Responsive image
博碩士論文 etd-0429111-134020 詳細資訊
Title page for etd-0429111-134020
論文名稱
Title
應用觀測水文資料分析沿高屏峽谷流場受地形改變之影響
Analysis of topography induced flow variations along the Gao-Ping Submarine Canyon based on hydrographic observations
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-01-24
繳交日期
Date of Submission
2011-04-29
關鍵字
Keywords
海底峽谷、地形效應、斜壓動能、坡度
Submarine Canyon, topography effects, slope, Baroclinic kinetic
統計
Statistics
本論文已被瀏覽 5734 次,被下載 1526
The thesis/dissertation has been browsed 5734 times, has been downloaded 1526 times.
中文摘要
為了解沿高屏峽谷軸的流場受海底地形之動力影響,本研究採用2004/12/13~17和2005/5/23~27兩個海研三號航次的現場觀測資料進行分析,使用儀器為都普勒流剖儀(sb-ADCP、bm-ADCP、moored-ADCP)、錨碇溫度計串及定點CTD等,於高屏峽谷海域進行流場、溫度、潮位等水文資料探測,並參照美國加州蒙特利峽谷的研究案例,搭配溫度資料進行流場受海底地形影響之探討。
研究結果顯示:(1)沿高屏峽谷軸之流場因受到海底地形變化造成上、下層流速不同,尤其下層流速增強,此結果與前人研究相符。(2) 斜壓動能之計算顯示,漲潮時海流因地形深度由深至淺,受底床摩擦力之影響動能大幅衰減,造成轉彎處水深約230公尺的斜壓動能值只有0.2 ;退潮時海流因形深度由淺至深,造成轉彎處水深約250公尺的斜壓動能增強為0.47 。(3)對照坡度斜率及面積百分比得知,漲潮時之斜壓動能減少主要以爬坡影響較大,而峽谷寬度影響較小;退潮時之斜壓動能強弱變化,在通過轉彎處水深約250公尺前主要以峽谷寬度影響較大,而爬坡影響較小,通過轉彎處後則以爬坡影響較大,峽谷寬度影響較小。(4)動能損耗程度可透過水團溫度驗證,在峽谷轉彎處漲潮時,動能幾乎完全損耗,轉換為位能使冷水抬升;退潮時則動能增加,沒有冷水抬升效應。
Abstract
This study investigates the hydrodynamic variations along the Gao-ping Submarine Canyon influence by the topography effects. The data used in this study were collected from two cruises of field observations using research vessel OR3. Instruments applied include sb-ADCP、bm-ADCP、moored-ADCP、CTD and several vertical strings of temperature loggers. Parameters recorded include flow velocities, water temperature and tidal elevation. The analysis method is enlightenment by the case study in the Monterey Canyon of California.
The results show that (1) the current speed in the lower layer is faster than that of upper layer, which is explained due to v-shape of topography and bottom-trapped effect of internal tide. This result is consistent with previous studies. (2) In flood tide, the currents flowed into the Canyon from deep water to shallower. The baroclinic kinetic energy decreased to 0.2 at the turning point of canyon axis at 230m water, whichwas caused mainly by bottom friction. On the other hand, the baroclinic kinetic energy increased to 0.47 at 250m water in ebb tide when there was less influence of bottom friction. (3) In comparison the effects of bottom slope and area of cross section of the canyon, the baroclinic kinetic energy dissipation was mainly occurred at up slope flow during the flood tide. The change of the canyon width had less influence. During the ebb, the baroclinic kinetic energy was mainly due to the change of canyon width in the region shallower then the 230m of the second turning of the canyon. (4) The loss of kinetic energy during flooding up slope current can be verified by the changes of water mass temperature. Cold bottom was raised to upper layer when there was large drop of kinetic energy. There was likely a conversion of kinetic energy to potential energy. No upwelled cold water detected during ebb current with increase of kinetic energy.
目次 Table of Contents
謝誌……………………………………………………………………ⅰ
中文摘要……………………………………………………………ⅱ
英文摘要………………………………………………………………ⅲ
目錄……………………………………………………………………ⅴ
圖目錄…………………………………………………………………ⅶ
表目錄…………………………………………………………………ⅹ
第一章、緒論……………………………………………………………1
1-1. 高屏峽谷介紹………………………………………………1
1-2. 文獻回顧……………………………………………………3
1-3. 研究目的……………………………………………………6
第二章、現場觀測與資料蒐集…………………………………………7
2-1. 船碇式都普勒流剖儀(Sb-ADCP)…………………………7
2-2. 錨碇串儀器資料……………………………………………9
2-3. 定點CTD資料……………………………………………13
2-4. 潮位資料…………………………………………………16
第三章、資料處理與分析………………………………………………18
3-1. Sb-ADCP之處理分析………………………………………18
3-2. 錨碇串ADCP之處理分析…………………………………22
3-3. CTD之處理分析……………………………………………25
3-4. 調和分析……………………………………………………26
第四章、結果與討論 …………………………………………………27
4-1.沿高屏峽谷主軸流場………………………………………27
4-2.沿峽谷主軸之動能…………………………………………38
4-3. 錨碇串之ADCP與溫度計…………………………………51
4-4. 轉彎處之定點CTD…………………………………………59
第五章、結論與建議……………………………………………………63
參考文獻 ………………………………………………………………65
附錄A、中英文縮寫對照表……………………………………………67
附錄B、CTD測站資料表………………………………………………68
參考文獻 References
馮世墩,1988。高屏峽谷底層流之變化,國立中山大學海洋資源研究所碩士論文,42頁。
吳孟麟,2004。高屏海底峽谷與陸棚流場之研究,國立中山大學海洋地質及化學研究所碩士論文,119頁。
林育如,2006。高屏峽谷水團運動受地形水深之影響,國立中山大學海洋物理研究所碩士論文,85頁。
林聖欽,2008。以聲學回波強度及水文資料探討高屏峽谷水團受內潮運動之影響,國立中山大學海下科技暨應用海洋物理研究所碩士論文,98頁。
李盈槽,2009。高屏峽谷內潮受地形及分層效應之數值模擬,國立中山大學海下科技暨應用海洋物理研究所碩士論文,59頁。
高屏河-海輸運系統中陸源物質之宿命整合研究,2004。http://www.mgac.nsysu.edu.tw/liu/FATES/P2Framset.htm。
Chow, J., J.S. Lee, C.S. Liu, B.D. Lee, J.S. Watkins, 2001. A submarine canyon as the cause of a mud volcano-Liuchieuyu Island in Taiwan. Marine Geology, 176, 55-63.
Denman, K.L., H.J. Freeland, 1982. A topographically controlled off southem Vancouver Island. Journal of Marine Research, 40, 1069-1093.
Durrieu, X., 1994. Hydrographic and nepheloid structures in the Grand-
Rhône canyon. Cont. Shelf Res., 14, 457- 477.
Emery, W.J., R.E. Thomson, 1998. Data analysis methods in physical oceanography. Pergamon, 634.
Hotchkiss, F.S., C. Wunsch, 1982. Internal waves in Hudson Canyon
with possible geological implications. Deep-Sea Research, 29,
415-442.
Hickey, B., E. Baker, N. Kachel, 1986. Suspended particle movement in and around Quinault Submarine Canyon. Marine Geology, 71, 35-83.
Inman, D.L., C.E. Nordstrom, R.E. Flick, 1976. Current in submarine canyon: An air-sea-land interaction. Ann. Rev. Fluid Mech., 8, 275-310.
Kunze, E., L.K. Rosenfeld, G. Carter, M.C. Gregg, 2001. Internal
waves in Monterey Submarine Canyon, Journal of Phyical Oceanography, 32, 1890–1913.
Lin, J.T., K.J. Lin, J.C. Huang, 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 181, 357-386.
Lee, I.H., Y.H. Wang, T.L. James, W.S. Chuang, J. Xu, 2009. Internal tidal currents in the Gaoping Submarine Canyon. Journal of Marine Systems, 76, 397-404.
Wang, Y.H., I.H. Lee, J.T. Liu, 2008. Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuarine, Coastal and Shelf Science, 80, 153-160.
Xu, J.P., M. Noble, S.L. Eittreim, L.K. Rosenfeld, F.B. Schwing, C.H. Pilskaln, 2002. Distribution and transport of suspended particulate matter in Monterey Canyon, California. Marine Geology, 181, 215-234.
Yanagi, T., K. Yoshikawa, 1983. Generation mechanisms of tidal residual circulation. Journal of Oceanography, 156-166.
Yu, H.S., P.J. Auster, R.A. Cooper, 1993. Surface geology and biology at the head of Kao-ping canyon off southeastern Taiwan Terr. Atmos. Ocean. Sci., 4, 441-445.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code