Responsive image
博碩士論文 etd-0501116-194326 詳細資訊
Title page for etd-0501116-194326
論文名稱
Title
探討APC基因在胰臟癌形成與惡化中所扮演的角色
Investigation of APC gene functional roles in pancreatic cancer initiation and progression
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-05-20
繳交日期
Date of Submission
2016-06-01
關鍵字
Keywords
胰臟癌、APC、黏液性囊泡腫瘤、p53、單股缺失、立體腫瘤球、轉移、小鼠模式
Haploinsufficiency, Mucinous cystic neoplasms, p53, APC, Pancreatic cancer, metastasis, mice model, tumor organoid
統計
Statistics
本論文已被瀏覽 5716 次,被下載 46
The thesis/dissertation has been browsed 5716 times, has been downloaded 46 times.
中文摘要
Chapter Ⅰ
抑癌基因APC為家族性大腸瘜肉症中的致病基因,其調控WNT訊息傳遞並且參與許多腸胃消化道中癌症的發生。在此我們首先在小鼠胚胎發現APC的表達會調控胰島細胞的發育與成熟,並開發出一種非kras突變所誘導的胰臟癌小鼠模式。在此小鼠模式中,專一性利用APC的單股缺失搭配p53基因剃除會發展出胰臟腺癌前病灶-黏液性囊泡腫瘤。透過組織切片染色分析在小鼠胰臟病灶中發現大量分泌黏液素以及圍繞著卵巢樣間質細胞,其像似於人類黏液性囊泡腫瘤的特徵並且在約30%小鼠中會進一步惡化轉移到肝臟與胃部。此研究主要臨床意義在於找出WNT訊息傳遞可用在人類黏液性囊泡腫瘤中新的治療策略。
Chapter Ⅱ
胰臟癌是現有人類罹患的惡性腫瘤當中最致命與最具侵襲性之癌症且難以診斷以及預後不佳的一種,因此發展胰臟癌的研究模式極為重要。在此研究中我們利用基因改造小鼠去探討kras 活化所誘發的胰臟早期病變並搭配抑癌基因APC 和p53 的突變所產生的胰臟癌。在這個模式中,在小鼠胰臟很早期就會產生PanIN的病變且快速惡化成胰臟腺癌進一步侵犯其他組織與轉移到其他器官。在小鼠全基因譜分析中我們發現APC 的突變會調高runx3 基因的表現以及下游SPP1 和COL6A1 的活化進而導致癌細胞的侵襲性增加與轉移。另外我們利用此小鼠產生的胰臟癌去建立類器官的立體腫瘤球模擬真實活體中的情形,在此模式中PKA53 立體腫瘤球發展出具侵襲性的指狀分肢以及病理特徵,其類似於在活體小鼠中所發生的情形,因此這個全面性立體腫瘤球的模式將有利於胰臟癌的治療篩選以及早期診斷和精確治療的發展。
Abstract
Chapter Ⅰ
Adenomatous polyposis coli (APC), a tumor suppressor gene critically involved in familial adenomatous polyposis, is integral in Wnt/β-catenin signaling and is implicated in the development of sporadic tumors of the distal gastrointestinal tract including pancreatic cancer (PC). Here we report for the first time that functional APC is required for the growth and maintenance of pancreatic islets and maturation. Subsequently, a non-Kras mutation-induced pre-malignancy mouse model was developed; in this model, APC haploinsufficiency coupled with p53 deletion resulted in the development of a distinct type of pancreatic premalignant precursors, mucinous cystic neoplasms (MCNs), exhibiting pathomechanisms identical to those observed in human MCNs, including accumulation of cystic fluid secreted by neoplastic and ovarian-like stromal cells, with 100% penetrance and the presence of hepatic and gastric metastases in > 30% of the mice. The major clinical implications of this study suggest targeting the Wnt signaling pathway as a novel strategy for managing MCN.
Chapter Ⅱ
Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Here, we investigate the effects of concomitant p53 and APC mutation on neoplasms initiated by oncogenic Kras in pancreas mice. In this model, APC haploinsufficiency coupled with p53 deletion and kras activation resulted in an earlier appearance of PanIN lesions and these neoplasms progressed rapidly to highly invasive and metastatic cancers. Through analysis of microarray data in mice revealed APC mutant upregulated runx3 expression and downstream target SPP1 and COL6A1 that stimulating cell migration and dissemination. We also established tumor organoid models from KPC and PKA53 mice, these organoid format multicellular invasive strands show PKA53 cell were highly invasive potential than KPC cell that identical to mice model. These comprehensive 3D cell culture model of murine PDAC progression would facilitate investigation of therapeutic targets, and diagnostics for PDAC.
目次 Table of Contents
Contents
論文審定書 i
Chinese Abstract ii
English Abstract iii
Abbreviations vi
Chapter Ⅰ
Introduction 2
Materials & methods 4
Results 15
Discussion 25
Figures 29
Tables 55
References 60

Chapter Ⅱ
Chinese Abstract 67
English Abstract 68
Introduction 69
Results 79
Discussion 86
Figures 91
Tables 107
References 111
參考文獻 References
1. Li, D., et al., Pancreatic cancer. Lancet, 2004. 363(9414): p. 1049-57.
2. Maitra, A. and R.H. Hruban, Pancreatic cancer. Annu Rev Pathol, 2008. 3: p. 157-88.
3. Vincent, A., et al., Pancreatic cancer. Lancet, 2011. 378(9791): p. 607-20.
4. Lin, R.S. and W.C. Lee, Mortality trends of pancreatic cancer: an affluent type of cancer in Taiwan. J Formos Med Assoc, 1992. 91(12): p. 1148-53.
5. Chang, C.C., H.F. Chiu, and C.Y. Yang, Parity, age at first birth, and risk of death from pancreatic cancer: evidence from a cohort in Taiwan. Pancreas. 39(5): p. 567-71.
6. Milella, M., et al., Pilot study of celecoxib and infusional 5-fluorouracil as second-line treatment for advanced pancreatic carcinoma. Cancer, 2004. 101(1): p. 133-8.
7. Kroep, J.R., et al., Experimental drugs and drug combinations in pancreatic cancer. Ann Oncol, 1999. 10 Suppl 4: p. 234-8.
8. Philip, P.A., Gemcitabine and platinum combinations in pancreatic cancer. Cancer, 2002. 95(4 Suppl): p. 908-11.
9. Luttges, J., et al., Rare ductal adenocarcinoma of the pancreas in patients younger than age 40 years. Cancer, 2004. 100(1): p. 173-82.
10. Fuchs, C.S., et al., A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med, 1996. 156(19): p. 2255-60.
11. Gapstur, S.M., et al., Abnormal glucose metabolism and pancreatic cancer mortality. JAMA, 2000. 283(19): p. 2552-8.
12. Michaud, D.S., et al., Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA, 2001. 286(8): p. 921-9.
13. Berrington de Gonzalez, A., S. Sweetland, and E. Spencer, A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer, 2003. 89(3): p. 519-23.
14. Stolzenberg-Solomon, R.Z., et al., Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA, 2005. 294(22): p. 2872-8.
15. Lynch, H.T., et al., Familial pancreatic cancer: a review. Semin Oncol, 1996. 23(2): p. 251-75.
16. Wright, F.A. and R.G. Thomas, Familial melanoma and pancreatic cancer. N Engl J Med, 1996. 334(7): p. 470-1; author reply 471-2.
17. Bardeesy, N. and R.A. DePinho, Pancreatic cancer biology and genetics. Nat Rev Cancer, 2002. 2(12): p. 897-909.
18. Hezel, A.F., et al., Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev, 2006. 20(10): p. 1218-49.
19. Horii, A., et al., Frequent somatic mutations of the APC gene in human pancreatic cancer. Cancer Res, 1992. 52(23): p. 6696-8.
20. Maitra, A., et al., Precursors to invasive pancreatic cancer. Adv Anat Pathol, 2005. 12(2): p. 81-91.
21. Farrell, J.J. and C. Fernandez-del Castillo, Pancreatic cystic neoplasms: management and unanswered questions. Gastroenterology, 2013. 144(6): p. 1303-15.
22. Al-Haddad, M., et al., Diagnosis and treatment of cystic pancreatic tumors. Clin Gastroenterol Hepatol, 2011. 9(8): p. 635-48.
23. Jensen, J., Gene regulatory factors in pancreatic development. Dev Dyn, 2004. 229(1): p. 176-200.
24. Dessimoz, J. and A. Grapin-Botton, Pancreas development and cancer: Wnt/beta-catenin at issue. Cell Cycle, 2006. 5(1): p. 7-10.
25. Heller, R.S., et al., Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas. Gene Expr, 2003. 11(3-4): p. 141-7.
26. Murtaugh, L.C., et al., Beta-catenin is essential for pancreatic acinar but not islet development. Development, 2005. 132(21): p. 4663-74.
27. Heiser, P.W., et al., Stabilization of beta-catenin impacts pancreas growth. Development, 2006. 133(10): p. 2023-32.
28. Strom, A., et al., Unique mechanisms of growth regulation and tumor suppression upon Apc inactivation in the pancreas. Development, 2007. 134(15): p. 2719-25.
29. Ichii, S., et al., Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum Mol Genet, 1992. 1(6): p. 387-90.
30. Bonk, T., et al., Molecular diagnosis of familial adenomatous polyposis (FAP): genotyping of adenomatous polyposis coli (APC) alleles by MALDI-TOF mass spectrometry. Clin Biochem, 2002. 35(2): p. 87-92.
31. Le Borgne, J., et al., [Cystic and papillary tumor of the pancreas: diagnostic and developmental uncertainties. Apropos of a case]. Chirurgie, 1997. 122(1): p. 31-4.
32. Beroud, C. and T. Soussi, APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res, 1996. 24(1): p. 121-4.
33. Polakis, P., The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys Acta, 1997. 1332(3): p. F127-47.
34. Groden, J., et al., Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 1991. 66(3): p. 589-600.
35. Abraham, S.C., et al., Solid-pseudopapillary tumors of the pancreas are genetically distinct from pancreatic ductal adenocarcinomas and almost always harbor beta-catenin mutations. Am J Pathol, 2002. 160(4): p. 1361-9.
36. Abraham, S.C., et al., Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas : frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol, 2001. 159(5): p. 1619-27.
37. Guo, M., et al., Epigenetic changes associated with neoplasms of the exocrine and endocrine pancreas. Discov Med, 2014. 17(92): p. 67-73.
38. Pujal, J., G. Capella, and F.X. Real, The Wnt pathway is active in a small subset of pancreas cancer cell lines. Biochim Biophys Acta, 2006. 1762(1): p. 73-9.
39. Sato, H., et al., Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis, 2007. 28(12): p. 2459-66.
40. Pasca di Magliano, M., et al., Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS One, 2007. 2(11): p. e1155.
41. Su, L.K., B. Vogelstein, and K.W. Kinzler, Association of the APC tumor suppressor protein with catenins. Science, 1993. 262(5140): p. 1734-7.
42. Rubinfeld, B., et al., Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 1996. 272(5264): p. 1023-6.
43. Toivonen, S., et al., Activin A and Wnt-dependent specification of human definitive endoderm cells. Exp Cell Res, 2013. 319(17): p. 2535-44.
44. Kaplan, K.B., et al., A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat Cell Biol, 2001. 3(4): p. 429-32.
45. Zumbrunn, J., et al., Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol, 2001. 11(1): p. 44-9.
46. Fodde, R., et al., Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol, 2001. 3(4): p. 433-8.
47. Kuraguchi, M., et al., Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. PLoS Genet, 2006. 2(9): p. e146.
48. Hung, K.E., et al., Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1565-70.
49. Lang, J., et al., Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci, 2013. 33(7): p. 3113-30.
50. Hruban, R.H., et al., Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res, 2006. 66(1): p. 95-106.
51. Hingorani, S.R., et al., Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 2003. 4(6): p. 437-50.
52. Bardeesy, N., et al., Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci U S A, 2006. 103(15): p. 5947-52.
53. Hingorani, S.R., et al., Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 2005. 7(5): p. 469-83.
54. Aguirre, A.J., et al., Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev, 2003. 17(24): p. 3112-26.
55. Ijichi, H., et al., Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev, 2006. 20(22): p. 3147-60.
56. Bardeesy, N., et al., Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev, 2006. 20(22): p. 3130-46.
57. Mazur, P.K., et al., Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A, 2010. 107(30): p. 13438-43.
58. Jonkers, J., et al., Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet, 2001. 29(4): p. 418-25.
59. Jackson, E.L., et al., Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev, 2001. 15(24): p. 3243-8.
60. Su, H.T., et al., Stem cell marker nestin is critical for TGF-beta1-mediated tumor progression in pancreatic cancer. Mol Cancer Res, 2013. 11(7): p. 768-79.
61. Chiu, C.Y., et al., The activation of MEK/ERK signaling pathway by bone morphogenetic protein 4 to increase hepatocellular carcinoma cell proliferation and migration. Mol Cancer Res, 2012. 10(3): p. 415-27.
62. Fazeli, A., et al., Effects of p53 mutations on apoptosis in mouse intestinal and human colonic adenomas. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10199-204.
63. Narayan, S. and A.S. Jaiswal, Activation of adenomatous polyposis coli (APC) gene expression by the DNA-alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine requires p53. J Biol Chem, 1997. 272(49): p. 30619-22.
64. Pellegata, N.S., et al., K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res, 1994. 54(6): p. 1556-60.
65. Murakami, Y., et al., Intraductal papillary-mucinous neoplasms and mucinous cystic neoplasms of the pancreas differentiated by ovarian-type stroma. Surgery, 2006. 140(3): p. 448-53.
66. Stein, U., et al., The metastasis-associated gene S100A4 is a novel target of beta-catenin/T-cell factor signaling in colon cancer. Gastroenterology, 2006. 131(5): p. 1486-500.
67. Jiang, H., et al., Quantitatively controlling expression of miR-17~92 determines colon tumor progression in a mouse tumor model. Am J Pathol, 2014. 184(5): p. 1355-68.
68. Emmrich, S., et al., miR-99a/100~125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFbeta and Wnt signaling. Genes Dev, 2014. 28(8): p. 858-74.
69. Reilein, A. and W.J. Nelson, APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol, 2005. 7(5): p. 463-73.
70. Sotillo, R., et al., Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 2007. 11(1): p. 9-23.
71. Janssen, A., et al., Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science, 2011. 333(6051): p. 1895-8.
72. Zhu, M., et al., MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression. J Cell Biol, 2013. 200(6): p. 773-87.
73. Arensman, M.D., et al., WNT7B mediates autocrine Wnt/beta-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene, 2014. 33(7): p. 899-908.
74. Loh, Y.N., et al., The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer, 2013. 13: p. 174.
75. Morris, J.P.t., et al., Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest, 2010. 120(2): p. 508-20.
76. Sano, M., et al., Activated wnt signaling in stroma contributes to development of pancreatic mucinous cystic neoplasms. Gastroenterology, 2014. 146(1): p. 257-67.
77. Shimada, M., et al., IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators. J Immunol, 2002. 168(2): p. 861-8.
78. Li, A., et al., Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol, 2011. 178(3): p. 1340-9.
79. Monti, P., et al., The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res, 2003. 63(21): p. 7451-61.
80. Ischenko, I., et al., Direct reprogramming by oncogenic Ras and Myc. Proc Natl Acad Sci U S A, 2013. 110(10): p. 3937-42.
81. Mimeault, M. and S.K. Batra, Recent progress on normal and malignant pancreatic stem/progenitor cell research: therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer. Gut, 2008. 57(10): p. 1456-68.
82. Tang, L.H., et al., Clinically aggressive solid pseudopapillary tumors of the pancreas: a report of two cases with components of undifferentiated carcinoma and a comparative clinicopathologic analysis of 34 conventional cases. Am J Surg Pathol, 2005. 29(4): p. 512-9.
83. Sekine, H., et al., S100A4, frequently overexpressed in various human cancers, accelerates cell motility in pancreatic cancer cells. Biochem Biophys Res Commun, 2012. 429(3-4): p. 214-9.
84. Tsukamoto, N., et al., The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas, 2013. 42(6): p. 1027-33.
85. Kuijper, S., et al., Genetics of shoulder girdle formation: roles of Tbx15 and aristaless-like genes. Development, 2005. 132(7): p. 1601-10.
86. Qin, J., et al., The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 2012. 10(5): p. 556-69.
87. Mavila, N., et al., Fibroblast growth factor receptor-mediated activation of AKT-beta-catenin-CBP pathway regulates survival and proliferation of murine hepatoblasts and hepatic tumor initiating stem cells. PLoS One, 2012. 7(11): p. e50401.
88. Niu, J., et al., Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-kappaB transcription factors. J Biol Chem, 2007. 282(9): p. 6001-11.
89. Ueno, K., et al., IGFBP-4 activates the Wnt/beta-catenin signaling pathway and induces M-CAM expression in human renal cell carcinoma. Int J Cancer, 2011. 129(10): p. 2360-9.
90. Milde-Langosch, K., et al., Prognostic relevance of glycosylation-associated genes in breast cancer. Breast Cancer Res Treat, 2014. 145(2): p. 295-305.

1. Cheon, D.J. and S. Orsulic, Mouse models of cancer. Annu Rev Pathol, 2011. 6: p. 95-119.
2. Kim, M.P., et al., Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat Protoc, 2009. 4(11): p. 1670-80.
3. Kim, J., et al., An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep, 2013. 3(6): p. 2088-99.
4. Hingorani, S.R., et al., Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 2003. 4(6): p. 437-50.
5. Erkan, M., et al., Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 2009. 11(5): p. 497-508.
6. Cutz, J.C., et al., Establishment in severe combined immunodeficiency mice of subrenal capsule xenografts and transplantable tumor lines from a variety of primary human lung cancers: potential models for studying tumor progression-related changes. Clin Cancer Res, 2006. 12(13): p. 4043-54.
7. Daniel, V.C., et al., A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res, 2009. 69(8): p. 3364-73.
8. Tentler, J.J., et al., Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol, 2012. 9(6): p. 338-50.
9. Jin, K., et al., Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol, 2010. 12(7): p. 473-80.
10. Krumbach, R., et al., Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer, 2011. 47(8): p. 1231-43.
11. Hidalgo, M., et al., A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther, 2011. 10(8): p. 1311-6.
12. Eiraku, M., et al., Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell, 2008. 3(5): p. 519-32.
13. Barker, N., et al., Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 2009. 457(7229): p. 608-11.
14. Astashkina, A.I., et al., A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials, 2012. 33(18): p. 4700-11.
15. Karthaus, W.R., et al., Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell, 2014. 159(1): p. 163-75.
16. Bartfeld, S., et al., In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015. 148(1): p. 126-136 e6.
17. Huch, M., et al., Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J, 2013. 32(20): p. 2708-21.
18. Walsh, A.J., et al., Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res, 2014. 74(18): p. 5184-94.
19. Nadauld, L.D., et al., Metastatic tumor evolution and organoid modeling implicate TGFBR2 as a cancer driver in diffuse gastric cancer. Genome Biol, 2014. 15(8): p. 428.
20. Dekkers, J.F., et al., A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med, 2013. 19(7): p. 939-45.
21. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
22. Sharma, S.V., D.A. Haber, and J. Settleman, Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer, 2010. 10(4): p. 241-53.
23. Miyoshi, H., et al., t(8;21) breakpoints on chromosome 21 in acute myeloid leukemia are clustered within a limited region of a single gene, AML1. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10431-4.
24. Ogawa, E., et al., PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A, 1993. 90(14): p. 6859-63.
25. Wang, S., et al., Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor. Mol Cell Biol, 1993. 13(6): p. 3324-39.
26. Ito, Y., Oncogenic potential of the RUNX gene family: 'overview'. Oncogene, 2004. 23(24): p. 4198-208.
27. Okuda, T., et al., RUNX1/AML1: a central player in hematopoiesis. Int J Hematol, 2001. 74(3): p. 252-7.
28. Taketani, T., et al., AML1/RUNX1 mutations are infrequent, but related to AML-M0, acquired trisomy 21, and leukemic transformation in pediatric hematologic malignancies. Genes Chromosomes Cancer, 2003. 38(1): p. 1-7.
29. Nottingham, W.T., et al., Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood, 2007. 110(13): p. 4188-97.
30. Jin, H., et al., Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI. Development, 2009. 136(4): p. 647-54.
31. Sadikovic, B., et al., Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Hum Mol Genet, 2009. 18(11): p. 1962-75.
32. Sadikovic, B., et al., Expression analysis of genes associated with human osteosarcoma tumors shows correlation of RUNX2 overexpression with poor response to chemotherapy. BMC Cancer, 2010. 10: p. 202.
33. Akech, J., et al., Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene, 2010. 29(6): p. 811-21.
34. Pratap, J., et al., Runx2 transcriptional activation of Indian Hedgehog and a downstream bone metastatic pathway in breast cancer cells. Cancer Res, 2008. 68(19): p. 7795-802.
35. Nomoto, S., et al., Frequent allelic imbalance suggests involvement of a tumor suppressor gene at 1p36 in the pathogenesis of human lung cancers. Genes Chromosomes Cancer, 2000. 28(3): p. 342-6.
36. Schwab, M., C. Praml, and L.C. Amler, Genomic instability in 1p and human malignancies. Genes Chromosomes Cancer, 1996. 16(4): p. 211-29.
37. Ezaki, T., et al., Deletion mapping on chromosome 1p in well-differentiated gastric cancer. Br J Cancer, 1996. 73(4): p. 424-8.
38. Huang, J., et al., Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer, 2007. 46(8): p. 745-50.
39. Bagchi, A. and A.A. Mills, The quest for the 1p36 tumor suppressor. Cancer Res, 2008. 68(8): p. 2551-6.
40. Chuang, L.S. and Y. Ito, RUNX3 is multifunctional in carcinogenesis of multiple solid tumors. Oncogene, 2010. 29(18): p. 2605-15.
41. Weisenberger, D.J., et al., CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet, 2006. 38(7): p. 787-93.
42. Webber, B.R., et al., DNA methylation of Runx1 regulatory regions correlates with transition from primitive to definitive hematopoietic potential in vitro and in vivo. Blood, 2013. 122(17): p. 2978-86.
43. Kim, W.J., et al., RUNX3 inactivation by point mutations and aberrant DNA methylation in bladder tumors. Cancer Res, 2005. 65(20): p. 9347-54.
44. Lee, K.S., et al., Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene, 2010. 29(23): p. 3349-61.
45. Lau, Q.C., et al., RUNX3 is frequently inactivated by dual mechanisms of protein mislocalization and promoter hypermethylation in breast cancer. Cancer Res, 2006. 66(13): p. 6512-20.
46. Ito, K., et al., RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell, 2008. 14(3): p. 226-37.
47. Ito, K., et al., RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res, 2005. 65(17): p. 7743-50.
48. Li, Q.L., et al., Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 2002. 109(1): p. 113-24.
49. Chi, X.Z., et al., RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol Cell Biol, 2005. 25(18): p. 8097-107.
50. Lee, C.W., et al., RUNX3 functions as an oncogene in ovarian cancer. Gynecol Oncol, 2011. 122(2): p. 410-7.
51. Salto-Tellez, M., et al., RUNX3 protein is overexpressed in human basal cell carcinomas. Oncogene, 2006. 25(58): p. 7646-9.
52. Nevadunsky, N.S., et al., RUNX3 protein is overexpressed in human epithelial ovarian cancer. Gynecol Oncol, 2009. 112(2): p. 325-30.
53. Tsunematsu, T., et al., RUNX3 has an oncogenic role in head and neck cancer. PLoS One, 2009. 4(6): p. e5892.
54. Ikushima, H. and K. Miyazono, TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer, 2010. 10(6): p. 415-24.
55. Ito, Y. and K. Miyazono, RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr Opin Genet Dev, 2003. 13(1): p. 43-7.
56. Hanai, J., et al., Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem, 1999. 274(44): p. 31577-82.
57. Yamamura, Y., et al., RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem, 2006. 281(8): p. 5267-76.
58. Bertagnolli, M.M., APC and intestinal carcinogenesis. Insights from animal models. Ann N Y Acad Sci, 1999. 889: p. 32-44.
59. Whittle, M.C., et al., RUNX3 Controls a Metastatic Switch in Pancreatic Ductal Adenocarcinoma. Cell, 2015. 161(6): p. 1345-60.
60. Hingorani, S.R., et al., Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 2005. 7(5): p. 469-83.
61. Izeradjene, K., et al., Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell, 2007. 11(3): p. 229-43.
62. Kuo, T.L., et al., APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice. Oncogene, 2016. 35(17): p. 2223-34.
63. Slattum, G.M. and J. Rosenblatt, Tumour cell invasion: an emerging role for basal epithelial cell extrusion. Nat Rev Cancer, 2014. 14(7): p. 495-501.
64. Xu, Q., et al., MicroRNA-130a regulates autophagy of endothelial progenitor cells through Runx3. Clin Exp Pharmacol Physiol, 2014. 41(5): p. 351-7.
65. Wang, X., et al., Runx1 prevents wasting, myofibrillar disorganization, and autophagy of skeletal muscle. Genes Dev, 2005. 19(14): p. 1715-22.
66. Mathew, R., V. Karantza-Wadsworth, and E. White, Role of autophagy in cancer. Nat Rev Cancer, 2007. 7(12): p. 961-7.
67. Standal, T., M. Borset, and A. Sundan, Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol, 2004. 26(3): p. 179-84.
68. Denhardt, D.T., et al., Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest, 2001. 107(9): p. 1055-61.
69. Poruk, K.E., et al., Serum osteopontin and tissue inhibitor of metalloproteinase 1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas, 2013. 42(2): p. 193-7.
70. Guo, H., et al., Osteopontin is a negative feedback regulator of nitric oxide synthesis in murine macrophages. J Immunol, 2001. 166(2): p. 1079-86.
71. Ricardo, S.D., et al., Angiotensinogen and AT(1) antisense inhibition of osteopontin translation in rat proximal tubular cells. Am J Physiol Renal Physiol, 2000. 278(5): p. F708-16.
72. Grassian, A.R., J.L. Coloff, and J.S. Brugge, Extracellular matrix regulation of metabolism and implications for tumorigenesis. Cold Spring Harb Symp Quant Biol, 2011. 76: p. 313-24.
73. Bonaldo, P., et al., Structural and functional features of the alpha 3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry, 1990. 29(5): p. 1245-54.
74. Chu, M.L., et al., Sequence analysis of alpha 1(VI) and alpha 2(VI) chains of human type VI collagen reveals internal triplication of globular domains similar to the A domains of von Willebrand factor and two alpha 2(VI) chain variants that differ in the carboxy terminus. EMBO J, 1989. 8(7): p. 1939-46.
75. Armstrong, T., et al., Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res, 2004. 10(21): p. 7427-37.
76. Yu, K.H., et al., Stable isotope dilution multidimensional liquid chromatography-tandem mass spectrometry for pancreatic cancer serum biomarker discovery. J Proteome Res, 2009. 8(3): p. 1565-76.
77. Wan, F., et al., Upregulation of COL6A1 is predictive of poor prognosis in clear cell renal cell carcinoma patients. Oncotarget, 2015. 6(29): p. 27378-87.
78. Boj, S.F., et al., Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015. 160(1-2): p. 324-38.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code