel 4
2-2-2 Austenitic stainless steels 5
2-2-3 304 stainless steel 6
2-2-4 Magnetism properties 7
2-3 Grain refinements 7
2-3-1 The characteristics of ultra-fine grain (UFG) materials 8
2-3-1-1 Size effect related to mechanical characteristics 8
2-3-1-2 Size effect related to corrosion characteristics 10
2-3-2 Grain refinement techniques 11
2-3-2-1 Through severe plastic deformation 11
2-3-2-2 Through rapid cooling 12
2-4 Electron back scattered diffraction 13
2-4-1 Advantages of EBSD 13
2-4-2 The basic principles and set-up of typical EBSD system 14
2-5 Surface mechanical attrition treatment (SMAT) 18
2-5-1 Introduction of surface mechanical attrition treatment 18
2-5-2 Surface nanocrystallization mechanism 18
2-5-3 Mechanical properties 24
2-5-4 Corrosion properties 26
2-6 The characteristic and applications of 1050 aluminum alloys 27
2-7 Modes of thermal transfer 27
2-7-1 Conduction 27
2-7-2 Convection 28
2-7-3 Radiation 29
2-7-4 Thermal equilibrium 30
2-8 Infrared 30
2-9 Importance of heat dissipation in electronic devices 31
2-10 Heat sink 32
2-11 Highly emissive coatings 32
Chapter 3 Experimental Procedures 34
3-1 Surface mechanical attrition treatment 34
3-1-1 Raw materials 34
3-1-2 SMAT 34
3-1-3 Mechanical polishing and electropolishing process 35
3-2 Ultrasonic mechanical coating and armoring 36
3-2-1 Raw materials 36
3-2-2 UMCA 36
3-3 Property measurements and analyses 37
3-3-1 X-ray diffraction 37
3-3-2 Optical microscopy (OM) 38
3-3-3 Nanoindentation 38
3-3-4 Scanning electron microscopy (SEM) 38
3-3-5 Electron back scattered diffraction (EBSD) 39
3-3-6 Transmission electron microscopy (TEM) 39
3-3-7 Heat dissipation test 40
Chapter 4 Results and Discussion 41
4-1 SMAT 41
4-1-1 X-ray diffraction analysis 41
4-1-2 SEM analysis 41
4-1-3 EBSD analysis 42
4-1-4 TEM analysis 42
4-1-5 Hardness measurements 43
4-1-6 Modeling 43
4-1-7 Relating SMAT input energy with ball natures 43
4-1-8 Relating SMAT rate/temperature with sample microstructure 46
4-1-9 Relationship between material responses versus SMAT parameters 48
4-2 UMCA 52
4-2-1 Model of heat loss 52
4-2-2 Thermal radiation and convection 52
4-2-3 Heat equation of conduction 55
4-2-4 Basic UMCA morphology 59
4-2-5 Effects of surface roughness on the thermal radiation 61
4-2-6 Effects of powder size on thermal radiation 62
4-2-7 Effects of UMCA Cycles on thermal radiation 63
4-2-8 Effects of heat input power on thermal radiation 64
4-2-9 Comparison of thermal radiation by different powder combinations 64
4-2-10 Comparison of the analytic model and experimental observations 66
4-2-11 Application to real heat sink fins 67
Chapter 5 Conclusions 69
Chapter 6 Suggestions for Future Research 72
References 73
Tables 83
Figures 97
參考文獻 References
[1] M. Kobayashi, T. Matsui, Y. Murakami, International Journal of Fatigue, 20 (1998) 351-357.
[2] S. A. Meguid, G. Shagal, J. C. Stranart, J. Daly, Finite elements in analysis and design, 31 (1999) 179-191.
[3] G. A. Webster, A. N. Ezeilo, International Journal of Fatigue, 23 (2001) 375-383.
[4] P. Zhang, J. Lindemann, Scripta materialia, 52 (2005) 1011-1015.
[5] K. J. Marsh, Engineering Materials Advisory Service Ltd.(United Kingdom), 1993, (1993) 320.
[6] M. Umemoto, Y. Todaka, K. Tsuchiya, Materials transactions, 44 (2003) 1488-1493.
[7] N. R. Tao, M. L. Sui, J. Lu, K. Lu, Nanostructured Materials, 11 (1999) 433-440.
[8] G. Liu, J. Lu, K. Lu, Materials Science and Engineering: A, 286 (2000) 91-95.
[9] N. R. Tao, Z. B. Wang, W. P. Tong, M. L. Sui, J. Lu, K. Lu, Acta Materialia, 50 (2002) 4603-4616.
[10] H. W. Zhang, Z. K. Hei, G. Liu, J. Lu, K. Lu, Acta Materialia, 51 (2003) 1871-1881.
[11] K. Lu, J. Lu, Materials Science and Engineering: A, 375 (2004) 38-45.
[12] X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, K. Lu, Acta Materialia, 53 (2005) 681-691.
[13] T. Roland, D. Retraint, K. Lu, J. Lu, Scripta Materialia, 54 (2006) 1949-1954.
[14] K. Y. Zhu, A. Vassel, F. Brisset, K. Lu, J. Lu, Acta Materialia, 52 (2004) 4101-4110.
[15] K. Wang, N. R. Tao, G. Liu, J. Lu, K. Lu, Acta Materialia, 54 (2006) 5281-5291.
[16] X. Wu, N. R. Tao, Y. Hong, B. Xu, J. Lu, K. Lu, Acta materialia, 50 (2002) 2075-2084.
[17] H. Q. Sun, Y. N. Shi, M. X. Zhang, K. Lu, Acta Materialia, 55 (2007) 975-982.
[18] S. V. Komarov, S.H. Son, N. Hayashi, S. D. Kaloshkin, O. V. Abramov, E. Kasai, Surface and Coatings Technology, 201 (2007) 6999-7006.
[19] S. Romankov, S. Komarov, E. Vdovichenko, Y. Hayasaka, N. Hayashi, S. Kaloshkin, E. Kasai, International Journal of Refractory Metals and Hard Materials, 27 (2009) 492-497.
[20] H. K. Lin, J. C. Huang, Materials Transactions, 43 (2002) 2424-2432.
[21] A. J. Sedriks, Corrosion of stainless steel, 2, Wiley, New York, 1996.
[22] M. Shimada, H. Kokawa, Z. Wang, Y. Sato, I. Karibe, Acta Materialia, 50 (2002) 2331-2341.
[23] S. H. C. Park, Y. S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Scripta materialia, 51 (2004) 101-105.
[24] I. T. Hong, C.H. Koo, Materials Science and Engineering: A, 393 (2005) 213-222.
[25] T. Saeid, A. Abdollah-Zadeh, H. Assadi, F. M. Ghaini, Materials Science and Engineering: A, 496 (2008) 262-268.
[26] K. L. Hsu, T. Ahn, D. Rigney, Wear, 60 (1980) 13-37.
[27] N. R. Baddoo, Journal of Constructional Steel Research, 64 (2008) 1199-1206.
[28] K. Scott, P. Argyropoulos, P. Yiannopoulos, W. M. Taama, Journal of Applied Electrochemistry, 31 (2001) 823-832.
[29] J. Johnson, B. K. Reck, T. Wang, T. E. Graedel, Energy Policy, 36 (2008) 181-192.
[30] A. A. Hermas, M. Nakayama, K. Ogura, Electrochimica acta, 50 (2005) 2001-2007.
[31] D. E. Williams, J. Stewart, P. H. Balkwill, Corrosion Science, 36 (1994) 1213-1235.
[32] J. L. Polo, E. Cano, J. M. Bastidas, Journal of Electroanalytical Chemistry, 537 (2002) 183-187.
[33] R. J. Brigham, Corrosion, 28 (1972) 177-179.
[34] F. J. Pérez, E. Otero, M. P. Hierro, C. Gómez, F. Pedraza, J. De Segovia, E. Román, Surface and Coatings technology, 108 (1998) 127-131.
[35] J. R. Davis, Stainless steels, ASM international, 1994.
[36] A. F. Padilha, R. L. Plaut, P. R. Rios, ISIJ international, 43 (2003) 135-143.
[37] F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, R. Surkialiabad, Materials Science and Engineering: A, 527 (2010) 7334-7339.
[38] T. Maki, Current Opinion in Solid State and Materials Science, 2 (1997) 290-295.
[39] A. D. Schino, M. Barteri, J. Kenny, Journal of materials science letters, 21 (2002) 751-753.
[40] H. Fujiwara, K. Ameyama, Materials science forum, Trans Tech Publ, 1999, pp. 47-52.
[41] D. Raabe, Acta Materialia, 45 (1997) 1137-1151.
[42] Y. Nakao, H. Miura, Materials Science and Engineering: A, 528 (2011) 1310-1317.
[43] C. Jullien, T. Bénézech, B. Carpentier, V. Lebret, C. Faille, Journal of Food Engineering, 56 (2003) 77-87.
[44] M. Sahin, Materials & design, 28 (2007) 2244-2250.
[45] N. Arivazhagan, S. Singh, S. Prakash, G. M. Reddy, Materials & Design, 32 (2011) 3036-3050.
[46] P. de Lima-Neto, J. P. Farias, L. F. G. Herculano, H. C. de Miranda, W. S. Araújo, J. B. Jorcin, N. Pébère, Corrosion Science, 50 (2008) 1149-1155.
[47] S. S. M. Tavares, M. Da Silva, J. M. Neto, S. Miraglia, D. Fruchart, Journal of magnetism and magnetic materials, 242 (2002) 1391-1394.
[48] S. S. M. Tavares, D. Fruchart, S. Miraglia, Journal of Alloys and Compounds, 307 (2000) 311-317.
[49] I. Mészáros, J. Prohászka, Journal of Materials Processing Technology, 161 (2005) 162-168.
[50] K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L. F. Zhang, H. Kikuchi, K. Ara, M. Sato, Journal of materials science, 39 (2004) 1997-2010.
[51] E. Dryzek, M. Sarnek, Acta Physica Polonica A, 125 (2014) 710-713.
[52] E. O. Hall, Proceedings of the Physical Society. Section B, 64 (1951) 747.
[53] N. Petch, J. Iron Steel Inst., 174 (1953) 25-28.
[54] T. G. Nieh, J. G. Wang, Intermetallics, 13 (2005) 377-385.
[55] J. M. Schiotz, T. Vegge, F.D. Di Tolla, K.W. Jacobsen, Phys Rev B, 60 (1999) 11971-11983.
[56] C. T. Liu, L. Heatherly, D. S. Easton, C. A. Carmichael, J. H. Schneibel, C. H. Chen, J. L. Wright, M. H. Yoo, J. A. Horton, A. Inoue, Metall Mater Trans A, 29 (1998) 1811-1820.
[57] W. J. Wright, R. B. Schwarz, W. D. Nix, Mat Sci Eng a-Struct, 319 (2001) 229-232.
[58] R. Mishra, R. Balasubramaniam, Corrosion Science, 46 (2004) 3019-3029.
[59] L. Wang, Y. Lin, Z. Zeng, W. Liu, Q. Xue, L. Hu, J. Zhang, Electrochimica acta, 52 (2007) 4342-4350.
[60] M. R. Zamanzad-Ghavidel, K. Raeissi, A. Saatchi, Materials Letters, 63 (2009) 1807-1809.
[61] S. H. Hassani, K. Raeissi, M. Azzi, D. Li, M. A. Golozar, J. A. Szpunar, Corrosion Science, 51 (2009) 2371-2379.
[62] E. Kus, Z. Lee, S. Nutt, F. Mansfeld, Corrosion, 62 (2006) 152-161.
[63] M. K. Chung, Y. S. Choi, J. G. Kim, Y. M. Kim, J. C. Lee, Materials Science and Engineering: A, 366 (2004) 282-291.
[64] E. Sikora, X. J. Wei, B. A. Shaw, Corrosion, 60 (2004) 387-398.
[65] T. C. Tsai, T. H. Chuang, Materials Science and Engineering: A, 225 (1997) 135-144.
[66] Y. Li, F. Wang, G. Liu, Corrosion, 60 (2004) 891-896.
[67] B. Deng, Z. Wang, Y. Jiang, T. Sun, J. Xu, J. Li, Corrosion Science, 51 (2009) 2969-2975.
[68] A. S. Hamdy, E. El-Shenawy, T. El-Bitar, International Journal of Electrochemical Science, 1 (2006) 171-180.
[69] U. K. Mudali, P. Shankar, S. Ningshen, R. Dayal, H. Khatak, B. Raj, Corrosion Science, 44 (2002) 2183-2198.
[70] L. Peguet, B. Malki, B. Baroux, Corrosion science, 49 (2007) 1933-1948.
[71] B. N. Mordyuk, G. I. Prokopenko, M. A. Vasylyev, M. O. Iefimov, Materials Science and Engineering: A, 458 (2007) 253-261.
[72] A. Q. Lü, Y. Zhang, Y. Li, G. Liu, Q. Zang, C. Liu, Acta Metallurgica Sinica (English Letters), 19 (2006) 183-189.
[73] A. Di Schino, J. M. Kenny, Journal of materials science letters, 21 (2002) 1631-1634.
[74] X. Y. Zhang, M. H. Shi, C. Li, N. F. Liu, Y. M. Wei, Materials Science and Engineering: A, 448 (2007) 259-263.
[75] M. Hoseini, A. Shahryari, S. Omanovic, J.A. Szpunar, Corrosion science, 51 (2009) 3064-3067.
[76] G. B. Hamu, D. Eliezer, L. Wagner, Journal of Alloys and Compounds, 468 (2009) 222-229.
[77] C. Xu, M. Furukawa, Z. Horita, T.G. Langdon, Acta Materialia, 51 (2003) 6139-6149.
[78] A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baró, J. A. Szpunar, T. G. Langdon, Acta Materialia, 51 (2003) 753-765.
[79] M. Schwarz, A. Karma, K. Eckler, D. Herlach, Physical review letters, 73 (1994) 1380.
[80] M. Easton, J. F. Grandfield, D. H. StJohn, B. Rinderer, Materials science forum, Trans Tech Publ, 2006, pp. 1675-1680.
[81] G. E. Eieter, Mechanical Metallurgy, Mc Graw-Hill Book Co., 1988.
[82] R. Z. Valiev, T. G. Langdon, Progress in Materials Science, 51 (2006) 881-981.
[83] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Acta Materialia, 46 (1998) 3317-3331.
[84] Y. Iwahashi, Z. Horita, M. Nemoto, T. G. Langdon, Acta Materialia, 45 (1997) 4733-4741.
[85] Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T. G. Langdon, Scripta Materialia, 35 (1996) 143-146.
[86] R. A. Mesquita, C. A. Barbosa, Materials Science and Engineering: A, 383 (2004) 87-95.
[87] C. Liauo, J. C. Huang, 科儀新知, 19 (1998) 43-51.
[88] Link Opal Operater’s Guide, Oxford Instruments plc, Buckingghamshire, UK, 1997.
[89] V. Randle, Oxford Guide Book Series, 1996, pp. 3.
[90] V. Randle, Microtexture Determination and Its Applications, Institute of Materials, London, 1992.
[91] http://www.ebsd.com/popup/polefigure.htm.
[92] N. R. Tao, J. Lu, K. Lu, Materials Science Forum, Trans Tech Publ, 2008, pp. 91-108.
[93] H. Van Swygenhoven, D. Farkas, A. Caro, Physical Review B, 62 (2000) 831.
[94] A. Rohatgi, K. Vecchio, G. Gray, III, Metall and Mat Trans A, 32 (2001) 135-145.
[95] H. Gleiter, Progress in materials science, 33 (1989) 223-315.
[96] L. Lu, X. Chen, X. Huang, K. Lu, Science, 323 (2009) 607-610.
[97] M. A. Meyers, A. Mishra, D. J. Benson, Progress in Materials Science, 51 (2006) 427-556.
[98] K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, P. Wang, Acta Materialia, 51 (2003) 387-405.
[99] A. Hasnaoui, H. Van Swygenhoven, P. M. Derlet, Science, 300 (2003) 1550-1552.
[100] I. Milne, R. O. Ritchie, B. L. Karihaloo, Comprehensive Structural Integrity: Cyclic loading and fatigue, Elsevier, 2003.
[101] X. Chen, J. Lu, L. Lu, K. Lu, Scripta Materialia, 52 (2005) 1039-1044.
[102] E. E. Oguzie, Y. Li, F. H. Wang, Electrochimica acta, 52 (2007) 6988-6996.
[103] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W.D. Lou, Advanced Materials, 24 (2012) 5166-5180.
[104] T. Balusamy, S. Kumar, T. S. Narayanan, Corrosion Science, 52 (2010) 3826-3834.
[105] https://openclipart.org/detail/241208/heat-conduction.
[106] https://www.xemtop.com/category/Natural-convection.
[107] http://keywordsuggest.org/gallery/660593.html.
[108] M. Arik, J. Petroski, S. Weaver, Thermal and Thermomechanical Phenomena in Electronic Systems, 2002. ITHERM 2002. The Eighth Intersociety Conference on, IEEE, 2002, pp. 113-120.
[109] N. Narendran, Y. Gu, Journal of display technology, 1 (2005) 167-171.
[110] J. Wei, Z. Yi, L. Wang, L. Liu, H. Wu, G. Wang, B. Zhang, Solid State Lighting (ChinaSSL), 2013 10th China International Forum on, IEEE, 2013, pp. 166-169.
[111] J. Liu, W. S. Tam, H. Wong, V. Filip, Microelectronics Reliability, 49 (2009) 38-41.
[112] D. S. Kim, B. Han, Journal of Applied Physics, 119 (2016) 125104.
[113] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, Applied Physics Letters, 91 (2007) 183507.
[114] E. Hong, N. Narendran, Optical Science and Technology, SPIE's 48th Annual Meeting, International Society for Optics and Photonics, 2004, pp. 93-99.
[115] H. H. Cheng, D. S. Huang, M. T. Lin, Microelectronics Reliability, 52 (2012) 905-911.
[116] D. Jang, S. H. Yu, K. S. Lee, International Journal of Heat and Mass Transfer, 55 (2012) 515-521.
[117] X. Y. Lu, T. C. Hua, Y. P. Wang, Microelectronics Journal, 42 (2011) 1257-1262.
[118] J. Choi, M. Jeong, J. Yoo, M. Seo, Applied Thermal Engineering, 44 (2012) 50-56.
[119] S. Shu, H. Yang, C. Tong, F. Qiu, Materials, 9 (2016) 642.
[120] S. De Schampheleire, P. De Jaeger, K. De Kerpel, B. Ameel, H. Huisseune, M. De Paepe, Materials, 9 (2016) 94.
[121] F. K. Wang, Y. C. Lu, Microelectronics Reliability, 54 (2014) 1307-1315.
[122] X. He, Y. Li, L. Wang, Y. Sun, S. Zhang, Thin Solid Films, 517 (2009) 5120-5129.
[123] G. D. Stefanidis, K. M. Van Geem, G. J. Heynderickx, G. B. Marin, Chemical Engineering Journal, 137 (2008) 411-421.
[124] G. J. Heynderickx, M. Nozawa, Chemical Engineering Science, 59 (2004) 5657-5662.
[125] J. Huang, C. Fan, G. Song, Y. Li, X. He, X. Zhang, Y. Sun, S. Du, Y. Zhao, Applied Surface Science, 280 (2013) 605-609.
[126] J. Yi, X. D. He, Y. Sun, Y. Li, Applied surface science, 253 (2007) 4361-4366.
[127] F. Wang, L. Cheng, Q. Zhang, L. Zhang, Applied Surface Science, 313 (2014) 670-676.
[128] J. Zhang, X. A. Fan, L. Lu, X. Hu, G. Li, Applied Surface Science, 344 (2015) 223-229.
[129] H. Tang, T. Xin, Q. Sun, C. Yi, Z. Jiang, F. Wang, Applied Surface Science, 257 (2011) 10839-10844.
[130] C. C. Beozzo, M. A. Alves-Rosa, S. H. Pulcinelli, C. V. Santilli, Materials, 6 (2013) 1967-1979.
[131] S. J. Bull, Surface and Coatings Technology, 50 (1991) 25-32.
[132] J. M. Sanchez, S. El-Mansy, B. Sun, T. Scherban, N. Fang, D. Pantuso, W. Ford, M. Elizalde, J. Martınez-Esnaola, A. Martın-Meizoso, Acta materialia, 47 (1999) 4405-4413.
[133] P. L. Mangonon, G. Thomas, Metallurgical transactions, 1 (1970) 1577-1586.
[134] S. S. M. Tavares, J. M. Pardal, M. da Silva, C. de Oliveira, Materials Research, 17 (2014) 381-385.
[135] A. D. Schino, I. Salvatori, J. Kenny, Journal of Materials Science, 37 (2002) 4561-4565.
[136] A. Lebedev, V. Kosarchuk, International Journal of Plasticity, 16 (2000) 749-767.
[137] E. Cakmak, H. Choo, J. Y. Kang, Y. Ren, Metall and Mat Trans A, 46 (2015) 1860-1877.
[138] H. Geijselaers, P. Hilkhuijsen, T. Bor, A. van den Boogaard, Materials Science and Engineering: A, 631 (2015) 166-172.
[139] H. L. Chan, H. H. Ruan, A. Y. Chen, J. Lu, Acta materialia, 58 (2010) 5086-5096.
[140] C. I. Chang, C. J. Lee, J. C. Huang, Scripta Materialia, 51 (2004) 509-514.
[141] X. W. Zhang, C.Y. Chiem, W. S. Lee, J. Phys. Colloques 48, C3 (1987) 577-586.
[142] D. E. Grady, J. R. Asay, Journal of Applied Physics, 53 (1982) 7350-7354.
[143] J. C. Huang, G. T. Gray, Metallurgical Transactions A, 20 (1989) 1061-1075.
[144] D. Halliday, J. Walker, R. Resnick, Fundamentals of Physics, Chapters 33-37, John Wiley & Sons, 2010.
[145] R. W. Johnson, Handbook of fluid dynamics, Crc Press, 2016.
[146] J. R. Culham, M. M. Yovanovich, S. Lee, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 18 (1995) 559-566.
[147] M. Yovanovich, K. Jafarpur, ASME-PUBLICATIONS-HTD, 264 (1993) 111-111.
[148] E. Radziemska, W. M. Lewandowski, Experimental Thermal and Fluid Science, 32 (2008) 1034-1038.
[149] E. Radziemska, W. M. Lewandowski, International journal of heat and mass transfer, 46 (2003) 2169-2178.
[150] W. Weinelt, ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 66 (1986) 382-383.
[151] C. D. Wen, I. Mudawar, International Journal of Heat and Mass Transfer, 47 (2004) 3591-3605.
[152] C. D. Wen, I. Mudawar, International Journal of Heat and Mass Transfer, 49 (2006) 4279-4289.
[153] P. E. John, C. Tverberg, TECHNICAL PAPERS-SOCIETY OF MANUFACTURING ENGINEERS, ALL SERIES, (2003).
[154] S. Spangel, E. Matthaei-Schulz, A. Schulz, H. Vetters, P. Mayr, Materials Science and Engineering: A, 326 (2002) 26-39.
[155] A.P.D.e. al., HKL Technology A/S, Hobro, Denmark, 2001.
[156] D. Stojakovic, Processing and Application of Ceramics, 6 (2012) 1-13.
[157] R. Langford, A. Petford-Long, Journal of Vacuum Science & Technology A, 19 (2001) 2186-2193.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code