Responsive image
博碩士論文 etd-0431117-082859 詳細資訊
Title page for etd-0431117-082859
論文名稱
Title
ZSCAN4在尿路上皮癌之預後意義與功能性角色
The prognostic significance and functional role of zinc finger and SCAN domain containing 4 (ZSCAN4) in urothelial carcinoma
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
162
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-05-23
繳交日期
Date of Submission
2017-05-31
關鍵字
Keywords
預後、腫瘤抑制、尿路上皮癌、膀胱癌、ZSCAN4
UC, prognosis, ZSCAN4, tumor suppressor, transcriptome, urothelial carcinoma
統計
Statistics
本論文已被瀏覽 5772 次,被下載 0
The thesis/dissertation has been browsed 5772 times, has been downloaded 0 times.
中文摘要
尿路上皮癌是泌尿道最常見的上皮腫瘤,近年來由於基因體分析技術的快速發展,發現基因的變異對於尿路上皮癌的致癌性與侵襲性愈來愈重要,探討這些基因的變異可以提供更好的診斷性、預後性及預測治療反應的相關資訊。為了找尋和尿路上皮癌侵襲度有關的基因,我們運用生物資訊探勘技術來分析膀胱尿路上皮癌基因表現資料庫,初步發現ZSCAN4和腫瘤侵犯組織的深度有顯著相關,比起表淺侵犯的腫瘤,侵犯到肌肉層以上的腫瘤其ZSCAN4的表現量是較低的。過去在幹細胞的研究發現,ZSCAN4有降低DNA損害反應、延長端粒(telomere)長度及穩定基因體的功能,然而,它在腫瘤細胞上的功能仍未明。首先,我們利用免疫組織化學染色的方式來探討ZSCAN4在340個上泌尿道尿路上皮癌及295個膀胱尿路上皮癌病人的預後意義以及它和各種臨床病理指標的相關性,初步發現在上泌尿道尿路上皮癌中,ZSCAN4低度表現的腫瘤,它的侵犯深度較深、較容易有淋巴結及血管的侵犯,在膀胱尿路上皮癌也是類似的情形,ZSCAN4低度表現的腫瘤其侵犯深度較深、細胞形態分級較高、較容易有淋巴結及血管的侵犯,在存活率分析方面,低度表現ZSCAN4的病人,他們的疾病相關存活率與無轉移存活率都是較差的。在生物體外的實驗顯示,當細胞高度表現ZSCAN4時,會抑制細胞增生、移行及侵襲的能力,也會抑制血管新生,這些發現都支持ZSCAN4在尿路上皮癌是一個抑制腫瘤生長的角色。此外,關於分子機制方面,我們發現ZSCAN4和pyrimidine ribonucleotides de novo biosynthesis pathway、cleavage and polyadenylation of pre-mRNA pathway及DNA double-strand break repair by non-homologous end joining pathway可能有潛在的相關性。總結來說,ZSCAN4在尿路上皮癌是扮演著抑制腫瘤生長的角色,低度表現ZSCAN4的腫瘤有較強的侵襲度,在臨床的預後方面也是較差的。
Abstract
Urothelial carcinoma (UC) is the most common epithelial malignancy in the urinary system. With the advance in genome-wide analyses, genetic alternations play an increasingly important role in carcinogenesis and aggressiveness of UC. These molecular alternations may provide better diagnostic, prognostic and/or predictive value than conventional pathological classification. Through analysis of gene expression profiles of urinary bladder urothelial carcinoma (UBUC) from publicly available GEO dataset (GSE31684), Zinc finger and SCAN domain containing 4 (ZSCAN4) was identified as a significant downregulated gene in muscle-invasive UBUCs (T2-T4) when compared with non-muscle-invasive UBUCs (Ta-T1). In embryonic stem cells, ZSCAN4 was responsible for attenuating the DNA damage response, improving genomic stability and promoting telomere elongation during reprogramming. However, little is known about its functional role in cancer. Initially, we performed immunohistochemical study to investigate the prognostic significance of ZSCAN4 and its association with various clinicopathological parameters in 340 upper urinary tract urothelial carcinomas (UTUCs) and 295 UBUCs. In UTUC, low expression of ZSCAN4 was significantly associated with advanced primary pT stage (P=0.011), increased nodal metastasis (P=0.002) and increased vascular invasion (P=0.019). In UBUC, low expression of ZSCAN4 was significantly correlated with advanced primary pT stage (P<0.001), increased nodal metastasis (P=0.001), high histological grade (P=0.003) and increased vascular invasion (P=0.003). In survival analysis, low expression of ZSCAN4 acted as an independent negative prognostic factor for disease-specific survival and metastasis-free survival both in UTUC and UBUC. In vitro study revealed overexpression of ZSCAN4 suppressed cell proliferation, migration and invasion abilities, as well as angiogenesis. These findings supported the tumor suppressor role of ZSCAN4 in UC. In further investigation of underlying molecular mechanism, we found that ZSCAN4 has potential interactions with regulators involved in pyrimidine ribonucleotides de novo biosynthesis pathway, cleavage and polyadenylation of pre-mRNA pathway, and DNA double-strand break repair by non-homologous end joining pathway. In summary, ZSCAN4 played a key tumor suppressor role in UC. Low expression of ZSCAN4 was significantly associated with aggressive phenotypes and predicted worse outcome in UC patients.
目次 Table of Contents
論文審定書…………………………………………………………….………….. i
論文公開授權書……………………………………………………………………ii
中文摘要…………………………………………………………….…………….. iii
英文摘要………………………………………..………………………………..... iv
Directory of Figures…….…………………..……………………………..…....... viii
Directory of Tables………………………………………………………….…….. ix
List of abbreviations…………………………………………………..…….…….. x
1. Introduction………….……………………………………………...................... 1
2. Materials and methods………………………………………………………...... 5
2.1 Data mining of publicly available transcriptome…………………………... 5
2.2 Patients and tumor samples……………………………………………........ 6
2.3 Cell lines……………………………………………………………………. 7
2.4 Immunohistochemistry and scoring…………………………….………....... 8
2.5 Real time RT-PCR…………………………………………………………... 8
2.6 Expression plasmids and establishment of stable clones……......................... 9
2.7 RNA interference……………………………………………………............ 10
2.8 Flow cytometry analysis………………………………………………...….. 10
2.9 Transwell migration and invasion assays……………………..…………..… 11
2.10 BrdU assay……………………………………………………………..... 12
2.11 Tube formation assay………………………………………………...….. 12
2.12 Immunoprecipitation (IP)……………………………………..…….…… 13
2.13 Protein digestion…………………………………………………..….….. 13
2.14 Liquid chromatography tandem mass spectrometry analysis (LC-MS/MS)…..............................................................................................................… 14
2.15 Statistical analyses……………………………………………………….. 15
3. Results………………………………………………………………….….…….. 16
3.1 ZSCAN4 is identified as a significant downregulated gene in muscle-invasive UBUCs (T2-T4) when compared with non-muscle-invasive UBUCs (Ta-T1) .………………………………………………………..……………….….......... 16
3.2 Low mRNA transcript level of ZSCAN4 predicts worse outcome in the UBUC transcriptome (GSE31684) ..…………………………………..………..….….......... 16
3.3 Low protein expression of ZSCAN4 is associated with advanced disease status in UTUC and UBUC……………………………………………………..…….......... 16
3.4 Low protein expression of ZSCAN4 predicts worse outcome in UTUC and UBUC…………………………………………………………….……..………........ 17
3.5 Overexpression of ZSCAN4 inhibits cell proliferation, migration, and invasion abilities of UC cells……………………………………………………………...…….19
3.6 Overexpression of ZSCAN4 causes G0/G1 phase cell cycle arrest in J82 cells…………………………………………………………………………...…….. 20
3.7 Overexpression of ZSCAN4 suppresses angiogenesis in UC cell lines…………………………………………………………………………….…… 20
3.8 ZSCAN4 has potential interactions with pyrimidine ribonucleotides de novo biosynthesis pathway, cleavage and polyadenylation of pre-mRNA pathway, and DNA double-strand break repair by non-homologous end joining pathway……….……. 21
4. Discussion…………………………………………………………………..….... 22
5. Conclusion………………………………………………………………..….….. 26
6. Figures………………………………………………………………..…………. 27
7. Tables………………………………………………………………….…….…... 38
8. References……………………………………………………………….……..... 51
9. Publications…..………………………………………………………….………. 58
參考文獻 References
1. Knowles MA, Hurst CD. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer. 2015; 15: 25-41.
2. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014; 507: 315-22.
3. Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014; 25: 152-65.
4. Damrauer JS, Hoadley KA, Chism DD, Fan C, Tiganelli CJ, Wobker SE, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A. 2014; 111: 3110-5.
5. Sjodahl G, Lauss M, Lovgren K, Chebil G, Gudjonsson S, Veerla S, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012; 18: 3377-86.
6. Cairns P, Mao L, Merlo A, Lee DJ, Schwab D, Eby Y, et al. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994; 265: 415-7.
7. Williamson MP, Elder PA, Shaw ME, Devlin J, Knowles MA. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet. 1995; 4: 1569-77.
8. Aboulkassim TO, LaRue H, Lemieux P, Rousseau F, Fradet Y. Alteration of the PATCHED locus in superficial bladder cancer. Oncogene. 2003; 22: 2967-71.
9. McGarvey TW, Maruta Y, Tomaszewski JE, Linnenbach AJ, Malkowicz SB. PTCH gene mutations in invasive transitional cell carcinoma of the bladder. Oncogene. 1998; 17: 1167-72.
10. Nishiyama H, Hornigold N, Davies AM, Knowles MA. A sequence-ready 840-kb PAC contig spanning the candidate tumor suppressor locus DBC1 on human chromosome 9q32-q33. Genomics. 1999; 59: 335-8.
11. Sjodahl G, Lauss M, Gudjonsson S, Liedberg F, Hallden C, Chebil G, et al. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1. PLoS One. 2011; 6: e18583.
12. Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010; 5: e13821.
13. Lopez-Knowles E, Hernandez S, Malats N, Kogevinas M, Lloreta J, Carrato A, et al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res. 2006; 66: 7401-4.
14. Mitra AP, Cote RJ. Molecular pathogenesis and diagnostics of bladder cancer. Annu Rev Pathol. 2009; 4: 251-85.
15. Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol. 2006; 24: 5552-64.
16. Sanchez-Carbayo M, Socci ND, Charytonowicz E, Lu M, Prystowsky M, Childs G, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 2002; 62: 6973-80.
17. Wu XR. Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005; 5: 713-25.
18. Riester M, Taylor JM, Feifer A, Koppie T, Rosenberg JE, Downey RJ, et al. Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer. Clin Cancer Res. 2012; 18: 1323-33.
19. Falco G, Lee SL, Stanghellini I, Bassey UC, Hamatani T, Ko MS. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev Biol. 2007; 307: 539-50.
20. Jiang J, Lv W, Ye X, Wang L, Zhang M, Yang H, et al. Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res. 2013; 23: 92-106.
21. Zalzman M, Falco G, Sharova LV, Nishiyama A, Thomas M, Lee SL, et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature. 2010; 464: 858-63.
22. McKinnon PJ, Caldecott KW. DNA strand break repair and human genetic disease. Annu Rev Genomics Hum Genet. 2007; 8: 37-55.
23. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A. 1988; 85: 6622-6.
24. Thanasoula M, Escandell JM, Martinez P, Badie S, Munoz P, Blasco MA, et al. p53 prevents entry into mitosis with uncapped telomeres. Curr Biol. 2010; 20: 521-6.
25. Diotti R, Loayza D. Shelterin complex and associated factors at human telomeres. Nucleus. 2011; 2: 119-35.
26. Hockemeyer D, Daniels JP, Takai H, de Lange T. Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell. 2006; 126: 63-77.
27. Lee K, Gollahon LS. Zscan4 interacts directly with human Rap1 in cancer cells regardless of telomerase status. Cancer Biol Ther. 2014; 15: 1094-105.
28. Chiang LC, Chiang W, Chang LL, Wu WJ, Huang CH. Characterization of a new human transitional cell carcinoma cell line from the renal pelvis, RTCC-1/KMC. Kaohsiung J Med Sci. 1996; 12: 448-52.
29. Pena-Hernandez R, Marques M, Hilmi K, Zhao T, Saad A, Alaoui-Jamali MA, et al. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I. Proc Natl Acad Sci U S A. 2015; 112: E677-86.
30. Li Y, Collins M, An J, Geiser R, Tegeler T, Tsantilas K, et al. Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network. Brain Res. 2016; 1647: 79-93.
31. Hartmann A, Schlake G, Zaak D, Hungerhuber E, Hofstetter A, Hofstaedter F, et al. Occurrence of chromosome 9 and p53 alterations in multifocal dysplasia and carcinoma in situ of human urinary bladder. Cancer Res. 2002; 62: 809-18.
32. Esrig D, Spruck CH, 3rd, Nichols PW, Chaiwun B, Steven K, Groshen S, et al. p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. Am J Pathol. 1993; 143: 1389-97.
33. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH. Visualization of a DNA-PK/PARP1 complex. Nucleic Acids Res. 2012; 40: 4168-77.
34. Ying S, Chen Z, Medhurst AL, Neal JA, Bao Z, Mortusewicz O, et al. DNA-PKcs and PARP1 Bind to Unresected Stalled DNA Replication Forks Where They Recruit XRCC1 to Mediate Repair. Cancer Res. 2016; 76: 1078-88.
35. Goodwin JF, Kothari V, Drake JM, Zhao S, Dylgjeri E, Dean JL, et al. DNA-PKcs-Mediated Transcriptional Regulation Drives Prostate Cancer Progression and Metastasis. Cancer Cell. 2015; 28: 97-113.
36. Park SH, Jang KY, Kim MJ, Yoon S, Jo Y, Kwon SM, et al. Tumor suppressive effect of PARP1 and FOXO3A in gastric cancers and its clinical implications. Oncotarget. 2015; 6: 44819-31.
37. Gan A, Green AR, Nolan CC, Martin S, Deen S. Poly(adenosine diphosphate-ribose) polymerase expression in BRCA-proficient ovarian high-grade serous carcinoma; association with patient survival. Hum Pathol. 2013; 44: 1638-47.
38. Rojo F, Garcia-Parra J, Zazo S, Tusquets I, Ferrer-Lozano J, Menendez S, et al. Nuclear PARP-1 protein overexpression is associated with poor overall survival in early breast cancer. Ann Oncol. 2012; 23: 1156-64.
39. Sarris M, Scolyer RA, Konopka M, Thompson JF, Harper CG, Lee CS. Cytoplasmic expression of nm23 predicts the potential for cerebral metastasis in patients with primary cutaneous melanoma. Melanoma Res. 2004; 14: 23-7.
40. Mao H, Liu H, Fu X, Fang Z, Abrams J, Worsham MJ. Loss of nm23 expression predicts distal metastases and poorer survival for breast cancer. Int J Oncol. 2001; 18: 587-91.
41. Arai T, Yamashita T, Urano T, Masunaga A, Itoyama S, Itoh K, et al. Preferential reduction of nm23-H1 gene product in metastatic tissues from papillary and follicular carcinomas of the thyroid. Mod Pathol. 1995; 8: 252-6.
42. Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017; 18: 18-30.
43. Ichinose J, Watanabe K, Sano A, Nagase T, Nakajima J, Fukayama M, et al. Alternative polyadenylation is associated with lower expression of PABPN1 and poor prognosis in non-small cell lung cancer. Cancer Sci. 2014; 105: 1135-41.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.128.199.210
論文開放下載的時間是 校外不公開

Your IP address is 3.128.199.210
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code