Responsive image
博碩士論文 etd-0502103-164828 詳細資訊
Title page for etd-0502103-164828
論文名稱
Title
人類中性白血球中Mitogen-Avtivated Protein Kinase之訊號傳導
Mitogen-Activated Protein Kinase Signal Transduction Pathways in Human Neutrophils
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-05-31
繳交日期
Date of Submission
2003-05-02
關鍵字
Keywords
中性白血球、訊號傳導
signal transduction, NF-kappa-B, neutrophil, fMLP, PAF, ROS, MAPK
統計
Statistics
本論文已被瀏覽 5671 次,被下載 2570
The thesis/dissertation has been browsed 5671 times, has been downloaded 2570 times.
中文摘要
摘要

中性白血球是主要調控各種免疫發炎反應的細胞。活化MAPK及NF-kappaB調控著許多細胞內的功能,包括超氧離子 (superoxide) 的產生。而透過細菌的peptide (fMLP) 和血小板活化因子 (PAF) 來活化中性白血球的機制仍有待研究。實驗的中性白血球取自健康人的靜脈血管,並在給予fMLP或PAF 刺激前給予PKC的抑制劑GF109203X,PKC-gamma的抑制劑calphostin C,PI3K的抑制劑wortmannin,PLA2的抑制劑aristolochic acid,PLC的抑制劑U73122,SOC的抑制劑SKF96365,鈣離子螯合劑EGTA,p38 MAPK的抑制劑SB203580與MEK 1的抑制劑PD98059。以西方墨點法偵測MAPK的磷酸化,EMSA偵測NF-kappa-B的活化,及利用流式細胞儀測量超氧離子的產生。實驗結果顯示fMLP和PAF透過不同的MAPK訊號傳遞路徑來活化中性白血球。PI3K, PKC, PLA2, PLC, 和細胞外的鈣離子均影響fMLP活化ERK MAPK,而與PAF不同的是,PKC-gamma和細胞外的鈣離子並不影響fMLP活化ERK MAPK。雖然fMLP和PAF透過不同的訊號傳遞路徑來活化中性白血球,但是fMLP和PAF皆透過PI3K, PKC, PLA2, PLC,p38 MAPK和ERK MAPK來活化NF-kappa-B及超氧離子的產生。


Abstract
Abstract

Neutrophils are the major cellular component of acute inflammatory response. The mechanism by which fMLP or PAF activates neutrophils is not fully elucidated. Stimulation of MAPKs and activation of NF-kappa B in neutrophils regulate various cell functions, including superoxide production. Neutrophils isolated from blood taken from healthy donors, were incubated with specific inhibitors, GF109203X (PKC inhibitor), calphostin C (PKC-gamma isoform inhibitor), wortmannin (PI3K inhibitor), U73122 (PLC inhibitor), aristolochic acid (PLA2 inhibitor), SKF96365 (SOC channel inhibitor), EGTA (extracellular calcium chelator), SB203580 (p38 MAPK inhibitor), and PD98059 (MEK inhibitor), followed by fMLP or PAF treatment. MAPK activation by fMLP or PAF is based on immunoblot analysis. NF-kappa B activation is detected by EMSA, and superoxide production is measured by flow cytometry. The data indicate that neutrophil MAPK signaling pathways mediated by fMLP and PAF are different. PAF-induced ERK MAPK phosphorylation was involved PI3K, PKC, PLA2, PLC, and extracellular calcium, wheres fMLP-induced phosphorylation doesn’t involve PKC
目次 Table of Contents
Contents
Abstract in Chinese....................1
Abstract in English....................2
Review.................................3
Introduction...........................8
Method ....................10
Results ....................13
Discussion ....................16
Figure ....................24
Materials ....................44
References ....................45
參考文獻 References
Reference

1. Cooper JA, Bowen-Pope DF, Raines E, Ross R, Hunter T. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell. 1982 Nov;31(1):263-73.
2. Cooper JA, Hunter T. Identification and characterization of cellular targets for tyrosine protein kinases. J Biol Chem. 1983 Jan 25;258(2):1108-15.
3. Ray LB, Sturgill TW. Insulin-stimulated microtubule-associated protein kinase is phosphorylated on tyrosine and threonine in vivo. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3753-7.
4. Rossomando AJ, Payne DM, Weber MJ, Sturgill TW. Evidence that pp42, a major tyrosine kinase target protein, is a mitogen-activated serine/threonine protein kinase. Proc Natl Acad Sci U S A. 1989 Sep;86(18):6940-3.
5. Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999 Jan;79(1):143-80.
6. Fanger GR, Gerwins P, Widmann C, Jarpe MB, Johnson GL. MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev. 1997 Feb;7(1):67-74. Review.
7. Siow YL, Kalmar GB, Sanghera JS, Tai G, Oh SS, Pelech SL. Identification of two essential phosphorylated threonine residues in the catalytic domain of Mekk1. Indirect activation by Pak3 and protein kinase C. J Biol Chem. 1997 Mar 21;272(12):7586-94.
8. Gartner A, Nasmyth K, Ammerer G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 1992 Jul;6(7):1280-92.
9. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD. Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase.
J Biol Chem. 1996 Jul 12;271(28):16586-90.
10. Mody N, Leitch J, Armstrong C, Dixon J, Cohen P. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 2001 Jul 27;502(1-2):21-4.
11. Kolonics A, Apati A, Nahajevszky S, Gati R, Brozik A, Magocsi M. Unregulated activation of STAT-5, ERK1/2 and c-Fos may contribute to the phenotypic transformation from myelodysplastic syndrome to acute leukaemia. Haematologia (Budap). 2001;31(2):125-38.
12. Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996 Oct;74(10):589-607. Review.
13. Hirano S, Rees RS, Gilmont RR. MAP kinase pathways involving hsp27 regulate fibroblast-mediated wound contraction. J Surg Res. 2002 Feb;102(2):77-84.
14. Seo M, Lee YI, Cho CH, Bae CD, Kim IH, Juhnn YS. Bi-directional regulation of UV-induced activation of p38 kinase and c-Jun N-terminal kinase by G protein beta gamma subunits. J Biol Chem. 2002 Apr 26.
15. Sheth K, Friel J, Nolan B, Bankey P. Inhibition of p38 mitogen activated protein kinase increases lipopolysaccharide induced inhibition of apoptosis in neutrophils by activating extracellular signal-regulated kinase. Surgery. 2001 Aug;130(2):242-8.
16. Jiang Y, Gram H, Zhao M, New L, Gu J, Feng L, Di Padova F, Ulevitch RJ, Han J. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38delta. J Biol Chem. 1997 Nov 28;272(48):30122-8.
17. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994 Dec 22-29;372(6508):739-46.
18. Hale KK, Trollinger D, Rihanek M, Manthey CL. Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol. 1999 Apr 1;162(7):4246-52.
19. Nick JA, Avdi NJ, Young SK, Lehman LA, McDonald PP, Frasch SC, Billstrom MA, Henson PM, Johnson GL, Worthen GS. Selective activation and functional significance of p38alpha mitogen-activated protein kinase in lipopolysaccharide-stimulated neutrophils. J Clin Invest. 1999 Mar;103(6):851-8.
20. Kaminska B, Kaczmarek L, Zangenehpour S, Chaudhuri A. Rapid phosphorylation of Elk-1 transcription factor and activation of MAP kinase signal transduction pathways in response to visual stimulation. Mol Cell Neurosci. 1999 Jun;13(6):405-14.
21. Leurs R, Smit MJ, Alewijnse AE, Timmerman H. Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci. 1998 Nov;23(11):418-22.
22. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802-8.
23. Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB. Crystal structure of a G-protein beta gamma dimer at 2.1A resolution. Nature. 1996 Jan 25;379(6563):369-74.
24. Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB. The 2.0 A crystal structure of a heterotrimeric G protein. Nature. 1996 Jan 25;379(6563):311-9.
25. Sondek J, Lambright DG, Noel JP, Hamm HE, Sigler PB. GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin alpha-GDP-AIF-4. Nature. 1994 Nov 17;372(6503):276-9.
26. Lambright DG, Noel JP, Hamm HE, Sigler PB. Structural determinants for activation of the alpha-subunit of a heterotrimeric G protein. Nature. 1994 Jun 23;369(6482):621-8.
27. Wilkie TM, Gilbert DJ, Olsen AS, Chen XN, Amatruda TT, Korenberg JR, Trask BJ, de Jong P, Reed RR, Simon MI, et al. Evolution of the mammalian G protein alpha subunit multigene family. Nat Genet. 1992 May;1(2):85-91.
28. Clapham DE, Neer EJ. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol. 1997;37:167-203.
29. Ford CE, Skiba NP, Bae H, et al. Molecular basis for interactions of G protein betagamma subunits with effectors. Science. 1998 May 22;280(5367):1271-4.
30. Simonds WF. G protein regulation of adenylate cyclase. Trends Pharmacol Sci. 1999 Feb;20(2):66-73.
31. Hamm HE. The many faces of G protein signaling. J Biol Chem. 1998 Jan 9;273(2):669-72.
32. Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem. 1997 Jun 13;272(24):15045-8.
33. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315-25.
34. Hill CS, Wynne J, Treisman R. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell. 1995 Jun 30;81(7):1159-70.
35. Kurosu H, Maehama T, Okada T, Yamamoto T, Hoshino S, Fukui Y, Ui M, Hazeki O, Katada T. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110beta is synergistically activated by the betagamma subunits of G proteins and phosphotyrosyl peptide. J Biol Chem. 1997 Sep 26;272(39):24252-6.
36. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell. 1986 Dec 26;47(6):921-8.
37. Baldwin AS Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649-83.
38. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-60.
39. Miyamoto S, Verma IM. Rel/NF-kappa B/I kappa B story. Adv Cancer Res. 1995;66:255-92.
40. Arenzana-Seisdedos F, Turpin P, Rodriguez M, Thomas D, Hay RT, Virelizier JL, Dargemont C. Nuclear localization of I kappa B alpha promotes active transport of NF-kappa B from the nucleus to the cytoplasm. J Cell Sci. 1997 Feb;110 ( Pt 3):369-78.
41. Rothwarf DM, Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE. 1999 Oct 26;1999(5):RE1.
42. Baldi L, Brown K, Franzoso G, Siebenlist U. Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of I kappa B-alpha. J Biol Chem. 1996 Jan 5;271(1):376-9.
43. DiDonato JA. IKK alpha on center stage. Sci STKE. 2001 Aug 28;2001(97):PE1.
44. Rothwarf DM, Zandi E, Natoli G, Karin M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature. 1998 Sep 17;395(6699):297-300.
45. Yamaoka S, Courtois G, Bessia C, Whiteside ST, Weil R, Agou F, Kirk HE, Kay RJ, Israel A. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell. 1998 Jun 26;93(7):1231-40.
46. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000 Dec;279(6):L1005-28.
47. Deby C, Goutier R. New perspectives on the biochemistry of superoxide anion and the efficiency of superoxide dismutases. Biochem Pharmacol. 1990 Feb 1;39(3):399-405.
48. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002 Jan;82(1):47-95.
49. Hampton MB, Kettle AJ, Winterbourn CC. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood. 1998 Nov 1;92(9):3007-17.
50. Derevianko A, D'Amico R, Graeber T, Keeping H, Simms HH. Endogenous PMN-derived reactive oxygen intermediates provide feedback regulation on respiratory burst signal transduction. J Leukoc Biol. 1997 Aug;62(2):268-76.
51. Shiose A, Sumimoto H. Arachidonic acid and phosphorylation synergistically induce a conformational change of p47phox to activate the phagocyte NADPH oxidase. J Biol Chem. 2000 May 5;275(18):13793-801.
52. DeLeo FR, Quinn MT. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol. 1996 Dec;60(6):677-91.
53. Haq R, Halupa A, Beattie BK, Mason JM, Zanke BW, Barber DL. Regulation of erythropoietin-induced STAT serine phosphorylation by distinct mitogen-activated protein kinases. J Biol Chem. 2002 Mar 1
54. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001 Apr;81(2):807-69.
55. Ye RD. Regulation of nuclear factor kappaB activation by G-protein-coupled receptors. J Leukoc Biol. 2001 Dec;70(6):839-48.
56. Yamamori T, Inanami O, Nagahata H, Cui Y, Kuwabara M. Roles of p38 MAPK, PKC and PI3-K in the signaling pathways of NADPH oxidase activation and phagocytosis in bovine polymorphonuclear leukocytes. FEBS Lett. 2000 Feb 11;467(2-3):253-8.
57. Elzi DJ, Bjornsen AJ, MacKenzie T, Wyman TH, Silliman CC. Ionomycin causes activation of p38 and p42/44 mitogen-activated protein kinases in human neutrophils. Am J Physiol Cell Physiol. 2001 Jul;281(1):C350-60.
58. Tardif M, Rabiet MJ, Christophe T, Milcent MD, Boulay F. Isolation and characterization of a variant HL60 cell line defective in the activation of the NADPH oxidase by phorbol myristate acetate. J Immunol. 1998 Dec 15;161(12):6885-95.
59. Kodama T, Hazeki K, Hazeki O, Okada T, Ui M. Enhancement of chemotactic peptide-induced activation of phosphoinositide 3-kinase by granulocyte-macrophage colony-stimulating factor and its relation to the cytokine-mediated priming of neutrophil superoxide-anion production. Biochem J. 1999 Jan 15;337 ( Pt 2):201-9.
60. Dewas C, Fay M, Gougerot-Pocidalo MA, El-Benna J. The mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 pathway is involved in formyl-methionyl-leucyl-phenylalanine-induced p47phox phosphorylation in human neutrophils. J Immunol. 2000 Nov 1;165(9):5238-44.
61. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65-89.
62. Bell B, Xing H, Yan K, Gautam N, Muslin AJ. KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation. J Biol Chem. 1999 Mar 19;274(12):7982-6.
63. Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science. 1997 Jan 17;275(5298):394-7.
64. Hawes BE, Luttrell LM, van Biesen T, Lefkowitz RJ. Phosphatidylinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathway. J Biol Chem. 1996 May 24;271(21):12133-6.
65. Bondeva T, Pirola L, Bulgarelli-Leva G, Rubio I, Wetzker R, Wymann MP. Bifurcation of lipid and protein kinase signals of PI3Kgamma to the protein kinases PKB and MAPK. Science. 1998 Oct 9;282(5387):293-6.
66. Haslett C, Guthrie LA, Kopaniak MM, Johnston RB Jr, Henson PM. Modulation of multiple neutrophil functions by preparative methods or trace concentrations of bacterial lipopolysaccharide. Am J Pathol. 1985 Apr;119(1):101-10.
67. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem. 1996 Sep 20;271(38):23512-9.
68. Ho PD, Zechner DK, He H, Dillmann WH, Glembotski CC, McDonough PM. The Raf-MEK-ERK cascade represents a common pathway for alteration of intracellular calcium by Ras and protein kinase C in cardiac myocytes. J Biol Chem. 1998 Aug 21;273(34):21730-5.
69. Sajan MP, Standaert ML, Bandyopadhyay G, Quon MJ, Burke TR Jr, Farese RV. Protein kinase C-zeta and phosphoinositide-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J Biol Chem. 1999 Oct 22;274(43):30495-500.
70. Benard O, Naor Z, Seger R. Role of dynamin, Src, and Ras in the protein kinase C-mediated activation of ERK by gonadotropin-releasing hormone. J Biol Chem. 2001 Feb 16;276(7):4554-63.
71. Martiny-Baron G, Kazanietz MG, Mischak H, Blumberg PM, Kochs G, Hug H, Marme D, Schachtele C. Selective inhibition of protein kinase C isozymes by the indolocarbazole Go 6976. J Biol Chem. 1993 May 5;268(13):9194-7.
72. Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000 Oct;80(4):1669-99.
73. Dang PM, Hakim J, Perianin A. Immunochemical identification and translocation of protein kinase C zeta in human neutrophils. FEBS Lett. 1994 Aug 8;349(3):338-42.
74. Yu H, Suchard SJ, Nairn R, Jove R. Dissociation of mitogen-activated protein kinase activation from the oxidative burst in differentiated HL-60 cells and human neutrophils. J Biol Chem. 1995 Jun 30;270(26):15719-24.
75. Ciesla DJ, Moore EE, Gonzalez RJ, Biffl WL, Silliman CC. Hypertonic saline inhibits neutrophil (PMN) priming via attenuation of p38 MAPK signaling. Shock. 2000 Sep;14(3):265-9; discussion 269-70.
76. Goldsmith P, Gierschik P, Milligan G, Unson CG, Vinitsky R, Malech HL, Spiegel AM. Antibodies directed against synthetic peptides distinguish between GTP-binding proteins in neutrophil and brain. J Biol Chem. 1987 Oct 25;262(30):14683-8.
77. Uhing RJ, Polakis PG, Snyderman R. Isolation of GTP-binding proteins from myeloid HL-60 cells. Identification of two pertussis toxin substrates. J Biol Chem. 1987 Nov 15;262(32):15575-9.
78. Matsuoka M, Itoh H, Kaziro Y. Characterization of the human gene for Gx alpha, a pertussis toxin-insensitive regulatory GTP-binding protein. J Biol Chem. 1990 Aug 5;265(22):13215-20.
79. Dhanasekaran N, Dermott JM. Signaling by the G12 class of G proteins. Cell Signal. 1996 Jun;8(4):235-45.
80. Zheng L, Eckerdal J, Dimitrijevic I, Andersson T. Chemotactic peptide-induced activation of Ras in human neutrophils is associated with inhibition of p120-GAP activity. J Biol Chem. 1997 Sep 12;272(37):23448-54.
81. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995 Aug 4;269(5224):690-3.
82. Geijsen N, Dijkers PF, Lammers JJ, Koenderman L, Coffer PJ. Cytokine-mediated cPLA(2) phosphorylation is regulated by multiple MAPK family members. FEBS Lett. 2000 Apr 7;471(1):83-8.
83. Syrbu SI, Waterman WH, Molski TF, Nagarkatti D, Hajjar JJ, Sha'afi RI. Phosphorylation of cytosolic phospholipase A2 and the release of arachidonic acid in human neutrophils. J Immunol. 1999 Feb 15;162(4):2334-40.
84. Barrett CF, Rittenhouse AR. Modulation of N-type calcium channel activity by G-proteins and protein kinase C. J Gen Physiol. 2000 Mar;115(3):277-86.
85. Garcia-Ferreiro RE, Hernandez-Ochoa EO, Garcia DE. Modulation of N-type Ca2+ channel current kinetics by PMA in rat sympathetic neurons. Pflugers Arch. 2001 Sep;442(6):848-58.
86. Chen LW, Shen AY, Chen JS, Wu SN. Differential regulation of Ca2+ influx by fMLP and PAF in human neutrophils: possible involvement of store-operated Ca2+ channel. Shock. 2000 Mar;13(3):175-82.
87. Shibata K, Kitayama S, Morita K, Shirakawa M, Okamoto H, Dohi T. Regulation by protein kinase C of platelet-activating factor- and thapsigargin-induced calcium entry in rabbit neutrophils. Jpn J Pharmacol. 1994 Oct;66(2):273-6.
88. Hauser CJ, Fekete Z, Adams JM, Garced M, Livingston DH, Deitch EA. PAF-mediated Ca2+ influx in human neutrophils occurs via store-operated mechanisms. J Leukoc Biol. 2001 Jan;69(1):63-8.
89. Wang D, Richmond A. Nuclear factor-kappa B activation by the CXC chemokine melanoma growth-stimulatory activity/growth-regulated protein involves the MEKK1/p38 mitogen-activated protein kinase pathway. J Biol Chem. 2001 Feb 2;276(5):3650-9.
90. Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J. 1996 Apr 15;15(8):1914-23.
91. Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem. 2001 Jun 1;276(22):18934-40.
92. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem. 1998 Feb 6;273(6):3285-90.
93. Hirano M, Osada S, Aoki T, Hirai S, Hosaka M, Inoue J, Ohno S. MEK kinase is involved in tumor necrosis factor alpha-induced NF-kappaB activation and degradation of IkappaB-alpha. J Biol Chem. 1996 May 31;271(22):13234-8.
94. Meyer CF, Wang X, Chang C, Templeton D, Tan TH. Interaction between c-Rel and the mitogen-activated protein kinase kinase kinase 1 signaling cascade in mediating kappaB enhancer activation. J Biol Chem. 1996 Apr 12;271(15):8971-6.
95. Karin M, Delhase M. JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9067-9.
96. Nemoto S, DiDonato JA, Lin A. Coordinate regulation of IkappaB kinases by mitogen-activated protein kinase kinase kinase 1 and NF-kappaB-inducing kinase. Mol Cell Biol. 1998 Dec;18(12):7336-43.
97. Schouten GJ, Vertegaal AC, Whiteside ST, Israel A, Toebes M, Dorsman JC, van der Eb AJ, Zantema A. IkappaB alpha is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J. 1997 Jun 2;16(11):3133-44.
98. Ghoda L, Lin X, Greene WC. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J Biol Chem. 1997 Aug 22;272(34):21281-8.
99. Lian JP, Huang R, Robinson D, Badwey JA. Activation of p90RSK and cAMP response element binding protein in stimulated neutrophils: novel effects of the pyridinyl imidazole SB 203580 on activation of the extracellular signal-regulated kinase cascade. J Immunol. 1999 Oct 15;163(8):4527-36.
100. Franklin RA, Tordai A, Mazer B, Terada N, Lucas J, Gelfand EW. Platelet activating factor activates MAPK and increases in intracellular calcium via independent pathways in B lymphocytes. Biochem Biophys Res Commun. 1995 Apr 26;209(3):1111-8.
101. Zhao Q, Lee FS. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-kappaB through IkappaB kinase-alpha and IkappaB kinase-beta. J Biol Chem. 1999 Mar 26;274(13):8355-8.
102. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000 Jan;12(1):1-13.
103. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell. 1997 May 2;89(3):413-24.
104. Merika M, Williams AJ, Chen G, Collins T, Thanos D. Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell. 1998 Jan;1(2):277-87.
105. Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR. Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem. 2002 Feb 8;277(6):3863-9.
106. Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, Mills GB. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J Biol Chem. 2001 Jul 20;276(29):27455-61.
107. Xie P, Browning DD, Hay N, Mackman N, Ye RD. Activation of NF-kappa B by bradykinin through a Galpha(q)- and Gbeta gamma-dependent pathway that involves phosphoinositide 3-kinase and Akt. J Biol Chem. 2000 Aug 11;275(32):24907-14.
108. Vertegaal AC, Kuiperij HB, Yamaoka S, Courtois G, van der Eb AJ, Zantema A. Protein kinase C-alpha is an upstream activator of the IkappaB kinase complex in the TPA signal transduction pathway to NF-kappaB in U2OS cells. Cell Signal. 2000 Dec;12(11-12):759-68.
109. Baumann B, Weber CK, Troppmair J, Whiteside S, Israel A, Rapp UR, Wirth T. Raf induces NF-kappaB by membrane shuttle kinase MEKK1, a signaling pathway critical for transformation. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4615-20.
110. Alaoui-El-Azher M, Wu Y, Havet N, Israel A, Lilienbaum A, Touqui L. Arachidonic acid differentially affects basal and lipopolysaccharide-induced sPLA(2)-IIA expression in alveolar macrophages through NF-kappaB and PPAR-gamma-dependent pathways. Mol Pharmacol. 2002 Apr;61(4):786-94.
111. van Puijenbroek AA, Wissink S, van der Saag PT, Peppelenbosch MP. Phospholipase A2 inhibitors and leukotriene synthesis inhibitors block TNF-induced NF-kappaB activation. Cytokine. 1999 Feb;11(2):104-10.
112. Rizzo MT, Leaver AH, Yu WM, Kovacs RJ. Arachidonic acid induces mobilization of calcium stores and c-jun gene expression: evidence that intracellular calcium release is associated with c-jun activation. Prostaglandins Leukot Essent Fatty Acids. 1999 Mar;60(3):187-98.
113. Ago T, Nunoi H, Ito T, Sumimoto H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. J Biol Chem. 1999 Nov 19;274(47):33644-53.
114. Mollapour E, Linch DC, Roberts PJ. Activation and priming of neutrophil nicotinamide adenine dinucleotide phosphate oxidase and phospholipase A(2) are dissociated by inhibitors of the kinases p42(ERK2) and p38(SAPK) and by methyl arachidonyl fluorophosphonate, the dual inhibitor of cytosolic and calcium-independent phospholipase A(2). Blood. 2001 Apr 15;97(8):2469-77.
115. Hata K, Ito T, Takeshige K, Sumimoto H Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions. J Biol Chem. 1998 Feb 13;273(7):4232-6.
116. Cross AR, Erickson RW, Curnutte JT. Simultaneous presence of p47(phox) and flavocytochrome b-245 are required for the activation of NADPH oxidase by anionic amphiphiles. Evidence for an intermediate state of oxidase activation. J Biol Chem. 1999 May 28;274(22):15519-25.
117. Paclet MH, Coleman AW, Vergnaud S, Morel F. P67-phox-mediated NADPH oxidase assembly: imaging of cytochrome b558 liposomes by atomic force microscopy. Biochemistry. 2000 Aug 8;39(31):9302-10.
118. Eklund EA, Jalava A, Kakar R. PU.1, interferon regulatory factor 1, and interferon consensus sequence-binding protein cooperate to increase gp91(phox) expression. J Biol Chem. 1998 May 29;273(22):13957-65.
119. Eklund EA, Kakar R. Recruitment of CREB-binding protein by PU.1, IFN-regulatory factor-1, and the IFN consensus sequence-binding protein is necessary for IFN-gamma-induced p67phox and gp91phox expression. J Immunol. 1999 Dec 1;163(11):6095-105.
120. Gauss KA, Bunger PL, Quinn MT. AP-1 is essential for p67(phox) promoter activity. J Leukoc Biol. 2002 Jan;71(1):163-72.
121. El Benna J, Faust RP, Johnson JL, Babior BM. Phosphorylation of the respiratory burst oxidase subunit p47phox as determined by two-dimensional phosphopeptide mapping. Phosphorylation by protein kinase C, protein kinase A, and a mitogen-activated protein kinase. J Biol Chem. 1996 Mar 15;271(11):6374-8.
122. Wang JP, Raung SL, Tsao LT, Hsu MF, Lin CN. Blockade of protein kinase C is involved in the inhibition by cycloheterophyllin of neutrophil superoxide anion generation. Naunyn Schmiedebergs Arch Pharmacol. 1997 May;355(5):551-8.
123. De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG. The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol. 2000;40:235-71.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code