Responsive image
博碩士論文 etd-0426117-142930 詳細資訊
Title page for etd-0426117-142930
論文名稱
Title
金屬玻璃與純金屬多層薄膜中梯度界面之性質分析
Characterization and analysis on graded interface in amorphous/crystalline multilayered thin films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
210
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-05-25
繳交日期
Date of Submission
2017-05-31
關鍵字
Keywords
金屬玻璃、漸進結構、奈米刮痕測試、破裂韌性、奈米撓曲測試
metallic glasses, graded structure, nano-scratch, fracture toughness, nano-bending
統計
Statistics
本論文已被瀏覽 5751 次,被下載 100
The thesis/dissertation has been browsed 5751 times, has been downloaded 100 times.
中文摘要
為了解決在多層膜結構下,受應力導致延界面脫層的現象,在本研究中,嘗試利用漸進區的產生以試圖消除多層膜之陡變界面。我們利用磁控濺鍍系統製備出以下三種不同型態的非晶質鋯銅/奈米晶純銅的多層膜結構:一、界面無漸進層「ZCC-G0」,二、界面處具有五十奈米厚漸進層「ZCC-G50」,三、界面處具有一百奈米厚漸進層「ZCC-G100」。在漸進結構中,可以觀察到非晶質母相中有奈米晶純銅析出,其組成成分變化、析出之奈米晶尺寸、奈米晶體積分率,以及試片橫截面的楊氏模數變化均呈現了梯度變化的特性。為了瞭解漸進區對整體試片機械性質的貢獻,我們利用奈米刮痕測試、奈米拉伸測試,以及奈米撓曲測試進行以下研究。

在奈米刮痕測試中,我們首次利用破裂韌性隨外加正向力的變化的關係,來判斷界面脫層的發生時機並找出其脫層力,而此種方法並不會因負載率的變化而導致不同結果。在鋯銅與銅的多層膜結構中,試片ZCC-G0於正向力達到1460毫牛頓時會發生界面脫層現象。而其餘兩種結構,ZCC-G50與ZCC-G100則無明顯脫層情形發生。

在奈米拉伸實驗中,我們透過聚焦離子束將試片加工為奈米尺度的拉伸試片,利用奈米壓痕系統配備一圓錐頭,在刮痕模式下對試片進行拉伸側試。唯因薄膜厚度之限制,使奈米壓痕系統之鑽石頭無法帶動拉伸試片移動,導致實驗無法成功,但此測試手法卻對未來進行奈米尺度拉伸實驗帶來許多可能。

在奈米撓曲實驗中,我們利用聚焦離子束系統將試片製為倒凸型結構,以利在測試過程中使外加力集中於介面處。在ZCC-G0的測試結果,其界面撓曲破裂應力為1.9 ± 0.1 GPa、撓曲應變約為11 ± 1%。而具有漸進結構的ZCC-G50與ZCC-G100試片,其界面撓曲破裂應力為2.8 ± 0.1 GPa、撓曲應變約為18 ± 1%。此一結果展現出當多層膜結構中具有漸進結構時,會對整體機械性質,不論是在撓曲破裂應力、撓曲應變帶,以及撓曲模數上帶來超過百分之五十的大幅強化,並展現類似韌性材料的變形行為。
Abstract
In this study, to solve the delamination behavior along the interface, graded regions were fabricated to erase the sharp interface. Three kinds of the amorphous ZrCu/ nanocrystalline Cu multilayered structures, namely, without graded region (ZCC-G0), with 50 nm graded region (ZCC-G50) and with 100 nm graded region (ZCC-G100), are manufactured by the magnetron co-sputter system. In the graded region, there are Cu nanoparticles distributed in the amorphous matrix. The graded region possesses the gradient nature in terms of composition, nanocrystalline phase size, nanocrystalline volume fraction, and cross sectional modulus distribution from the amorphous ZrCu to the nanocrystalline Cu. To figure out the mechanical properties enhancement by the graded region, nano-scratch, nano-tension, and nano-bending tests were applied in this study.

For the nano-scratch testing, we first used the variation of fracture toughness as a function of normal force to determine the delamination point. And this method is considered not to be influenced by the loading rate. ZrCu/Cu interface delaminated when the applied normal force reached to 1460 μN for ZCC-G0, and no obvious interface delaminated behavior could be found for both ZCC-G50 and ZCC-G100.

For thenano-tension testing, nano-scaled tension samples are designed and fabricated by focus ion beam. The nano-scaled tension tes is performed by the nanoindentation system equipped a conical tip with scratch mode. Although this test failed due to the limitation of the film thickness, the tip could not drag the tension sample successfully, but it brings many possible ways for the nano-scaled tensile testing with scratch mode.

For the nano-bending testing, T-shaped cantilevers are designed and fabricated by focus ion beam to let the applied force concentrate on the interface region during testing. The nano-bending test is performed by an in-situ nanoindentation system. For the ZCC-G0 samples interface bending fracture stress is 1.9 ± 0.1 GPa, and the bending strain is about 11 ± 1%. The interface bending fracture stress, for the ZCC-G50 and ZCC-G100 samples is 2.8 ± 0.2 GPa, and the bending strain is about 18 ± 1%. These results demonstrated that multilayered thin films with graded structure would be inherited with a much higher interface strength/strain/modulus, with an overall improvement upgrade of more than 50% and a ductile failure manner.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 v
Abstract vii
Contents ix
List of tables xiii
List of figures xiv
Chapter 1 Introduction 1
1-1 Amorphous alloys 1
1-2 The progress of bulk metallic glasses 2
1-3 The development of Zr-based metallic glasses 3
1-4 Motivation 4
Chapter 2 Background and literature review 7
2-1 Background of amorphous alloys 7
2-1-1 Supercooled liquid region (SCLR) 7
2-1-2 The empirical rule for forming amorphous alloys 7
2-1-3 Glass forming ability (GFA) 8
2-2 Sputtering deposition 10
2-2-1 Deposition rate with the system condition 11
2-2-2 Growth of sputter-deposited film 12
2-3 Mechanical properties of metallic glass composites 14
2-3-1 Secondary phase 15
2-3-2 Modulus mismatch 16
2-3-3 Rule of mixture 17
2-4 Amorphous/crystalline multilayered thin film 18
2-5 Mechanical properties measured by nanoindentation 20
2-5-1 Hardness and modulus 21
2-5-2 Modulus Mapping 23
2-5-3 Limitation of Modulus Mapping 26
2-5-4 Adhesion property measurement by scratch test 27
2-6 The feature of focus ion beam (FIB) 28
2-6-1 FIB imaging 30
2-6-2 FIB milling 31
2-6-3 FIB deposition 31
2-6-4 TEM sample preparation 32
2-7 Nano-scale mechanical property testing 33
2-7-1 Nano-tension testing 33
2-7-2 Micro-bending testing 35
Chapter 3 Experimental procedures 39
3-1 Materials 39
3-2 Sample preparation 40
3-2-1 Pretreatment for substrate 40
3-2-2 Preparation for thin films and multilayer thin films 40
3-3 Property measurements and analyses 41
3-3-1 X-ray diffraction 41
3-3-2 Cross-section-view TEM analysis 42
3-3-3 Cross-section-view qualitative and quantitative component analyses 42
3-3-4 Cross sectional modulus mapping 43
3-3-4-1 Sample preparation 43
3-3-4-2 Equipment for the modulus mapping 43
3-4 Scratch testing 43
3-4-1 Sample preparation 44
3-4-2 Scratch test equipment 44
3-5 Nano-tension testing 44
3-5-1 Sample preparation 44
3-5-2 Nano-tension test equipment 45
3-6 Nano-bending testing 46
3-6-1 Sample preparation 46
3-6-2 Nano-bending test equipment 46
Chapter 4 Results and discussions 48
4-1 Characterizations of ZrCu/Cu miltilayered thin films 48
4-1-1 XRD results 48
4-1-2 Microstructures confirmed by TEM analyses 48
4-1-3 Composition profile measured by STEM and EDS analyses 50
4-1-4 Graded region modulus mapping results 51
4-1-5 The formation of graded region 52
4-2 Scratch test results 53
4-2-1 ZrCu/Cu bilayered thin film results 54
4-2-2 Fracture toughness calculation in the scratch test 54
4-2-3 Monolithic ZnO thin film results comparison 56
4-2-4 Variety of KC in ZrCu/Cu bilayered structure 60
4-3 Nano-tension test results 61
4-4 Nano-bending test results 64
4-4-1 Interface strengthening mechanism 66
Chapter 5 Conclusions 70
Chapter 6 Future work 72
References 73
Tables 83
Figures 88
參考文獻 References
[1] A. C. Lund, C. A. Schuh, Journal of Applied Physics, 2004, 95, 4815-4822.
[2] W. L. Johnson, MRS Bulletin, 1999, 24, 42-56.
[3] A. Inoue, B. Shen, H. Koshiba, H. Kato, and A. R. Yavari, Nature Materials, 2003, 2 ,661-663.
[4] N. H. Pryds, Materials Science and Engineering A, 2002, 186-193.
[5] A. Inoue, Materials Science and Engineering A, 2001, 304, 1-10.
[6] A. Inoue, Acta Materialia, 2000, 48, 279-306.
[7] W. H. Wang, R. J. Wang, D. Y. Dai, D. Q. Zhao, M. X. Pan, and Y. S. Yao, 2001, 79, 1106-1108.
[8] W. Klement, R. H. Willens, and P. Duwez, Nature, 1960, 187, 869-870.
[9] H. S. Chen, D. Turnbull, The Journal of Chemical Physics, 1968, 48, 2560-2571.
[10] H. S. Chen, D. Turnbull, Acta Materialia, 1969, 17, 1021-1031.
[11] H. S. Chen, C.E. Miller Review of Scientific Instrument, 1970, 41, 1237-1238.
[12] H. S. Chen, Acta Materiallia, 1974, 22, 1505-1511.
[13] A. Inoue, T. Zhang, and T. Masumoto, Materials Transactions, JIM, 1990, 31, 425-428.
[14] A. Inoue, T. Nakamura, N. Nisiyama, and T. Masumoto, Materials Transactions, JIM, 1992, 33, 937-945.
[15] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, and T. Masumoto, Materials Transactions, JIM, 1993, 34, 1234-1237.
[16] T. Zhang, A. Inoue, and T. Masumoto, Materials Transactions, JIM, 1991, 32, 1005-1010.
[17] A. Peker, W. L. Johnson, Applied Physics Letters, 1993, 63, 2342-2344.
[18] H. Ma, L. L. Shi, J. Xu, Y. Li, and E. Ma, Applied Physics Letters, 2005, 87, 181915.
[19] W. H. Wang, C. Dong, and C. H. Shek, Materials Science and Engineering R, 2004, 44, 44-89.
[20] J. F. Loffler, Intermetallics, 2003, 11, 529-540.
[21] A. Inoue, T. Zhang, T. Masumoto, Materials Transactions, JIM,1990, 31, 177-183.
[22] G. von Minnigerode, A. Regenbrecht, and K. Samwer, Zeitschrift für Physikalische Chemie Neue Folge, Bd., 1988, 157, 197-201.
[23] A. Regenbrecht, G. von Minnigerode, and K. Samwer, Zeitschrift für Physik B Condensed Matter, 1990, 79, 25-31.
[24] S. Eickert, H. Hecht, and G. von Minnigerode, Zeitschrift für Physik B Condensed Matter, 1992, 88, 35-38.
[25] J. Dudonis, R. Brueas, Processing Conference Physics and Technology of Plasma, 1994, 269-272.
[26] Y. Liu, S. Hata, K.Wada, and A. Shimokohbe, Japanese. Journal of Applied Physics, 2001, 40, 5382-5388.
[27] P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, Journal of Nanoscience and Nanotechnology, 2005, 5, 416-420.
[28] T. Fukushige, S. Hata, and A. Shimokohbe, Journal of Microelectromechanical Systems, 2005, 14, 243-253.
[29] J. Dudonis, R. Brucas, and A. Miniotas, Thin Solid Films, 1996, 275, 164-167.
[30] C. J. Chen, J. C. Huang, H. S. Chou, Y. H. Lai, L. W. Chang, X. H. Du, J. P. Chu, and T. G. Nieh, Journal of Alloys and Compounds, 2009, 483, 337-340.
[31] S. Hata, Y. Liu, T. Kato, and A. Shimokohbe, 10th ICPE, 2001, 37.
[32] A. Inoue, H. Yamaguchi, T. Zhang, and T. Masumoto, Materials Transactions, JIM, 1990, 31, 104-109.
[33] J. P. Chu, J. C. Huang, J. S. C. Jang, Y. C. Wang, and P. K. Liaw, The Journal of The Minerals, Metals & Materials Society, 2010, 34, 19-24.
[34] H. M. Chen, Y. C. Chang, T. H. Hung, X. H. Du, J. C. Huang, J. S. C. Jang, and P. K. Liaw, Materials Transactions, JIM, 2007, 48, 1802-1805.
[35] C. P. Chou and F. Spaepen, Acta Materialia, 1975, 23, 609-613.
[36] G. Y. Yuan and A. Inoue, Journal of Alloys and Compounds, 2005, 387, 134-138.
[37] Z. G. Li, X. Hui, C. M. Zhang, and G. L. Chen, Journal of Alloys and Compounds, 2008, 454, 168-173.
[38] G. Y. Yuan, K. Amiya, and A. Inoue, Journal of Non-Crystalline Solids, 2005, 351, 729-735.
[39] C. Fan, P. K. Liaw, T. W. Wilson, H. Choo, Y. F. Gao, C. T. Liu, T. Proffen, and J. W. Richardson, Journal of Applied Physics, 2006, 89, 231920.
[40] G. He, W. Loser, J. Eckert, and L. Schultz, Materials Science and Engineering A, 2003, 352, 179-185.
[41] S. W. Lee, M. Y. Huh, E. Fleury, and J. C. Lee, Acta Materialia, 2006, 54, 349-355.
[42] T. G. Nieh, and J. Wadsworth, Intermetallics, 2008, 16, 1156–1159.
[43] M. C. Liu, X. H. Du, I. C. Lin, H. J. Pei, J. C. Huang, Intermetallics, 2012, 30, 30-34.
[44] M. E. Launey, D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, Proceedings of the National Academy of Sciences of the United States of America, 2009, 103, 4986-4991.
[45] A. Inoue, T. Yamaguchi, B. G. Kim, K. Nosaki, and T. Masumoto, Journal of Applied Physics, 1992, 71, 3278-3282.
[46] K. Kurihara, K. Sasaki, M. Kawarada, and Y. Goto, Thin Solid Films, 1992,212, 164-168.
[47] A. A. Voevodin, M. A. Capano, S. J. P. Laube, M. S. Donley, and J. S. Zabinski, Thin Solid Films, 1997, 298, 107–115.
[48] M. Grujicic, and H. Zhao, Materials Science and Engineering A, 1998, 252, 117–132.
[49] J. Q. Li, X. R. Zeng, J. N. Tang, and P. Xiao, Journal of the European Ceramic Society, 2003, 23, 1847–1853.
[50] Z. B. Wang, K. Lu, G. Wilde, and S. V. Divinski, Acta Materialia, 2010, 58, 2376–2386.
[51] T. H. Fang, W. L. Li, N. R. Tao, and K. Lu, Science, 2011, 331, 1587-1590.
[52] H. J. Pei, S. Y. Kuan, M. C. Liu, and J. C. Huang, Intermetallics, 2012, 31, 191-195.
[53] D. Turnbull, J.C. Fisher, The Journal of Chemical Physics, 1949, 17, 71.
[54] Z. P. Lu, and C. T. Liu, Acta Materialia, 2002, 50, 3501-3512.
[55] X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, Journal of Applied Physics, 2007, 101, 086108.
[56] B. P. Rodrigues, and E. D. Zanotto, Journal of Non-Crystalline Solids, 2012, 358, 2626–2634.
[57] J. Bohdansky, Nuclear Instruments and Methods in Physics Research, 1984, B2, 587-591.
[58] K. B. Sundaram, and A. Khan, Thin Solid Films, 1997, 295, 87-91.
[59] C. Wang, P. Brault, C. Zaepffel, J. Thiault, A. Pineau, and T. Sauvage, Journal of Physics D: Applied Physics, 2003, 36, 2709-2713.
[60] R. Wuhrer, and W. Y. Yeung, Scripta Materialia, 2003, 49, 199-205.
[61] D. Wang, W. Zhang, W. Zheng, X. Cui, T. Rojo, and Q. Zhang, Advanced Science, 2016, 4, 1600168.
[62] F. L. Forgerini, and R. Marchiori, Biomatter, 2014, 4, e28871.
[63] P. H. Le, and C. W. Luo, Applications of Laser Ablation-Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, INTECH, 2016.
[64] Y. Yuan, and T. R. Lee, Surface Sciences, 2013, 51, 3-34.
[65] M. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Physical Review Letters, 1989, 63, 632-635.
[66] F. Spaepen, Acta Metallurgica, 1977, 25, 407-415.
[67] C. A. Schuh, and T. C. Hufnagel, U. Ramamurty, Acta Materialia, 2007, 55, 4067-4109.
[68] B. Yang, M. L. Morrison, P. K. Liaw, R. A. Buchanan, and G. Wang, Applied Physics Letters, 2005, 86, 141904.
[69] C. C. Hay, C. P. Kim, and W. L. Johnson, Physical Review Letters, 2000, 84, 2901-2904.
[70] N. Nagendra, U. Ramamurty, T. T. Goh, and Y. Li, Acta Materialia, 2000, 48, 2603-2615.
[71] A. T. Alpas, and J. D. Embury, Scripta Metallurgica, 1988, 22, 265-270.
[72] Y. Leng and T. H. Courtney, Journal of Materials Science, 1989, 24, 2006.
[73] H. Choi-Yim, R. Busch, U. Köster, and W. L. Johnson, Acta Materialia, 1999, 47, 2455-2462.
[74] X. Geng, Z. Zhang, E. Barthel, and D. Dalmas, Wear, 2012, 276,11-120.
[75] A. G. Evans and M. Y. He, Journal of American Ceramic Society, 1989,72 2300-2303.
[76] M. E. Launey, D. C. Hofmann, W. L. Johnson, and R. O. Ritchie, Proceedings of the National Academy of Sciences of the United States of America, 2009), 106, 4986-4991.
[77] H. S. Kim, Materials Science and Engineering A, 2000, 289, 30-33.
[79] M. C. Liu, C. J. Lee, Y. H. Lai, and J. C. Huang, Thin Solid Film, 2010, 518, 7295-7599.
[80] M. C. Liu, J. C. Huang, H. S. Chou, Y. H. Lai, C. J. Lee, and T. G. Nieh, Scripta Materialia, 2009, 61, 840-843.
[81] T. Masumoto, and R. Maddin, Materials Science and Engineering, 1975, 19, 1-24.
[82] Y. Zhang, and A. L. Greer, Applied Physics Letters, 2006, 89, 071907.
[83] T. Masumoto, and R. Maddin, Acta Metallurgica, 1971, 19, 725-741.
[84] T. G. Neih, T. W. Barbee, J. Wadsworth, Scripta Materialia, 1999, 9, 929-935.
[85] M. C. Liu, J. C. Huang, Y. T. Fong, S. P. Ju, X. H. Du, H. J. Pei, and T. G. Nieh, Acta Materialia, 2013, 61, 3304-3313.
[86] N. Tanaka, M. Kitano, T. Kumazawa, and A. Nishimura, IEEE Transactions on Components and Packaging Technologies, 1999, 22, 426-432.
[87] W. R. Ashurst, M. P. de Boer, C. Carraro, and R. Maboudian, Applied Surface Science, 2003, 212, 735-741.
[88] V. Bhardwaj, R. Chowdhury, and R. Jayaganthan, Applied Surface Science 2016, 389, 1023-1032.
[89] L. Hale, Principle and Techniques for Designing Precision Machines, Mechanical Engineering, Doctoral dissertation, MIT, 1999.
[90] T. Y. Zhang, and W. H. Xu, Journal of Materials Research, 2002, 17, 1715-1720.
[91] A. J. Perry, Thin Solid Films, 1983,107, 167-180.
[92] P. J. Burnett, D. S. Rickerby, Thin Solid Films, 1987, 154, 403-416.
[93] Y.T. Kim, C.W. Lee, S.K. Min, Applied Physics Letters, 1992, 61, 537.
[94] X. Jiang, J. Wang, J. Shen, R. Li, G. Yang, and H. Huang, Applied Surface Science, 2014, 288, 44-50.
[95] S. J. Bull, Tribology International, 1997, 30, 491-498.
[96] X. Jiang, J. Wang, J. Shen, R. Li, G. Yang, and H. Huang, Applied Surface Science 2014, 288, 44-50.
[97] S. J. Bull, and E. G. Berasetegui, Tribology International 2006, 39, 99-114.
[98] S. Durdu, and M. Usta, Applied Surface Science 2012, 261, 774-782.
[99] J. Li, W. T. Zheng, Z. Jin, X. Lu, G. Gu, X. Mei, and C. Dong, Applied Surface Science, 2002, 191, 273-279.
[100] J. Ballarre, D. A. Lopez, and A. L. Cavalieri, Wear, 2009, 266, 1165-1170.
[101] A. S. Bhattacharyya, and S. K. Mishra, Journal of Micromechanics and Microengineering, 2011, 21, 015011.
[102] S. Reyntjens, and R. Puers, Journal of Micromechanics and Microengineering, 2011, 11, 287-300.
[103] D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm, Materials Science and Engineering A, 2007, 459, 262–272.
[104] J. Mayer, L. A. Giannuzzi,T. Kamino, and J. Michael, MRS Bulletin, 2007, 32, 400-407.
[105] F. F. Wu, Z. F. Zhang, and S. X. Y. Mao, Advanced Engineering Materials, 2009, 11, 899-901.
[106] L. Huang, Q. J . Li, Z. W. Shan, J. Sun, and E. Ma, Nature Communications, 2011, DOI: 10.1038/ncomms1557.
[107] J. Ye, R. K. Mishra, and A. M. Minor, Scripta Materialia, 2008, 59, 951-954.
[108] M. C. Liu, J. C. Huang, K. W. Chen, J. F. Lin, W. D. Li, Y. F. Gao, and T. G. Nieh, Scripta Materialia, 2012, 66, 817-820.
[109] H. J. Pei, C. J. Lee, X. H. Du, Y. C. Chang, and J. C. Huang, Materials Science and Engineering A, 2011, 528, 7317-7322.
[110] H. S. Huang, H. J. Pei, Y. C. Chang, C. J. Lee, and J. C. Huang, Thin Solid Films, 2013, 529, 177-180.
[111] C. J. Shute, and J. B. Cohen, Journal of Materials Research, 1991, 6, 950-956.
[112] H. Shimamura, T. Nakamura, Polymer Degradation and Stability, 2009, 94, 1389-1396.
[113] C. J. Lee, H. K. Lin, J. C. Huang, and S. Y. Kuan, Scripta Materialia, 2011, 65, 695-698.
[114] J. Y. Kim, D. Jang, and J. R. Greer, Advanced Functional Materials, 2011, 21, 4550–4554.
[115] T. G. Nieh, T. W. Barbee, and J. Wadsworth, Scripta Materialia, 1999, 41, 929-935.
[116] H. Zheng, A. Cao, C. R. Weinberger, J. Y. Huang, K. Du, J. Wang, Y. Ma, Y. Xia, and S. X. Mao, Nature Communications, 2010, DOI: 10.1038/ncomms1149.
[117] Y. Yue, P. Liu, Z. Zhang, X. Han, and E. Ma, Nano Letters, 2011, 11, 3151-3155.
[118] S. Y. Kuan, J. C. Huang, Y. H. Chen, C. H. Chang, C. H. Hsieh, J. H. Wang, Y. C. Nian, S. P. Ju, T. G. Nieh, S. H. Chen, and Y. M. Hwang, Materials Science & Engineering A 2015, 646, 135–144.
[119] C. H. Hsieh, C. H. Chang, W. S. Chuang, X. Wang, and J. C. Huang, Applied Surface Science, 2015, 356, 416–421.
[120] T. P. Weihs, S. Hong, J. C. Bravman, and W. D. Nix, Journal of Materials Research, 1988, 3, 931-942.
[121] H. J. Yang, Y. T. Pei, G. M. Song, and J. Th. M. De Hosson, Journal of the European Ceramic Society, 2013, 33, 383–391.
[122] T. Sumigawa, T. Shishido, T. Murakami, and T. Kitamura, Materials Science and Engineering A, 2010, 527, 4796–4803.
[123] E. Kawai, K. Sanada, T. Sumigawa, and T. Kitamura, Engineering Fracture Mechanics, 2014, 120, 60–66.
[124] T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc, and M. C. Dang, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 8, 4467–4479.
[125] T. Y. Zhang and W. H. Xu, Journal of Materials Research, 2002, 17, 1715-1720.
[126] W. C. Oliver and G. M. Pharr, Journal of Materials Research, 1992, 7, 1564-83.
[127] M. Apreutesei, P. Steyer, A. Billard, L. Joly-Pottuz, and C. Esnouf, Journal of Alloys and Compounds 2015, 619, 284-292.
[128] A. Takeuchi and A. Inoue, Materials Transactions 2015, 46, 2817-2829.
[129] H. Okamoto, Journal of Phase Equilibria and Diffusion 2008, 29, 204.
[130] S.J. Bull and E.G. Berasetegui, Tribology International 2006, 39, 99–114.
[131] K. Khlifi and A. Ben Cheikh Larbi, Surface Engineering 2013, 29, 555-560.
[132] J. Ballarre, D. A. Lopez and A. L. Cavalieri, Wear 2009, 266, 1165–1170.
[133] A. S. Bhattacharyya and S. K. Mishra, Journal of Micromechanics and Microengineering 2011, 21, 015011.
[134] K. Dyrda and M. Sayer, Thin Solid Films 1999, 355, 277-283.
[135] Y. Bai, F. L. Yu, S. W. Lee, H. Chen, and J. F. Yang, Materials and Manufacturing Processes 2012, 27, 58-64.
[136] R. Jaworski, L. Pawlowski, F. Roudet, S. Kozerski, and F. Petit, Surface and Coatings Technology 2008, 202, 2644-2653.
[137] Y. Rudermann, A. Iost, and M. Bigerelle, Tribology International 2011, 44, 585-591.
[138] A. T. Akono, N. X. Randall and F. J. Ulm, Journal of Materials Research 2012, 27, 485-493.
[139] A. T. Akono and F. J. Ulm, Wear 2014, 313, 117-124.
[140] H. E. Evans, Materials at High Temperatures 1994, 12, 219-227.
[141] H. N. Yoshimura, A. L. Molisani, N. E. Narita, J. L. A. Manholetti, and J. M. Cavenaghi, Materials Science Forum 2006, 530, 408-413.
[142] T. H. Sung, J. C. Huang, J. H. Hsu, S. R. Jian, and T. G. Nieh, Applied Physics Letters, 2012, 100, 211903.
[143] M. T. Tilbrook, R. J. Moon, and M. Hoffman, Composites Science and Technology, 2005, 65, 201-220.
[144] F. Szuecs, C. P. Kim, and W. L. Johnson, Acta Materialia 2001, 49, 1507-1513.
[145] D. C. Hofmann, J. Suh, A. Wiest, M. Lind, M. D. Demetriou, and W. L. Johnson, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20136-20140.
[146] C. Fan, R. T. Ott, and T. C. Hufnagel, Applied Physics Letters 2002, 81, 1020.
[147] U. Kühn, J. Eckert, N. Mattern, and L. Schultz, Applied Physics Letters 2002, 80, 2478.
[148] H. Kato, K. Yubuta, D. V. Louzguine, A. Inoue, and H. S. Kim, Scripta Materialia 2004, 51, 577-581.
[149] H. K. Lim, E. S. Park, J. S. Park, W. T. Kim, and D. H. Kim, Journal of Materials Science 2005, 40, 6127-6130.
[150] H. Fu, H. Zhang, H. Wang, Q. Zhang, and Z. Hu, Scripta Materialia 2005, 52, 669-673.
[151] Y. K. Xu, H. Ma, J. Xu, and E. Ma, Acta Materialia 2005, 53, 1857-1866.
[152] J. S. C. Jang, J. Y. Ciou, T. H. Hung, J. C. Huang, and X. H. Du, Applied Physics Letters 2008, 92, 011930.
[153] J. S. C. Jang, T. H. Li, P. H. Tsai, J. C. Huang, and T. G. Nieh, Intermetallics 2012, 64, 102-105.
[154] C. Yang, Q. R. Cheng, L. H. Liu, Y. H. Li, and Y. Y. Li, Intermetallics 2015, 56, 37-43.
[155] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, and C. J. Lee, Applied Physics Letters 2012, 101, 011902.
[156] W. H. Wang, J. H. Hsu, and J. C. Huang, Applied Physics Letters 2013, 103, 161906.
[157] Y. T. Lin, Y. L. Chung, Z. K. Wang, and J. C. Huang, Intermetallics 2015, 57, 133-138.
[158] H. K. Lin, S. M. Chiu, T. P. Cho, and J. C. Huang, Materials Letters 2013, 113, 182-5.
[159] H. K. Lin, K. C. Cheng, and J. C. Huang, Nanoscale Research Letters 2015, 10, 274.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code